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Abstract Coherent systems are very important in reliability, survival analysis and other life

sciences. In this paper, we consider the number of failed components in an (n− k + 1)-out-of-n

system, given that at least m (m < k ≤ n) components have failed before time t, and the system

is still working at time t. In this case, we compute the probability that there are exactly i working

components. First the reliability and several stochastic properties are obtained. Furthermore,

we extend the results to general coherent systems with absolutely continuous and exchangeable

components.
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1. Introduction

In reliability theory and reliability engineering, building redundancy is a method of increas-

ing the reliability of a system. Redundancy refers to the reconfiguration of critical components

of a system to reduce system downtime. An important system is the (n − k + 1)-out-of-n sys-

tem (k ≤ n), which is widely used in weapons manufacturing, aerospace industry and electrical

engineering as an important redundant structure. The (n− k + 1)-out-of-n system works if and

only if at least (n − k + 1) of the n components work. The (n − k + 1)-out-of-n systems are

special types of coherent system. A system with n components is said to be a coherent system if

it has no irrelevant components and the structure function of the system is an increase function

in every component. In recent years, some discussions of coherent systems appear in Asadi and

Bayramoglu [1], Khaledi and Shaked [2], Li and Zhang [3, 4], Navarro, Samaniego and Balakr-

ishnan [5, 6], Mahmoudi and Asadi [7], Asadi and Berred [8], Ling and Li [9], Eryilmaz [10]. In

1985, Samaniego [11] proposed a concept of “signature” of coherent systems, which can represent

the lifetime distribution function of a coherent system with independent identically distributed

component lifetimes. Assume that a coherent system has independent and identically distributed

component lifetimes X1, X2, ..., Xn, the X ′
is are distributed according to the continuous distri-

bution F . Let T = T (X1, ..., Xn) be the lifetime of the system. Then the signature of the system
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is defined as a probability vector s = (s1, s2, ..., sn) with

si = P{T = Xi:n}, i = 1, 2, . . . , n,

where Xi:n denotes the i-th ordered lifetime of the components lifetimes X1, X2, . . . , Xn, and∑n
i=1 si = 1. The si also can be written as si = Ai

n! , which represents the probability that

the ith failure of components causes the system failure, where Ai is the number of all possible

permutations of X1, X2, . . . , Xn causing system failure for the ith failure of components. As the

signature vector s does not depend on the common distribution function of X ′
is, the reliability

function of T , denoted by F̄T (t) (see [12]), can be represented as a mixture of the survival

functions of Xi:n with weights s1, . . . , sn. That is

F̄T (t) =
n∑

i=1

siP (Xi:n > t).

The concept of “signature” has been used by several authors in recent years to study the

reliability of coherent systems. Da, Zheng and Hu [13], Eryilmaz and Zuo [14], and Eryilmaz

[15, 16] used the signature of a system with exchangeable components to study the number of

working components in consecutive k-out-of-n system while it is working. Eryilmaz [17] has also

studied the number of failed components in a coherent system with exchangeable components.

In this paper, we study the properties of the number of failed components in a conditional

coherent operating system. The paper is organized as follows. In Section 2, we consider an

(n− k+1)-out-of-n system with n independent and identically distributed component lifetimes,

given that at least m (m < k ≤ n) components have failed before time t, and the system is still

working at time t. We compute the probabilities

pt(i,m, k, n) = P (Nt = i|Xm:n ≤ t,Xk:n > t), i = m,m+ 1, . . . , k − 1, (1.1)

where Nt = i denotes the number of failed components in the system. Some properties of

pt(i,m, k, n) are studied. In Section 3, we extend the results of Section 2 to general coherent

systems with signature vector s = (s1, s2, . . . , sn), and the coherent systems have independent

and identically distributed lifetimes. Some different results and examples are provided. Further-

more, we compute the probability and mean of the number of failed components for a conditional

coherent system with absolutely continuous and exchangeable components.

2. The failed components in an (n − k + 1)-out-of-n system

In (n − k + 1)-out-of-n system, let X1, X2, . . . , Xn be lifetimes of n i.i.d. components with

distribution F . Denote Xi:n as the i-th smallest order statistic of X1, X2, . . . , Xn. The Nt

denotes the number of failed components in the system on [0, t]. Now assume that at least

m (m < k ≤ n) components have failed before time t, and the system is still working at time t.

Then, we consider the probability that there are exactly i failures

pt(i,m, k, n) = P (Nt = i|Xm:n ≤ t,Xk:n > t), i = m,m+ 1, . . . , k − 1. (2.1)

To compute pt(i,m, k, n), note that the event {Nt = i} is equivalent to the event {Xi:n ≤ t <
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Xi+1:n}. We can write

pt(i,m, k, n) =P (Nt = i|Xm:n ≤ t,Xk:n > t)

=P (Xi:n < t < Xi+1:n|Xm:n ≤ t,Xk:n > t)

=P (Xi:n < t|Xm:n ≤ t,Xk:n > t)− P (Xi+1:n < t|Xm:n ≤ t,Xk:n > t).

Now we have

P (Xi:n < t|Xm:n ≤ t,Xk:n > t) =
P (Xi:n < t,Xm:n ≤ t,Xk:n > t)

P (Xm:n ≤ t,Xk:n > t)

=
P (Xi:n < t,Xk:n > t)

P (Xm:n ≤ t,Xk:n > t)
=

∑k−1
j=i

(
n
j

)
F j(t)F̄n−j(t)∑k−1

j=m

(
n
j

)
F j(t)F̄n−j(t)

=

∑k−1
j=i

(
n
j

)
ϕj(t)∑k−1

j=m

(
n
j

)
ϕj(t)

,

where ϕ(t) = F (t)
F̄ (t)

. The pt(i,m, k, n) can be rewritten as

pt(i,m, k, n) =

(
n
i

)
ϕi(t)∑k−1

j=m

(
n
j

)
ϕj(t)

, i = m,m+ 1, . . . , k − 1. (2.2)

Remark 2.1 Let v be the median of the distribution F . Then ϕ(v) = 1 and

pv(i,m, k, n) =

(
n
i

)∑k−1
j=m

(
n
j

) , i = m,m+ 1, . . . , k − 1,

which shows that pv(i,m, k, n) does not depend on v, scilicet, in an (n− k+1)-out-of-n system,

given that at least m (m < k ≤ n) components have failed before time v, and the system is

still working at time v, the probability of having i failures in the system does not depend on the

distribution function F (or v).

Remark 2.2 For fixed m > 1, when k = n, i.e., the system is a parallel system, we have

pv(i,m, n, n) =

(
n
i

)
ϕi(t)∑n−1

j=m

(
n
j

)
ϕj(t)

=

(
n
i

)
ϕi(t)

(1 + ϕ(t))n − ϕn(t)−
∑m−1

j=0

(
n
j

)
ϕj(t)

=

(
n
i

)
2n − 2−

∑m−1
j=1

(
n
j

) , i = m,m+ 1, . . . , n− 1.

Note that, pv(i,m, n, n) first starts to increase in i to achieve its maximum and starts to decrease.

In the following, we derive some stochastic order comparisons and properties of pt(i,m, k, n),

we need the following definition.

Definition 2.3 For two discrete distributions p = (p1, . . . , pn) and q = (q1, . . . , qn), p is said

to be smaller than q in the

(a) Usual stochastic order (denoted by p ≤st q) if
∑n

j=i pj ≤
∑n

j=i qj for all i = 1, 2, . . . , n;

(b) Hazard rate order (denoted by p ≤hr q) if
∑n

j=i pj/
∑n

j=i qj is decreasing in i;
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(c) Reversed hazard rate order (denoted by p ≤rh q) if
∑i

j=1 pj/
∑i

j=1 qj is decreasing in i;

(d) Likelihood rate order (denoted by p ≤lr q) if pi/qi is decreasing in i.

The following relation of implications can be established:

X ≤lr Y =⇒ X ≤hr (≤rh)Y =⇒ X ≤st Y.

For further study about the properties of these stochastic orders, the reader can refer to [18–26].

Theorem 2.4 (a) For m ≤ a ≤ k − 1, a ∈ N , we have

(Nt|Xm:n ≤ t,Xk:n > t) ≤st (Nt|Xm:n ≤ t,Xk−1:n > t);

(b) For m ≤ b ≤ k − 1, b ∈ N , we have

(Nt|Xm−1:n ≤ t,Xk:n > t) ≤st (Nt|Xm:n ≤ t,Xk:n > t);

(c) Assume that there are two (n−k+1)-out-of-n systems of order n with the same structures,

and the components have independent lifetimes. Let F̄ denote the survival function of a random

variable X, and Ḡ denote the survival function of a random variable Y . If X ≤st Y , then

(Nt|Ym:n ≤ t, Yk:n > t) ≤lr (Nt|Xm:n ≤ t,Xk:n > t).

Proof We prove part (a), part (b) can be established similarly. For m ≤ a ≤ k − 1, a ∈ N , we

have ∑k−1
i=a P (Nt = i|Xm:n ≤ t,Xk:n > t)∑k−1

i=a P (Nt = i|Xm:n ≤ t,Xk−1:n > t)

=

∑k−1
i=a

(
n
i

)
ϕi(t)∑k−1

j=m

(
n
j

)
ϕj(t)

/ ∑k−1
i=a

(
n
i

)
ϕi(t)∑k−2

j=m

(
n
j

)
ϕj(t)

=

∑k−2
j=m

(
n
j

)
ϕj(t)∑k−1

j=m

(
n
j

)
ϕj(t)

< 1.

Based on Definition 2.3, this completes the proof.

To prove the result of (c), we have to discuss the monotonicity in t of the following formula

P (Nt = i|Xm:n ≤ t,Xk:n > t)

P (Nt = i|Ym:n ≤ t, Yk:n > t)

=

(
n
i

)
F i(t)F̄n−i(t)∑k−1

j=m

(
n
j

)
F j(t)F̄n−j(t)

/ (
n
i

)
Gi(t)Ḡn−i(t)∑k−1

j=m

(
n
j

)
Gj(t)Ḡn−j(t)

∝ (
F (t)

G(t)
)i(

F̄ (t)

Ḡ(t)
)n−i.

Since X ≤st Y , then F̄ (t) ≤ Ḡ(t), F (t) ≥ G(t). It is increase in i. �

Definition 2.5 Let {pi, i = 0, 1, . . .} be the probability mass function of a random variable X

taking values on {xi, i = 0, 1, . . .}. This sequence {pi} is said to be a log-concave function if and

only if

p2i ≥ pi−1pi+1, i = 0, 1, . . . ,
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where p−1 = 0 by convention. It is known that the log-concavity of {pi} implies that its distri-

bution function is IFR. A probability mass function {pi, i = 0, 1, . . .} with survival function P̄i

is said to be IFR if P̄i

P̄i−1
is decreasing in i, i = 0, 1, . . . , n− 1.

0 0.5 1 1.5 2 2.5 3
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Figure 1 The plot displays pt(i,m, k, n), for i = 3,m = 1, k = 6, n = 8, 9, 10 and the components of

system have exponential distribution with mean 1.

Theorem 2.6 For fixed values of m, k and n, the function pt(i,m, k, n) is a log-concave function.

Proof From the fact that for i = m,m+ 1, . . . , k − 1,(
n

i

)2

≥
(

n

i+ 1

)(
n

i− 1

)
and from the expression of pt(i,m, k, n) in (2.2), we have p2t (i,m, k, n) ≥ pt(i− 1,m, k, n)pt(i+

1,m, k, n). �

Theorem 2.7 The function F is uniquely determined by pt(i,m, k, n) as follows:

F (t) =
(i+ 1)pt(i+ 1,m, k, n)

(i+ 1)pt(i+ 1,m, k, n) + (n− i)pt(i,m, k, n)
, i = m,m+ 1, . . . , k − 1. (2.3)

Proof From (2.2), we can write for i = m,m+ 1, . . . , k − 1,

pt(i+ 1,m, k, n)

pt(i,m, k, n)
=

(
n

i+1

)(
n
i

) ϕ(t).

This in turn, produces a representation (2.3) after calculation. �

Theorem 2.8 Denote by v the median of the distribution function F . Then

(a) For t ≥ v and i ≤ n−1
2 , pt(i+ 1,m, k, n) ≥ pt(i,m, k, n);

(b) For t ≤ v and i ≥ n−1
2 , pt(i+ 1,m, k, n) ≤ pt(i,m, k, n).

Proof We prove part (a), part (b) can be established similarly. For t ≥ v, we have F (t) ≥ 1
2 ,

which in turn implies that ϕ(t) ≥ 1. On the other hand for i ≤ n−1
2 , we have(

n

i+ 1

)
≥

(
n

i

)
.
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Hence, we have (
n

i+ 1

)
ϕi+1(t) ≥

(
n

i

)
ϕi(t). �

We need to show the following lemma to prove the next result.

Lemma 2.9 For fixed j,m and n, the function γj
m,k,n defined as

γj
m,k,n =

∑k−1
l=j

(
n
l

)
tl∑k−1

i=m

(
n
i

)
ti

is an increase function of t.

Proof We need to show that for 0 < t1 < t2,∑k−1
l=j

(
n
l

)
tl1∑k−1

i=m

(
n
i

)
ti1

≤
∑k−1

l=j

(
n
l

)
tl2∑k−1

i=m

(
n
i

)
ti2
. (2.4)

The inequality in (2.4) holds if and only if

k−1∑
l=j

j−1∑
i=m

(
n

l

)(
n

i

)
(tl1t

i
2 − ti1t

l
2) ≤ 0, (2.5)

as
k−1∑
l=j

k−1∑
i=j

(
n

l

)(
n

i

)
(tl1t

i
2 − ti1t

l
2) = 0.

Since 0 ≤ t1 ≤ t2, it is easy to see that (2.5) holds. This proof is completed. �
In the following we assume that P̄t(j,m, k, n) denotes the survival function of pt(i,m, k, n),

i.e. P̄t(j,m, k, n) =
∑k−1

i=j pt(i,m, k, n).

Theorem 2.10 Assume there are two coherent systems of order n with the same structures

and the components have independent lifetimes, with survival functions F̄ and Ḡ, respectively.

If for all t, F̄ ≤ Ḡ, then P̄F
t (j,m, k, n) ≥ P̄G

t (j,m, k, n).

Proof The F̄ ≤ Ḡ implies that ϕF (t) ≤ ϕG(t). Now, the result follows from the fact that

P̄F
t (j,m, k, n) = γj

m,k,n(ϕ
F (t)) and P̄G

t (j,m, k, n) = γj
m,k,n(ϕ

G(t)) and that, based on Lemma

2.9, γj
m,k,n is increase in t. �

Figure 1 These plots display the pt(3, 1, 6, 8), pt(3, 1, 6, 9) and pt(3, 1, 6, 10). For fixed i,m and

k, it clearly shows that for n, the pt(i,m, k, n) is not a monotone function. It first starts to

increase in t to achieve its maximum and then starts to decrease. Assume that components of

the system have exponential distribution with mean 1.

3. The failed components in a coherent system

In this section, we consider a coherent system with signature vector s = (s1, s2, . . . , sn).

Assume that S̄j =
∑n

i=j+1 si, 0 ≤ j ≤ n − 1. If pct(i,m, n) denotes the probability of having i

failures in the system, given that at least m (m < n) components have failed before time t, and
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the system is still working at time t, we have

pct(i,m, n) = P (Xi:n < t < Xi+1:n|Xm:n ≤ t, T > t)

=
P (Xi:n < t < Xi+1:n, Xm:n ≤ t, T > t)

P (Xm:n ≤ t, T > t)

=

∑n
k=i+1 P (Xi:n < t < Xi+1:n, Xm:n ≤ t,Xk:n > t, T = Xk:n)∑n

l=m+1 P (Xm:n ≤ t,Xl:n > t, T = Xl:n)

=

∑n
k=i+1 P (Xi:n < t < Xi+1:n, T = Xk:n)∑n
l=m+1 P (Xm:n ≤ t,Xl:n > t, T = Xl:n)

=

∑n
k=i+1 P (Xi:n < t < Xi+1:n)P (T = Xk:n)∑n
l=m+1 P (Xm:n ≤ t,Xl:n > t)P (T = Xl:n)

=

∑n
k=i+1 sk

(
n
i

)
F i(t)F̄n−i(t)∑n

l=m+1 sl
∑l−1

j=m

(
n
j

)
F j(t)F̄n−j(t)

, i = m,m+ 1, . . . , n− 1,

where the fourth equation comes from the fact that the event {Xi:n < t < Xi+1:n, Xm:n ≤
t,Xk:n > t}(≡ {Xi:n < t < Xi+1:n}) and {T = Xk:n} are independent, and pct(i,m, n) can be

written as

pct(i,m, n) =
S̄i

(
n
i

)
ϕi(t)∑n

l=m+1 sl
∑l−1

j=m

(
n
j

)
ϕj(t)

, i = m,m+ 1, . . . , n− 1. (3.1)

Example 3.1 The structure function of a coherent system is

T = min{max(X1, X2),max(X3,min(X4, X5))},

where the X ′
is, i = 1, 2, 3, 4, 5 are assumed to be independent and identical exponential distribu-

tion with mean 1. Let m = 1. Then ϕ(t) = et − 1 and

pct(1, 1, 5) =
5

5 + 7(et − 1) + 2(et − 1)2
,

pct(2, 1, 5) =
7(et − 1)

5 + 7(et − 1) + 2(et − 1)2
,

pct(3, 1, 5) =
2(et−)2

5 + 7(et − 1) + 2(et − 1)2
.

Note that the pct(4, 1, 5) = 0 in this system, because, P (T = X4:5) = 0, the X4:5 is the structure

of system for the component’s lifetime, i.e. the lifetime X4:5 of component will never cause the

system failure.

In the following, we derive some properties of pct(i,m, n) that can be extended by the results

of Section 2. As pct(i,m, n) and pt(i,m, k, n) have very similar forms, we do not give the details

of the proofs.
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Theorem 3.2 (a) For m ≤ a ≤ n− 1, a ∈ N , we have

(Nt|Xm−1:n ≤ t, T > t) ≤st (Nt|Xm:n ≤ t, T > t);

(b) Assume that there are two coherent systems with lifetimes T1 and T2 of order n with

the same structures, the components have independent lifetimes, with survival function F̄ and

Ḡ, respectively. If X ≤st Y . Then

(Nt|Ym:n ≤ t, T2 > t) ≤lr (Nt|Xm:n ≤ t, T1 > t).

Proof (a) For m ≤ a ≤ n− 1, a ∈ N , we have∑n−1
i=a P (Nt = i|Xm:n ≤ t, T > t)∑n−1

i=a P (Nt = i|Xm−1:n ≤ t, T > t)

=

∑n
l=m sl

∑l−1
j=m−1

(
n
j

)
ϕj(t)∑n

l=m+1 sl
∑l−1

j=m

(
n
j

)
ϕj(t)

> 1.

Based on Definition 2.3. This proof is completed.

As for (b), one can use the same steps as in the proof of Theorem 2.4 (c) to establish the

result. �

Theorem 3.3 If the structure vector s is IFR, then the function pct(i,m, n) is a log-concave

function and hence IFR.

Proof To prove this result, we have to show that

(pct(i,m, n))2 ≥ pct(i− 1,m, n)pct(i+ 1,m, n), i = m,m+ 1, . . . , n− 1,

where by convention pct(n,m, n) = 0. This is equivalent to showing that

(S̄i

(
n

i

)
)2 ≥ S̄i−1S̄i+1

(
n

i− 1

)(
n

i+ 1

)
.

The result follows from the condition that s is IFR and Theorem 2.6. �
The signature of a system with exchangeable components can be computed by finding the

number of path sets of the system containing exactly i working components. Let ri(n) be the

number of path sets of the system containing exactly i working components. Define

ai(n) =
ri(n)(

n
i

) , i = 1, 2, . . . , n. (3.2)

Then the quantities

si(n) = an−i+1(n)− an−i(n), i = 1, 2, . . . , n, (3.3)

or equivalently

ai(n) =
n∑

j=n−i+1

sj(n), i = 1, 2, . . . , n, (3.4)

give the signature of a system, where a0(n) = 0.

Definition 3.4 ([27]) The sequence of lifetime T1, . . . , Tn is exchangeable if for each n,

P{T1 ≤ t1, . . . , Tn ≤ tn} = P{Tπ(1) ≤ t1, . . . , Tπ(n) ≤ tn},
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for any permutation π = (π(1), . . . , π(n)) of {1, 2, . . . , n}.

Theorem 3.5 Let T = ϕ(T1, T2, . . . , Tn) be the lifetime of a coherent system with signature s =

(s1, s2, . . . , sn). If T1, T2, . . . , Tn have an absolutely continuous exchangeable joint distribution,

then for m ≤ j ≤ n− 1

P{Nt = j|Tm:n ≤ t, T > t} =
P{Tj+1:n > t} − P{Tj:n > t}

P{Tm:n ≤ t, T > t}

n∑
i=j+1

si,

where Ti:n is the i-th smallest among T1, T2, . . . , Tn.

Proof We can write

P{Nt = j|Tm:n ≤ t, T > t} =
P{T > t|Tm:n ≤ t,Nt = j}P{Tm:n ≤ t,Nt = j}

P{Tm:n ≤ t, T > t}
.

It is clear that

P{T > t|Tm:n ≤ t,Nt = j} = P{T > t|Nt = j} =
rn−j(n)(

n
n−j

) .

We obtain

P{Nt = j|Tm:n ≤ t, T > t} =
rn−j(n)(

n
n−j

) P{Tj+1:n > t} − P{Tj:n > t}
P{Tm:n ≤ t, T > t}

.

With (3.2) and (3.3), we have

rn−j(n)(
n

n−j

) = an−j(n) =
n∑

i=j+1

si.

This completes the proof. �

Remark 3.6 The conditional probability given in Theorem 3.5 can also be written as

P{Nt = j|Tm:n ≤ t, T > t} =
P{Nt = j}

P{Tm:n ≤ t, T > t}

n∑
i=j+1

si.

Corollary 3.7 As a direct consequence of Remark 3.6 we have

E{Nt|Tm:n ≤ t, T > t} =
E(g(Nt))

P{Tm:n ≤ t, T > t}
,

where g(j) = j
∑n

i=j+1 si.
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