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Abstract The aim of this article is to study the structures of arbitrary split δ-Jordan Lie

triple systems, which are a generalization of split Lie triple systems. By developing techniques

of connections of roots for this kind of triple systems, we show that any of such δ-Jordan Lie

triple systems T with a symmetric root system is of the form T = U +
∑

[α]∈Λ1/∼ I[α] with U a

subspace of T0 and any I[α] a well described ideal of T , satisfying {I[α], T, I[β]} = {I[α], I[β], T} =

{T, I[α], I[β]} = 0 if [α] ̸= [β].
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1. Introduction

The concept of Lie triple systems (LTSs) was introduced by Nathan Jacobson in 1949 to study

subspaces of associative algebras closed under triple commutators [[u, v], w]. The role played by

LTSs in the theory of symmetric spaces is parallel to that of Lie algebras in the theory of Lie

groups: the tangent space at every point of a symmetric space has the structure of a Lie triple

system (LTS). Because of close relation to Lie algebras and theoretical physics, LTSs are widely

studied recently [1–3]. The notion of δ-Jordan Lie triple systems (δ-JLTSs) was introduced by

Susumu Okubo in 1997 (see [4]). The case of δ = 1 implies δ-JLTSs are LTSs and the other

case of δ = −1 gives Jordan Lie triple systems. So a question arises whether some known results

on LTSs can be extended to the framework of δ-JLTSs. δ-JLTSs are the natural generalization

of LTSs and have important applications. Recently, deformations, nijenhuis operators, abelian

extensions and T ∗-extensions of δ-JLTSs are studied [5].

In the present paper, we are interested in studying the structures of arbitrary δ-JLTSs by

focussing on the split ones. The class of the split ones is specially related to addition quantum

numbers, graded contractions, and deformations. Recently, in [6–12], the structures of arbitrary

split Lie algebras, arbitrary split Leibniz algebras, arbitrary split LTSs, arbitrary split Leibniz
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triple systems and arbitrary graded Leibniz triple systems have been determined by the tech-

niques of connections of roots. Our work is essentially motivated by the work on split LTSs [6].

Throughout this paper, δ-JLTSs T are considered of arbitrary dimension and over an arbitrary

base field K. It is worth to mention that, unless otherwise stated, there is not any restriction

on dimTα or {k ∈ K: kα ∈ Λ1, for a fixed α ∈ Λ1}, where Tα denotes the root space associated

to the root α, and Λ1 the set of nonzero roots of T . This paper proceeds as follows. In Section

2, we establish the preliminaries on split δ-JLTSs theory. In Section 3, we show that such an

arbitrary δ-JLTSs with a symmetric root system is of the form T = U +
∑

[α]∈Λ1/∼ I[α] with U a

subspace of T0 and any I[α] a well described ideal of T , satisfying {I[α], T, I[β]} = {I[α], I[β], T} =

{T, I[α], I[β]} = 0 if [α] ̸= [β].

2. Preliminaries

First we recall the definitions of δ-Jordan Lie algebra and δ-Jordan Lie triple system.

Definition 2.1 ([4]) A δ-Jordan Lie algebra L is a vector space over a field K endowed with a

bilinear map [·, ·] : L× L → L satisfying

(1) [x, y] = −δ[y, x], δ = ±1,

(2) [x, [y, z]] + [y, [z, x]] + [z, [x, y]] = 0, ∀x, y, z ∈ L.

Remark 2.2 ([4]) A δ-Jordan Lie algebra L is called a Lie algebra if δ = 1, and a δ-Jordan Lie

algebra L is called a Jordan Lie algebra if δ = −1.

Definition 2.3 ([4]) A δ-JLTS is a vector space T endowed with a trilinear operation {·, ·, ·} :

T × T × T → T satisfying

(1) {x, y, z} = −δ{y, x, z}, δ = ±1,

(2) {x, y, z}+ {y, z, x}+ {z, x, y} = 0,

(3) {x, y, {a, b, c}} = {{x, y, a}, b, c}+ {a, {x, y, b}, c}+ δ{a, b, {x, y, c}},
for x, y, z, a, b, c ∈ T .

When δ = 1, a δ-JLTS is a LTS. So LTSs are special examples of δ-JLTSs.

Example 2.4 If L is a δ-Jordan Lie algebra with product [·, ·], then L becomes a δ-JLTS by

putting {x, y, z} = [[x, y], z].

Definition 2.5 Let I be a subspace of a δ-JLTS T . Then I is called a subsystem of T , if

{I, I, I} ⊆ I; I is called an ideal of T , if {I, T, T} ⊆ I.

Definition 2.6 ([4]) The standard embedding of a δ-JLTS T is the Z2-graded δ-Jordan Lie

algebra L = L0 ⊕ L1, L0 being the K-span of {L(x, y).x, y ∈ T}, where L(x, y) denotes the left

multiplication operator in T , L(x, y)(z) := {x, y, z}; L1 := T and where the product is given by

[(L(x, y), z), (L(u, v), w)] := (L({u, v, y}, x)− L({u, v, x}, y) + L(z, w), {x, y, w} − δ{u, v, z}).

Let us observe that L0 with the product induced by the one in L = L0 ⊕L1 becomes a δ-Jordan
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Lie algebra.

Definition 2.7 Let T be a δ-JLTS, L = L0 ⊕ L1 be its standard embedding, and H0 be a

maximal abelian subalgebra (MASA) of L0. For a linear functional α ∈ (H0)∗, we define the root

space of T (with respect to H0) associated to α as the subspace Tα := {tα ∈ T : [h, tα] = α(h)tα

for any h ∈ H0}. The elements α ∈ (H0)∗ satisfying Tα ̸= 0 are called roots of T with respect

to H0 and we denote Λ1 := {α ∈ (H0)∗ \ {0} : Tα ̸= 0}.
Let us observe that T0 = {t0 ∈ T : [h, t0] = 0 for any h ∈ H0}. In the following, we shall

denote by Λ0 the set of all nonzero α ∈ (H0)∗ such that L0
α := {v0α ∈ L0 : [h, v0α] = α(h)v0α for

any h ∈ H0} ≠ 0.

Lemma 2.8 Let T be a δ-JLTS, L = L0⊕L1 be its standard embedding, and H0 be an MASA

of L0. For α, β, γ ∈ Λ1 ∪ {0} and ξ, q ∈ Λ0 ∪ {0}, the following assertions hold.

(1) If [Tα, Tβ ] ̸= 0, then δ(α+ β) ∈ Λ0 ∪ {0} and [Tα, Tβ ] ⊆ L0
δ(α+β).

(2) If [L0
ξ , Tα] ̸= 0, then δ(ξ + α) ∈ Λ1 ∪ {0} and [L0

ξ , Tα] ⊆ Tδ(ξ+α).

(3) If [Tα, L
0
ξ ] ̸= 0, then δ(α+ ξ) ∈ Λ1 ∪ {0} and [Tα, L

0
ξ ] ⊆ Tδ(α+ξ).

(4) If [L0
ξ , L

0
q] ̸= 0, then δ(ξ + q) ∈ Λ0 ∪ {0} and [L0

ξ , L
0
q] ⊆ L0

δ(ξ+q).

(5) If {Tα, Tβ , Tγ} ≠ 0, then α+β+δγ ∈ Λ1∪{0} and {Tα, Tβ , Tγ} ⊆ Tδ2α+δ2β+δγ = Tα+β+δγ .

Proof (1) For any x ∈ Tα, y ∈ Tβ and h ∈ H0, by Definition 2.1 (2), one has [h, [x, y]] =

δ[x, [h, y]] + δ[[h, x], y] = δ[x, β(h)y] + δ[α(h)x, y] = δ(α+ β)(h)[x, y].

(2) For any x ∈ L0
ξ , y ∈ Tα and h ∈ H0, by Definition 2.1 (2), one has [h, [x, y]] =

δ[x, [h, y]] + δ[[h, x], y] = δ[x, α(h)y] + δ[ξ(h)x, y] = δ(ξ + α)(h)[x, y].

(3) For any x ∈ Tα, y ∈ L0
ξ , and h ∈ H0, by Definition 2.1 (2), one has [h, [x, y]] =

δ[x, [h, y]] + δ[[h, x], y] = δ[x, ξ(h)y] + δ[α(h)x, y] = δ(α+ ξ)(h)[x, y].

(4) For any x ∈ L0
ξ , y ∈ L0

q and h ∈ H0, by Definition 2.1 (2), one has [h, [x, y]] =

δ[x, [h, y]] + δ[[h, x], y] = δ[x, q(h)y] + δ[ξ(h)x, y] = δ(ξ + q)(h)[x, y].

(5) It is a consequence of Lemma 2.8 (1) and (2). �

Definition 2.9 Let T be a δ-JLTS, L = L0 ⊕ L1 be its standard embedding, and H0 be a

MASA of L0. We shall call that T is a split δ-JLTS (with respect to H0) if T = T0⊕ (⊕α∈Λ1Tα).

We say that Λ1 is the root system of T .

We also note that the facts H0 ⊂ L0 = [T, T ] and T = T0 ⊕ (⊕α∈Λ1Tα) imply

H0 = [T0, T0] +
∑
α∈Λ1

[Tα, T−α]. (2.1)

Finally, as [T0, T0] ⊂ L0
0 = H0, we have

{T0, T0, T0} = 0. (2.2)

Similarly, we also have

{Tα, T−α, T0} = 0. (2.3)
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Definition 2.10 A root system Λ1 of a split δ-JLTS T is called symmetric if it satisfies that

α ∈ Λ1 implies −α ∈ Λ1.

A similar concept applies to the set Λ0 of nonzero roots of L0.

In the following, T denotes a split δ-JLTS with a symmetric root system Λ1, and T =

T0 ⊕ (⊕α∈Λ1Tα) the corresponding root decomposition. We begin the study of split δ-JLTS by

developing the concept of connections of roots.

Definition 2.11 Let α and β be two nonzero roots. We shall say that α and β are connected

if there exists a family {α1, α2, . . . , α2n, α2n+1} ⊂ Λ1 ∪ {0} of roots of T such that

(1) {α1, δ
2α1+δ2α2+δα3, δ

4α1+δ4α2+δ3α3+δ2α4+δα5, . . . , δ
2nα1+· · ·+δ2α2n+δα2n+1} ⊂

Λ1;

(2) {δα1 + δα2, δ
3α1 + δ3α2 + δ2α3 + δα4, . . . , δ

2n−1α1 + · · ·+ δα2n} ⊂ Λ0;

(3) α1 = α and δ2nα1 + · · ·+ δ2α2n + δα2n+1 ∈ ±β.

We shall also say that {α1, α2, . . . , α2n, α2n+1} is a connection from α to β.

Let Λ1
α := {β ∈ Λ1 : α and β are connected}. We can easily get that {α} is a connection

from α to itself and to −α. Therefore, ±α ∈ Λ1
α.

Definition 2.12 A subset Ω1 of a root system Λ1, associated to a split δ-JLTS T , is called

a root subsystem if it is symmetric, and for α, β, γ ∈ Ω1 ∪ {0} such that δ(α + β) ∈ Λ0 and

α+ β + δγ ∈ Λ1 then α+ β + δγ ∈ Ω1.

Let Ω1 be a root subsystem of Λ1. We define

T0,Ω1 := spanK{{Tα, Tβ , Tγ} : α+ β + δγ = 0; α, β, γ ∈ Ω1 ∪ {0}} ⊂ T0

and VΩ1 := ⊕α∈Ω1Tα. Taking into account the fact that {T0, T0, T0} = 0, it is straightforward

to verify that TΩ1 := T0,Ω1 ⊕ VΩ1 is a subsystem of T . We will say that TΩ1 is a subsystem

associated to the root subsystem Ω1.

Proposition 2.13 If Λ0 is symmetric, then the relation ∼ in Λ1, defined by α ∼ β if and only

if β ∈ Λ1
α, is of equivalence.

Proof {α} is a connection from α to itself and therefore α ∼ α.

If α ∼ β and {α1, α2, . . . , α2n, α2n+1} is a connection from α to β, then

{δ2nα1 + · · ·+ δα2n+1,−δα2n+1,−δα2n, . . . ,−δα2}

is a connection from β to α in case δ2nα1 + · · ·+ δ2α2n + δα2n+1 = β, and

{−δ2nα1 − · · · − δα2n+1, δα2n+1, δα2n, . . . , δα2}

in case δ2nα1 + · · ·+ δ2α2n + δα2n+1 = −β. Therefore β ∼ α.

Finally, suppose α ∼ β and β ∼ γ, {α1, α2, . . . , α2n, α2n+1} is a connection from α to β and

{β1, . . . , β2m+1} is a connection from β to γ. If m ̸= 0, then

{α1, . . . , α2n+1, β2, . . . , β2m+1}
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is a connection from α to γ in case δ2nα1 + · · ·+ δ2α2n + δα2n+1 = β, and

{α1, . . . , α2n+1,−β2, . . . ,−β2m+1}

in case δ2nα1 + · · ·+ δ2α2n + δα2n+1 = −β. If m = 0, then γ ∈ ±β and so

{α1, α2, . . . , α2n, α2n+1}

is a connection from α to γ. Therefore, α ∼ γ and ∼ is of equivalence. �

Proposition 2.14 Let α be a nonzero root and suppose Λ0 is symmetric. Then Λ1
α is a root

subsystem.

Proof If β ∈ Λ1
α, then there exists a connection {α1, α2, . . . , α2n, α2n+1} from α to β. It is clear

that {α1, α2, . . . , α2n, α2n+1} also connects α to −β and therefore −β ∈ Λ1
α. Let β1, β2, β3 ∈

Λ1
α ∪ {0} be such that δ(β1 + β2) ∈ Λ0 and β1 + β2 + δβ3 ∈ Λ1. If β1 = 0, as δ(β1 + β2) ∈ Λ0

then β2 ̸= 0 and there exists a connection {α1, α2, . . . , α2n, α2n+1} from α to β2. We have

{α1, α2, . . . , α2n+1, 0, β3} is a connection from α to β2+δβ3 in case δ2nα1+· · ·+δ2α2n+δα2n+1 =

β2 and {α1, α2, . . . , α2n+1, 0,−β3} in case δ2nα1+· · ·+δ2α2n+δα2n+1 = −β2. So β1+β2+δβ3 =

β2 + δβ3 ∈ Λ1
α. Suppose β1 ̸= 0, then there exists a connection {α1, α2, . . . , α2n, α2n+1} from

α to β1. Hence, {α1, α2, . . . , α2n+1, β2, β3} is a connection from α to β1 + β2 + δβ3 in case

δ2nα1 + · · · + δ2α2n + δα2n+1 = β1 and {α1, α2, . . . , α2n+1,−β2,−β3} in case δ2nα1 + · · · +
δ2α2n + δα2n+1 = −β1. Therefore, β1 + β2 + δβ3 ∈ Λ1

α. �

3. Decompositions

In this section, we will show that for a fixed α0 ∈ Λ1, the subsystem TΛ1
α0

associated to the

root subsystem Λ1
α0

is an ideal of T .

Lemma 3.1 The following assertions hold.

(1) If α, β ∈ Λ1 with [Tα, Tβ ] ̸= 0, then α is connected with β.

(2) If α, β ∈ Λ1, α ∈ Λ0 and [L0
α, Tβ ] ̸= 0, then α is connected with β.

(3) If α, β ∈ Λ1, α ∈ Λ0 and [Tβ , L
0
α] ̸= 0, then α is connected with β.

(4) If α, β ∈ Λ1, α, β ∈ Λ0 and [L0
α, L

0
β ] ̸= 0, then α is connected with β.

(5) If α, β ∈ Λ1 such that α is not connected with β, then [Tα, Tβ ] = 0, [L0
α, Tβ ] = 0 and

[Tβ , L
0
α] = 0 if furthermore α ∈ Λ0. If α, β ∈ Λ1 such that α is not connected with β, then

[L0
α, L

0
β
] = 0 if furthermore α, β ∈ Λ0.

Proof (1) Suppose [Tα, Tβ ] ̸= 0, by Lemma 2.8 (1), one gets δ(α+ β) ∈ Λ0 ∪ {0}. If α+ β = 0,

then β = −α and so α is connected with β. Suppose α + β ̸= 0. Since α + β ∈ Λ0, one gets

{α, β,−δα} is a connection from α to β.

(2) Suppose [L0
α, Tβ ] ̸= 0, by Lemma 2.8 (2), one gets δ(α + β) ∈ Λ1 ∪ {0}. If α + β = 0,

then β = −α and so α is connected with β. Suppose α + β ̸= 0. Since α + β ∈ Λ1, we obtain

{α, 0,−δα− δβ} is a connection from α to β.

(3) Suppose [Tβ , L
0
α] ̸= 0, by Lemma 2.8 (3), one gets δ(β + α) ∈ Λ1 ∪ {0}. If β + α = 0,
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then β = −α and it is clear that α is connected with β. Suppose β + α ̸= 0. Since β + α ∈ Λ1,

one gets {β,−δα− δβ, 0} is a connection from β to α. By the symmetry, we get α is connected

with β.

(4) Suppose [L0
α, L

0
β ] ̸= 0, by Lemma 2.8 (4), one has δ(α + β) ∈ Λ0 ∪ {0}. If α + β = 0,

then β = −α and so α is connected with β. Suppose α + β ̸= 0. Since α + β ∈ Λ0, one gets

{α, β,−δα} is a connection from α to β.

(5) It is a consequence of Lemma 3.1 (1), (2), (3) and (4). �

Lemma 3.2 If α, β ∈ Λ1 are not connected, then {Tα, T−α, Tβ} = 0.

Proof If [Tα, T−α] = 0, it is clear. One may suppose that [Tα, T−α] ̸= 0 and {Tα, T−α, Tβ} ̸=
0. So either {T−α, Tβ , Tα} ̸= 0 or {Tβ , Tα, T−α} ̸= 0, contradicting Lemma 3.1 (5). Hence,

{Tα, T−α, Tβ} = 0. �

Lemma 3.3 Fix α0 ∈ Λ1 and suppose Λ0 is symmetric. For α ∈ Λ1
α0

and β, γ ∈ Λ1 ∪{0}, then
the following assertions hold.

(1) If {Tα, Tβ , Tγ} ̸= 0 then β, γ, α+ β + δγ ∈ Λ1
α0

∪ {0}.
(2) If {Tγ , Tα, Tβ} ̸= 0 then γ, β, γ + α+ δβ ∈ Λ1

α0
∪ {0}.

(3) If {Tβ , Tγ , Tα} ̸= 0 then β, γ, β + γ + δα ∈ Λ1
α0

∪ {0}.

Proof (1) It is easy to see that [Tα, Tβ ] ̸= 0, for α ∈ Λ1
α0

and β ∈ Λ1 ∪ {0}. By Lemma 3.1 (1),

one gets α ∼ β in the case β ̸= 0. From here, β ∈ Λ1
α0

∪ {0}. In order to complete the proof, we

will show γ, α+ β + δγ ∈ Λ1
α0

∪ {0}. We distinguish two cases.

Case 1. Suppose α + β + δγ = 0. It is clear that α + β + δγ ∈ Λ1
α0

∪ {0}. The fact that

{T0, T0, T0} = 0 and {Tα, T−α, T0} = 0 for α ∈ Λ1 gives us γ ̸= 0. By Lemma 2.8 (1), one gets

δ(α + β) ∈ Λ0. As α + β = −δγ, {α, β, 0} would be a connection from α to γ and we conclude

γ ∈ Λ1
α0

∪ {0}.
Case 2. Suppose α+ β + δγ ̸= 0. We treat separately two cases.

Suppose α+β ̸= 0. By Lemma 2.8 (1), one gets δ(α+β) ∈ Λ0 and so {α, β, γ} is a connection

from α to α+ β + δγ. Hence α+ β + δγ ∈ Λ1
α0

∪ {0}. In the case γ ̸= 0, {α, β,−δα− δβ − γ} is

a connection from α to γ. So γ ∈ Λ1
α0
. Hence γ ∈ Λ1

α0
∪ {0}.

Suppose α + β = 0. Then necessarily γ ∈ Λ1
α0

∪ {0}. Indeed, if γ ̸= 0 and α is not

connected with γ, by Lemma 3.2, {Tα, Tβ , Tγ} = {Tα, T−α, Tγ} = 0, a contradiction. We also

have α+ β + δγ = δγ ∈ Λ1
α0

∪ {0}.
(2) The fact that [Tγ , Tα] ̸= 0 implies by Lemma 3.1 (1) that α ∼ γ in the case γ ̸= 0. From

here, γ ∈ Λ1
α0

∪ {0}. In order to complete the proof, we will show β, γ + α + δβ ∈ Λ1
α0

∪ {0}.
We distinguish two cases.

Case 1. Suppose γ + α + δβ = 0. It is clear that γ + α + δβ ∈ Λ1
α0

∪ {0}. The fact that

{T0, T0, T0} = 0 and {Tα, T−α, T0} = 0 for α ∈ Λ1 gives us β ̸= 0. By Lemma 2.8 (1), one has

γ + α ∈ Λ0. As γ + α = −δβ, {α, γ, 0} would be a connection from α to β and we conclude

β ∈ Λ1
α0

∪ {0}.
Case 2. Suppose γ + α+ δβ ̸= 0. We treat separately two cases.
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Suppose γ + α ̸= 0. By Lemma 2.8 (1), one gets γ + α ∈ Λ0 and so {α, γ, β} is a connection

from α to γ+α+δβ. Hence γ+α+δβ ∈ Λ1
α0

∪{0}. In the case β ̸= 0, we have {α, γ,−δα−δγ−β}
is a connection from α to δβ. So β ∈ Λ1

α0
. Hence β ∈ Λ1

α0
∪ {0}.

Suppose γ + α = 0. Then necessarily β ∈ Λ1
α0

∪ {0}. Indeed, if β ̸= 0 and α is not

connected with β, by Lemma 3.2, {Tγ , Tα, Tβ} = {T−α, Tα, Tβ} = 0, a contradiction. We also

have γ + α+ δβ = δβ ∈ Λ1
α0

∪ {0}.
(3) By the definition of δ-JLTS, one has {Tβ , Tγ , Tα} ⊂ {Tα, Tβ , Tγ}+{Tγ , Tα, Tβ}. So either

{Tα, Tβ , Tγ} ≠ 0 or {Tγ , Tα, Tβ} ̸= 0. By Lemma 3.3 (1) and (2), one gets β, γ ∈ Λ1
α0

∪{0}. Next

we will show that β + γ + δα ∈ Λ1
α0

∪ {0}. We treat separately three cases.

Case 1. Suppose β ̸= 0. Then β ∈ Λ1
α0
. By Lemma 3.3 (1), one has β + γ + δα ∈ Λ1

α0
∪ {0}.

Case 2. Suppose β = 0 and γ ̸= 0. Then γ ∈ Λ1
α0
. By Lemma 3.3 (2), one has β + γ + δα ∈

Λ1
α0

∪ {0}.
Case 3. Suppose β = 0 and γ = 0. Then β + γ + δα = δα ∈ Λ1

α0
. We also have β + γ + δα ∈

Λ1
α0

∪ {0}. �

Lemma 3.4 Fix α0 ∈ Λ1 and suppose Λ0 is symmetric. For α, β, γ ∈ Λ1
α0

∪{0} with α+β+δγ =

0 and τ, ϵ ∈ Λ1 ∪ {0}, the following assertions hold.

(1) If {{Tα, Tβ , Tγ}, Tτ , Tϵ} ̸= 0, then τ , ϵ, τ + δϵ ∈ Λ1
α0

∪ {0}.
(2) If {Tϵ, {Tα, Tβ , Tγ}, Tτ} ̸= 0, then τ , ϵ, ϵ+ δτ ∈ Λ1

α0
∪ {0}.

(3) If {Tτ , Tϵ, {Tα, Tβ , Tγ}} ̸= 0, then τ , ϵ, τ + ϵ ∈ Λ1
α0

∪ {0}.

Proof (1) From the fact that α+ β+ δγ = 0 , {T0, T0, T0} = 0 and {Tα, T−α, T0} = 0 whenever

α ∈ Λ1, one may suppose that at least two distinct elements in {α, β, γ} are nonzero and one

may consider the case {Tα, Tβ , Tγ} ≠ 0, α+ β ̸= 0 and γ ̸= 0. Since

0 ̸={{Tα, Tβ , Tγ}, Tτ , Tϵ} ⊂ {Tα, Tβ , {Tγ , Tτ , Tϵ}}−

{Tγ , {Tα, Tβ , Tτ}, Tϵ} − δ{Tγ , Tτ , {Tα, Tβ , Tϵ}},

any of the above three summands is nonzero. In order to complete the proof, we firstly will show

τ , ϵ ∈ Λ1
α0

∪ {0}. We distinguish three cases.

Case 1. Suppose {Tα, Tβ , {Tγ , Tτ , Tϵ}} ≠ 0. As γ ̸= 0 and {Tγ , Tτ , Tϵ} ̸= 0, Lemma 3.3 (1)

shows that τ, ϵ are connected with γ in the case of being nonzero roots and so τ, ϵ ∈ Λ1
α0

∪ {0}.
Case 2. Suppose {Tγ , {Tα, Tβ , Tτ}, Tϵ} ̸= 0. As α + β ̸= 0 and γ ̸= 0. So either α ̸= 0 or

β ̸= 0. By Lemma 3.3 (1) and (2), one has τ, ϵ ∈ Λ1
α0

∪ {0}.
Case 3. Suppose {Tγ , Tτ , {Tα, Tβ , Tϵ}} ̸= 0. As α + β ̸= 0 and γ ̸= 0. So either α ̸= 0 or

β ̸= 0. By Lemma 3.3 (1) and (2), one has τ, ϵ ∈ Λ1
α0

∪ {0}.
Finally, we will show τ + δϵ ∈ Λ1

α0
∪{0}. From the fact that α+ β+ δγ = 0, {T0, T0, T0} = 0

and {{Tα, Tβ , Tγ}, Tτ , Tϵ} ̸= 0, let us suppose that at least one element in {τ, ϵ} is nonzero. So

either τ ∈ Λ1
α0

or ϵ ∈ Λ1
α0
. Then {{Tα, Tβ , Tγ}, Tτ , Tϵ} ⊂ {T0, Tτ , Tϵ}. By Lemma 3.3 (2) and

(3), one has τ + δϵ ∈ Λ1
α0

∪ {0}.
(2) From the fact that α + β + δγ = 0, {T0, T0, T0} = 0 and {Tα, T−α, T0} = 0 whenever

α ∈ Λ1, one may suppose that at least two distinct elements in {α, β, γ} are nonzero and one
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may consider the case {Tα, Tβ , Tγ} ≠ 0, α+ β ̸= 0 and γ ̸= 0. Since

0 ̸={Tϵ, {Tα, Tβ , Tγ}, Tτ} ⊂ {Tα, Tβ , {Tϵ, Tγ , Tτ}}−

δ{Tϵ, Tγ , {Tα, Tβ , Tτ}} − {{Tα, Tβ , Tϵ}, Tγ , Tτ},

any of the above three summands is nonzero. In order to complete the proof, we firstly will show

τ , ϵ ∈ Λ1
α0

∪ {0}. We distinguish three cases.

Case 1. Suppose {Tα, Tβ , {Tϵ, Tγ , Tτ}} ̸= 0. As γ ̸= 0 and {Tϵ, Tγ , Tτ} ̸= 0, Lemma 3.3 (2)

shows that ϵ, τ are connected with γ in the case of being nonzero roots and so ϵ, τ ∈ Λ1
α0

∪ {0}.
Case 2. Suppose {Tϵ, Tγ , {Tα, Tβ , Tτ}} ̸= 0. As α + β ̸= 0 and γ ̸= 0. So either α ̸= 0 or

β ̸= 0. By Lemma 3.3 (1) and (2), one has ϵ, τ ∈ Λ1
α0

∪ {0}.
Case 3. Suppose {{Tα, Tβ , Tϵ}, Tγ , Tτ} ̸= 0. As α + β ̸= 0 and γ ̸= 0. So either α ̸= 0 or

β ̸= 0. By Lemma 3.3 (1) and (2), one has ϵ, τ ∈ Λ1
α0

∪ {0}.
Finally, we will show ϵ+ δτ ∈ Λ1

α0
∪{0}. From the fact that α+ β+ δγ = 0, {T0, T0, T0} = 0

and {Tϵ, {Tα, Tβ , Tγ}, Tτ} ̸= 0, let us suppose that at least one element in {ϵ, τ} is nonzero. So

either ϵ ∈ Λ1
α0

or τ ∈ Λ1
α0
. Then {Tϵ, {Tα, Tβ , Tγ}, Tτ} ⊂ {Tϵ, T0, Tτ}. By Lemma 3.3 (1) and

(3), one has ϵ+ δτ ∈ Λ1
α0

∪ {0}.
(3) By the definition of δ-JLTS, one has

0 ̸= {Tτ , Tϵ, {Tα, Tβ , Tγ}} ⊂ {{Tα, Tβ , Tγ}, Tτ , Tϵ}+ {Tϵ, {Tα, Tβ , Tγ}, Tτ}.

Suppose {{Tα, Tβ , Tγ}, Tτ , Tϵ} ≠ 0, by Lemma 3.4 (1), one has τ , ϵ, τ + δϵ ∈ Λ1
α0

∪ {0}. Suppose
{Tϵ, {Tα, Tβ , Tγ}, Tτ} ≠ 0, by Lemma 3.4 (2), one has τ , ϵ, ϵ+δτ ∈ Λ1

α0
∪{0}. Therefore, in these

two cases, we get τ , ϵ, τ + ϵ ∈ Λ1
α0

∪ {0}.

Lemma 3.5 Fix α0 ∈ Λ1and suppose Λ0 is symmetric. If α1, α2, α3 ∈ Λ1
α0

∪ {0} with

α1 + α2 + δα3 = 0 and ϵ ∈ Λ1 \ Λ1
α0
, then the following assertions hold.

(1) [{Tα1 , Tα2 , Tα3}, Tϵ] = 0.

(2) In case ϵ ∈ Λ0, then [{Tα1 , Tα2 , Tα3}, L0
ϵ ] = 0.

(3) [[{Tα1 , Tα2 , Tα3}, T0], Tϵ] = 0.

Proof (1) From the fact α1 + α2 + δα3 = 0, {T0, T0, T0} = 0 and {Tα, T−α, T0} = 0 for α ∈ Λ1,

one gets if α3 = 0 then it is clear that [{Tα1 , Tα2 , Tα3}, Tϵ] = 0. Let us consider the case α3 ̸= 0.

By the definition of δ-Jordan Lie algebra, we have

[{Tα1 , Tα2 , Tα3}, Tϵ]⊂δ[[Tα1 , Tα2 ], [Tα3 , Tϵ]]+[Tα3 , [[Tα1 , Tα2 ], Tϵ]]. (3.4)

Let us consider the first summand in (3.4). As α3 ̸= 0, one has α3 ∈ Λ1
α0
. For ϵ ∈ Λ1 \ Λ1

α0

and Lemma 3.1 (5), one easily gets [Tα3 , Tϵ] = 0. Therefore, [[Tα1 , Tα2 ], [Tα3 , Tϵ]] = 0.

Let us now consider the second summand in (3.4), it suffices to verify that

[Tα3 , [[Tα1 , Tα2 ], Tϵ]] = 0.

To do so, we first assert that [[Tα1 , Tα2 ], Tϵ] = 0. Indeed, by the definition of δ-Jordan Lie
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algebra, we have

[[Tα1 , Tα2 ], Tϵ] ⊂ δ[Tα1 , [Tα2 , Tϵ]]− [Tα2 , [Tα1 , Tϵ]], (3.5)

where α1, α2 ∈ Λ1
α0

∪ {0}, ϵ ∈ Λ1 \ Λ1
α0
. In the following, we distinguish three cases.

Case 1. α1 ̸= 0 and α2 ̸= 0. As α1 ∈ Λ1
α0

and ϵ ∈ Λ1 \ Λ1
α0
, by Lemma 3.1 (1), one gets

[Tα1 , Tϵ] = 0. As α2 ∈ Λ1
α0

and ϵ ∈ Λ1 \Λ1
α0
, by Lemma 3.1 (1), one gets [Tα2 , Tϵ] = 0. Therefore

by (3.5), one can show that [[Tα1 , Tα2 ], Tϵ] = 0.

Case 2. α1 ̸= 0 and α2 = 0. As α1 ∈ Λ1
α0

and ϵ ∈ Λ1 \ Λ1
α0
, by Lemma 3.1 (1), one gets

[Tα1 , Tϵ] = 0. That is [Tα2 , [Tα1 , Tϵ]] = 0. As α2 = 0, [Tα2 , Tϵ] = [T0, Tϵ] ⊂ L0
δϵ. By Lemma

3.1 (5), one gets [Tα1 , [Tα2 , Tϵ]] = 0. Therefore, by (3.5), one can show that [[Tα1 , Tα2 ], Tϵ] = 0.

Case 3. α1 = 0 and α2 ̸= 0. As α2 ∈ Λ1
α0

and ϵ ∈ Λ1 \ Λ1
α0
, by Lemma 3.1 (1), one gets

[Tα2 , Tϵ] = 0. That is [Tα1 , [Tα2 , Tϵ]] = 0. As α1 = 0, [Tα1 , Tϵ] = [T0, Tϵ] ⊂ L0
δϵ. By Lemma

3.1 (5), we get [Tα2 , [Tα1 , Tϵ]] = 0. Therefore, by (3.5), one can show that [[Tα1 , Tα2 ], Tϵ] = 0.

So [Tα3 , [[Tα1 , Tα2 ], Tϵ]]=0 is a consequence of [[Tα1 , Tα2 ], Tϵ] = 0. By (3.4), one gets

[{Tα1
, Tα2

, Tα3
}, Tϵ] = 0.

The proof is completed. �
(2) From the fact α1 + α2 + δα3 = 0, {T0, T0, T0} = 0 and {Tα, T−α, T0} = 0 for α ∈ Λ1,

one gets if α3 = 0 then it is clear that [{Tα1 , Tα2 , Tα3}, L0
ϵ ] = 0. Let us consider the case α3 ̸= 0.

Note that

[{Tα1 , Tα2 , Tα3}, L0
ϵ ] ⊂ δ[[Tα1 , Tα2 ], [Tα3 , L

0
ϵ ]]− [Tα3 , [[Tα1 , Tα2 ], L

0
ϵ ]]. (3.6)

Let us consider the first summand in (3.6). As α3 ̸= 0, one gets [[Tα1 , Tα2 ], [Tα3 , L
0
ϵ ]] = 0

by Lemma 3.1 (5). Let us now consider the second summand in (3.6). As either α1 ̸= 0 or

α2 ̸= 0, by the definition of δ-Jordan Lie algebra, the fact [T0, L
0
ϵ ] ⊂ Tδϵ and Lemma 3.1 (5),

we obtain that [Tα3 , [[Tα1 , Tα2 ], L
0
ϵ ]] = 0. So, the second summand in (3.6) is also zero and then

[{Tα1 , Tα2 , Tα3}, L0
ϵ ] = 0.

(3) It is a consequence of Lemma 3.5 (1), (2) and

[[{Tα1
, Tα2

, Tα3
}, T0], Tϵ] ⊂ δ[{Tα1

, Tα2
, Tα3

}, [T0, Tϵ]]− [T0, [{Tα1
, Tα2

, Tα3
}, Tϵ]].

Definition 3.6 A δ-JLTS T is said to be simple, if {T, T, T} ̸= 0 and its only ideals are {0}
and T .

Theorem 3.7 Suppose Λ0 is symmetric, the following assertions hold.

(1) For any α0 ∈ Λ1, the subsystem

TΛ1
α0

= T0,Λ1
α0

⊕ VΛ1
α0

of T associated to the root subsystem Λ1
α0

is an ideal of T .

(2) If T is simple, then there exists a connection from α to β for any α, β ∈ Λ1.

Proof (1) Recall that

T0,Λ1
α0

:= spanK{{Tα, Tβ , Tγ} : α+ β + δγ = 0; α, β, γ ∈ Λ1
α0

∪ {0}} ⊂ T0
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and VΛ1
α0

:= ⊕γ∈Λ1
α0
Tγ . In order to complete the proof, it suffices to show that

{TΛ1
α0
, T, T} ⊂ TΛ1

α0
.

We first check that {TΛ1
α0
, T, T} ⊂ TΛ1

α0
. It is easy to see that

{TΛ1
α0
, T, T} = {T0,Λ1

α0
⊕ VΛ1

α0
, T, T} = {T0,Λ1

α0
, T, T}+ {VΛ1

α0
, T, T}.

Next, we will show that {T0,Λ1
α0
, T, T} ⊂ TΛ1

α0
. Note that

{T0,Λ1
α0
, T, T} ={T0,Λ1

α0
, T0 ⊕ (⊕α∈Λ1Tα), T0 ⊕ (⊕α∈Λ1Tα)}

={T0,Λ1
α0
, T0, T0}+ {T0,Λ1

α0
, T0,⊕α∈Λ1Tα}+

{T0,Λ1
α0
,⊕α∈Λ1Tα, T0}+ {T0,Λ1

α0
,⊕α∈Λ1Tα,⊕β∈Λ1Tβ}.

Here, it is clear that {T0,Λ1
α0
, T0, T0} ⊂ {T0, T0, T0} = 0. Taking into account {T0,Λ1

α0
, T0, Tα},

for α ∈ Λ1, Lemma 3.4 (1) and the fact that either α ∈ Λ1
α0

or α ̸∈ Λ1
α0
, give us that

{T0,Λ1
α0
, T0, Tα} ⊂ VΛ1

α0
or {T0,Λ1

α0
, T0, Tα} = 0. Similarly, one gets that {T0,Λ1

α0
, Tα, T0} ⊂ VΛ1

α0

or {T0,Λ1
α0
, Tα, T0} = 0. Next, we will consider {T0,Λ1

α0
, Tα, Tβ}, where α, β ∈ Λ1. We treat five

cases.

Case 1. If α ∈ Λ1
α0
, β ∈ Λ1

α0
and α+ δβ = 0, then one has {T0,Λ1

α0
, Tα, Tβ} ⊂ T0,Λ1

α0
.

Case 2. If α ∈ Λ1
α0
, β ∈ Λ1

α0
and α+ δβ ̸= 0, since Λ1

α0
is a root subsystem, one gets

{T0,Λ1
α0
, Tα, Tβ} ⊂ VΛ1

α0
.

Case 3. If α ∈ Λ1
α0

and β ̸∈ Λ1
α0
, by Lemma 3.4 (1), one has {T0,Λ1

α0
, Tα, Tβ} = 0.

Case 4. If β ∈ Λ1
α0

and α ̸∈ Λ1
α0
, by Lemma 3.4 (1), one has {T0,Λ1

α0
, Tα, Tβ} = 0.

Case 5. If β ̸∈ Λ1
α0

and α ̸∈ Λ1
α0
, by Lemma 3.4 (1), one has {T0,Λ1

α0
, Tα, Tβ} = 0.

Therefore, {T0,Λ1
α0
, T, T} ⊂ TΛ1

α0
.

Next, we will show that {VΛ1
α0
, T, T} ⊂ TΛ1

α0
. It is obvious that

{VΛ1
α0
, T, T} ={⊕γ∈Λ1

α0
Tγ , T0 ⊕ (⊕α∈Λ1Tα), T0 ⊕ (⊕α∈Λ1Tα)}

={⊕γ∈Λ1
α0
Tγ , T0, T0}+ {⊕γ∈Λ1

α0
Tγ , T0,⊕α∈Λ1Tα}+

{⊕γ∈Λ1
α0
Tγ ,⊕α∈Λ1Tα, T0}+ {⊕γ∈Λ1

α0
Tγ ,⊕α∈Λ1Tα,⊕β∈Λ1Tβ}.

Here, it is clear that {Tγ , T0, T0} ⊂ VΛ1
α0
, for γ ∈ Λ1

α0
. Next, we will consider {Tγ , T0, Tα}, for

γ ∈ Λ1
α0
, α ∈ Λ1. We treat three cases.

Case 1. If γ ∈ Λ1
α0
, α ̸∈ Λ1

α0
, by Lemma 3.3 (1), one has {Tγ , T0, Tα} = 0.

Case 2. If γ ∈ Λ1
α0
, α ∈ Λ1

α0
and γ + δα ̸= 0, by Λ1

α0
is a root subsystem, one has

{Tγ , T0, Tα} ⊂ VΛ1
α0
.

Case 3. If γ ∈ Λ1
α0
, α ∈ Λ1

α0
and γ + δα = 0, it is clear that {Tγ , T0, Tα} ⊂ T0,Λ1

α0
.

Hence, {Tγ , T0, Tα} ⊂ TΛ1
α0
, for γ ∈ Λ1

α0
, α ∈ Λ1. Similarly, it is easy to get {Tγ , Tα, T0} ⊂ TΛ1

α0
,

for γ ∈ Λ1
α0
, α ∈ Λ1. At last, we will consider {⊕γ∈Λ1

α0
Tγ ,⊕α∈Λ1Tα,⊕β∈Λ1Tβ}, for γ ∈ Λ1

α0
,

α ∈ Λ1 and β ∈ Λ1. We treat five cases.

Case 1. If γ ∈ Λ1
α0
, α ∈ Λ1

α0
, β ∈ Λ1

α0
and γ + α+ δβ = 0, one gets {Tγ , Tα, Tβ} ⊂ T0,Λ1

α0
.
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Case 2. If γ ∈ Λ1
α0
, α ∈ Λ1

α0
, β ∈ Λ1

α0
and γ + α+ δβ ̸= 0, one gets

{⊕γ∈Λ1
α0
Tγ ,⊕α∈Λ1Tα,⊕β∈Λ1Tβ} ⊂ VΛ1

α0
.

Case 3. If γ ∈ Λ1
α0
, α ∈ Λ1

α0
and β ̸∈ Λ1

α0
, by Lemma 3.3 (1) and (2), one gets

{Tγ , Tα, Tβ} = 0.

Case 4. If γ ∈ Λ1
α0
, α ̸∈ Λ1

α0
and β ∈ Λ1

α0
, by Lemma 3.3 (1) and (3), one gets

{Tγ , Tα, Tβ} = 0.

Case 5. If γ ∈ Λ1
α0
, α ̸∈ Λ1

α0
and β ̸∈ Λ1

α0
, by Lemma 3.3 (1), one gets {Tγ , Tα, Tβ} = 0.

So, {VΛ1
α0
, T, T} ⊂ TΛ1

α0
. Therefore, {TΛ1

α0
, T, T} ⊂ TΛ1

α0
is a consequence of {T0,Λ1

α0
, T, T} ⊂

TΛ1
α0

and {VΛ1
α0
, T, T} ⊂ TΛ1

α0
. Consequently, this proves that TΛ1

α0
is an ideal of T .

(2) The simplicity of T implies TΛ1
α0

= T . Hence Λ1
α0

= Λ1.

Theorem 3.8 Suppose Λ0 is symmetric. Then for a vector space complement U of

spanK{{Tα, Tβ , Tγ} : α+ β + δγ = 0,where α, β, γ ∈ Λ1 ∪ {0}} in T0,

we have

T = U +
∑

[α]∈Λ1/∼

I[α],

where any I[α] is one of the ideals TΛ1
α0

of T described in Theorem 3.7. Moreover

{I[α], T, I[β]} = {I[α], I[β], T} = {T, I[α], I[β]} = 0 if [α] ̸= [β].

Proof Let us denote ξ0 :=spanK{{Tα, Tβ , Tγ} : α + β + δγ = 0, where α, β, γ ∈ Λ1 ∪ {0}} in

T0. By Proposition 2.13, we can consider the quotient set Λ1/ ∼:= {[α] : α ∈ Λ1}. By denoting

I[α] := TΛ1
α
, T0,[α] := T0,Λ1

α
and V[α] := VΛ1

α
, one gets I[α] := T0,[α] ⊕ V[α]. From

T = T0 ⊕ (⊕α∈Λ1Tα) = (U + ξ0)⊕ (⊕α∈Λ1Tα),

it follows

⊕α∈Λ1Tα = ⊕[α]∈Λ1/∼V[α], ξ0 =
∑

[α]∈Λ1/∼

T0,[α],

indent which implies

T = U + ξ0 ⊕ (⊕α∈Λ1Tα) = U +
∑

[α]∈Λ1/∼

I[α],

where each I[α] is an ideal of T by Theorem 3.7.

Next, it is sufficient to show that {I[α], T, I[β]} = 0 if [α] ̸= [β]. Note that,

{I[α], T, I[β]} ={T0,[α] ⊕ V[α], T0 ⊕ (⊕γ∈Λ1Tγ), T0,[β] ⊕ V[β]}

={T0,[α], T0, T0,[β]}+ {T0,[α], T0, V[β]}+ {T0,[α],⊕γ∈Λ1Tγ , T0,[β]}+

{T0,[α],⊕γ∈Λ1Tγ , V[β]}+ {V[α], T0, T0,[β]}+ {V[α], T0, V[β]}+

{V[α],⊕γ∈Λ1Tγ , T0,[β]}+ {V[α],⊕γ∈Λ1Tγ , V[β]}.
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Here, it is clear that {T0,[α], T0, T0,[β]} ⊂ {T0, T0, T0} = 0. If [α] ̸= [β], by Lemmas 3.3 and

3.4, it is easy to see {T0,[α], T0, V[β]} = 0, {T0,[α],⊕γ∈Λ1Tγ , V[β]} = 0, {V[α], T0, T0,[β]} = 0,

{V[α], T0, V[β]} = 0, {V[α],⊕γ∈Λ1Tγ , T0,[β]} = 0, {V[α],⊕γ∈Λ1Tγ , V[β]} = 0.

Next, we will show {T0,[α],⊕γ∈Λ1Tγ , T0,[β]} = 0. Indeed, for {Tα1 , Tα2 , Tα3} ∈ T0,[α] with

α1, α2, α3 ∈ Λ1
α∪{0}, α1+α2+δα3 = 0, and for {Tβ1 , Tβ2 , Tβ3} ∈ T0,[β] with β1, β2, β3 ∈ Λ1

β∪{0},
β1 + β2 + δβ3 = 0, by the definition of δ-JLTS, one gets

{{Tα1 , Tα2 , Tα3},⊕γ∈Λ1Tγ , {Tβ1 , Tβ2 , Tβ3}}

⊂ δ{Tβ1
, Tβ2

, {{Tα1
, Tα2

, Tα3
},⊕γ∈Λ1Tγ , Tβ3

}}+

{{{Tα1 , Tα2 , Tα3},⊕γ∈Λ1Tγ , Tβ1}, Tβ2 , Tβ3}+

{Tβ1 , {{Tα1 , Tα2 , Tα3},⊕γ∈Λ1Tγ , Tβ2}, Tβ3}.

By Lemma 3.4, it is easy to see that

{Tβ1 , Tβ2 , {{Tα1 , Tα2 , Tα3},⊕γ∈Λ1Tγ , Tβ3}} = 0,

{{{Tα1 , Tα2 , Tα3},⊕γ∈Λ1Tγ , Tβ1}, Tβ2 , Tβ3} = 0,

{Tβ1 , {{Tα1 , Tα2 , Tα3},⊕γ∈Λ1Tγ , Tβ2}, Tβ3} = 0,

for α1, α2, α3 ∈ Λ1
α ∪ {0}, α1 + α2 + δα3 = 0, β1, β2, β3 ∈ Λ1

β ∪ {0}, β1 + β2 + δβ3 = 0, [α] ̸= [β].

So {I[α], T, I[β]} = 0 if [α] ̸= [β].

A similar argument gives us {I[α], I[β], T} = {T, I[α], I[β]} = 0 if [α] ̸= [β].

Definition 3.9 The annihilator of a δ-JLTS T is the set Ann(T ) = {x ∈ T : {x, T, T} = 0}.

Corollary 3.10 Suppose Λ0 is symmetric. If Ann(T ) = 0, and {T, T, T} = T , then T is the

direct sum of the ideals given in Theorem 3.8, T = ⊕[α]∈Λ1/∼I[α].

Proof From {T, T, T} = T and Theorem 3.8, we have{
U +

∑
[α]∈Λ1/∼

I[α], U +
∑

[α]∈Λ1/∼

I[α], U +
∑

[α]∈Λ1/∼

I[α]

}
= U +

∑
[α]∈Λ1/∼

I[α].

Taking into account U ⊂ T0, Lemma 3.3 and the fact that {I[α], T, I[β]} = {I[α], I[β], T} =

{T, I[α], I[β]} = 0 if [α] ̸= [β] (see Theorem 3.8) give us that U = 0. That is,

T =
∑

[α]∈Λ1/∼

I[α].

To finish, it is sufficient to show the direct character of the sum. For x ∈ I[α]∩
∑

[β]∈Λ1/∼
β ̸∼α

I[β],

using again the equation {I[α], T, I[β]} = 0 for [α] ̸= [β], we obtain

{x, T, I[α]} =
{
x, T,

∑
[β]∈Λ1/∼

β ̸∼α

I[β]

}
= 0.

So {x, T, T} = {x, T, I[α] +
∑

[β]∈Λ1/∼
β ̸∼α

I[β]} = {x, T, I[α]} + {x, T,
∑

[β]∈Λ1/∼
β ̸∼α

I[β]} = 0 + 0 = 0.

That is, x ∈ Ann(T ) = 0. Thus x = 0, as desired.
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