On the Regularity Criteria for 3-D Liquid Crystal Flows in Terms of the Horizontal Derivative Components of the Pressure

Lingling ZHAO*, Fengquan LI
School of Mathematical Sciences, Dalian University of Technology, Liaoning 116024, P. R. China

Abstract This paper is devoted to investigating regularity criteria for the 3-D nematic liquid crystal flows in terms of horizontal derivative components of the pressure and gradient of the orientation field. More precisely, we mainly proved that the strong solution (u, d) can be extended beyond T, provided that the horizontal derivative components of the pressure $\nabla_h P = (\partial_{x_1} P, \partial_{x_2} P)$ and gradient of the orientation field satisfy

$$\nabla_h P \in L^s(0, T; L^q(\mathbb{R}^3)), \quad \frac{2}{s} + \frac{3}{q} \leq \frac{5}{2} \cdot \frac{18}{13} \leq q \leq 6$$

and

$$\nabla d \in L^\beta(0, T; L^q(\mathbb{R}^3)), \quad \frac{2}{\gamma} + \frac{3}{\beta} \leq \frac{3}{4}, \quad \frac{36}{7} \leq \beta \leq 12.$$

Keywords regularity criteria; nematic liquid crystal

MR(2010) Subject Classification 35B65; 35Q35; 76A15

1. Introduction

We will consider the following problems:

$$\begin{cases}
 u_t + (u \cdot \nabla) u + \nabla P = \nu \Delta u - \lambda \nabla \cdot (\nabla d \otimes \nabla d), \\
 d_t + (u \cdot \nabla) d = \gamma (\Delta d - f(d)), \\
 \text{div} u = 0,
\end{cases}\tag{1.1}$$

with the initial condition

$$u(x, 0) = u_0(x), \text{div} u_0 = 0, d(x, 0) = d_0(x), x \in \mathbb{R}^3,\tag{1.2}$$

where u is the velocity field, P is the scalar pressure and d represents the macroscopic molecular orientation field of the liquid crystal materials. $\nabla \cdot$ denotes the divergence operator, and the (i, j)-th entry of $\nabla d \otimes \nabla d$ is given by $\nabla_{x_i} d \cdot \nabla_{x_j} d$ for $1 \leq i, j \leq 3$. In addition, $f(d) = \frac{1}{\eta^2} (|d|^2 - 1)d$. Since ν, λ, γ and η are positive constants, for simplicity, we assume that they are all one.

In the 1960s, the hydrodynamic theory of liquid crystals was established by Ericksen and Leslie [1,2]. The above system is a simplified approximate version of the Ericksen-Leslie equations...
for liquid crystal flows, and it was first introduced by Lin [3]. Lin and Liu [4] have established a global existence theorem for weak solutions and local well-posed results for classical solutions, which is one of the most significant developments in this field.

When the orientation field \(d \) equals a constant, the above equations become the incompressible Navier-Stokes equations. Some regularity results on the solutions to the 3-D Navier-Stokes equations have been well studied [5–8]. For example, it was proved in [5, 6] that the strong solution can not blow up provided that the regularity criteria of a component of the velocity are satisfied. Many regularity extension of the strong solution can be obtained in terms of one directional derivative \(\partial_3 u \) of the velocity and some conditions for \(\nabla d \), see [9–12] and so on. More interesting results on the regularity criteria for the liquid crystal equations have been established such as [12–14] and the references therein.

In [6], Zhou and Pokorný give a corollary that the solution to Navier-Stokes equations can be regular in terms of one derivative component of the pressure provided
\[
\partial x_3 P \in L^p(0, T; L^q(\mathbb{R}^3)), \quad \frac{2}{p} + \frac{3}{q} < \frac{29}{10}, \quad \frac{30}{23} < q \leq \frac{10}{3}.
\]

Motivated by their ideas, we are interested in the regularity criteria for the system (1.1). For the horizontal derivative components of the pressure, we obtain the following result.

Theorem 1.1 Let \(u_0 \in H^1(\mathbb{R}^3), d_0 \in H^2(\mathbb{R}^3), (u, d) \) be a strong solution of (1.1)-(1.2) on \([0, T) \) for some \(0 < T < \infty \). Then \((u, d) \) can be extended beyond \(T \), provided that
\[
\nabla P \in L^s(0, T; L^q(\mathbb{R}^3)), \quad \frac{2}{s} + \frac{3}{q} \leq \frac{5}{2}, \quad \frac{18}{13} \leq q \leq 6,
\]
and
\[
\nabla d \in L^\beta(0, T; L^\gamma(\mathbb{R}^3)), \quad \frac{2}{\gamma} + \frac{3}{\beta} \leq \frac{3}{4}, \quad \frac{36}{7} \leq \beta \leq 12.
\]

2. Main result

Let \(u_h = (u_1, u_2) \) denote the horizontal velocity components, and we know the strong solutions to 3D liquid crystal equations (1.1) and (1.2) are regular in terms of two velocity components by [12].

Lemma 2.1 ([12]) Let \(u_0 \in H^1(\mathbb{R}^3), d_0 \in H^2(\mathbb{R}^3), (u, d) \) be a strong solution of (1.1) and (1.2) on \([0, T) \) for some \(0 < T < \infty \). Then \((u, d) \) can be extended beyond \(T \), provided that
\[
u_h \in L^s(0, T; L^q(\mathbb{R}^3)), \quad \frac{2}{s} + \frac{3}{q} \leq \frac{1}{2}, \quad 6 \leq q \leq \infty.
\]

In the following we will give the proof of Theorem 1.1.

Proof of Theorem 1.1 Firstly, for convenience, we assume the values of \(\nu, \lambda \) take one, considering the equation that \(u_h \) satisfies
\[
\frac{\partial u_h}{\partial t} + (u \cdot \nabla) u_h + \nabla P = \Delta u_h - \nabla \cdot (\nabla_h d \otimes \nabla d).
\]
On the regularity criteria for 3-D liquid crystal flows

Multiplying (2.2) by $|u_h|^{p-2}u_h$, we obtain

$$\frac{d}{dt} \int_{\mathbb{R}^3} |u_h|^p \, dx + C(p) \int_{\mathbb{R}^3} |\nabla |u_h||^2 \, dx$$

$$= - \int_{\mathbb{R}^3} \nabla_h P |u_h|^{p-2} u_h \, dx - \int_{\mathbb{R}^3} \nabla \cdot (\nabla_h d \otimes \nabla d) |u_h|^{p-2} u_h \, dx$$

$$= I + II.$$

For the term I, we have

$$I = - \int_{\mathbb{R}^3} \nabla_h P |u_h|^{p-2} u_h \, dx \leq \int_{\mathbb{R}^3} |\nabla_h P| |u_h|^{p-1} \, dx$$

$$\leq \|\nabla_h P\|_q \|u_h\|_{\frac{p-1}{q}} \leq C \|\nabla_h P\|_q \|u_h\|_p^{\frac{2p-3q+q}{2q}} \|u_h\|_3^{\frac{3(p-q)}{2q}}$$

$$\leq \epsilon \|u_h\|_p^{3p} + C(\epsilon) \|\nabla_h P\|_q^{\frac{2p}{2p-3q+q}} \|u_h\|_p^{\frac{2p}{2p-3q+q}},$$

where $\frac{3p}{2p+1} \leq q \leq p$.

For the last term, we get

$$II = - \int_{\mathbb{R}^3} \nabla \cdot (\nabla_h d \otimes \nabla d) |u_h|^{p-2} u_h \, dx = \int_{\mathbb{R}^3} (\nabla_h d \otimes \nabla d) \nabla (|u_h|^{p-2} u_h) \, dx$$

$$\leq C \int_{\mathbb{R}^3} |\nabla d|^2 |\nabla |u_h||^2 \|u_h\|^{p-1} \, dx$$

$$\leq C \|\nabla d\|_2^2 \|\nabla |u_h||^2 \|u_h\|^{p-1} \|u_h\|_{\frac{3p-3\alpha}{3p}}$$

$$\leq C \|\nabla d\|_2^2 \|\nabla |u_h||^2 \|u_h\|_{\frac{3p-3\alpha}{3p}} \|u_h\|_{\frac{3p-3\alpha}{3p}} + C(\epsilon) \|\nabla d\|_2^{\frac{4\alpha p}{4\alpha p + 3} - \frac{2}{3}} \|u_h\|_{\frac{p}{p-3p+\alpha}}^{\frac{p\alpha - 3p + \alpha}{p-3p + \alpha}},$$

where $\frac{3p}{2p+1} \leq \alpha \leq p$.

Consequently, we obtain

$$\frac{d}{dt} \|u_h\|_p^p \leq C \|\nabla_h P\|_q^{\frac{2pq}{2pq - 3q + 3p}} \|u_h\|_p^{\frac{2p + q - 3p}{2p + q - 3p}} \|u_h\|_{\frac{3p - 3\alpha}{3p}}^{\frac{3p - 3\alpha}{3p}}$$

$$\leq C \|\nabla_h P\|_q^{\frac{2pq}{2pq - 3q + 3p}} \|\nabla d\|_2^{\frac{4\alpha p}{4\alpha p + 3} - \frac{2}{3}} (1 + \|u_h\|_{\frac{p}{p-3p+\alpha}}^p).$$

Consider

$$\nabla_h P \in L^s(0, T; L^4(\mathbb{R}^3)), \quad \nabla d \in L^\gamma(0, T; L^\beta(\mathbb{R}^3))$$

then it follows from the Gronwall’s inequality that $\sup_t \|u_h\|_p < \infty$ if

$$\frac{3}{q} + \frac{2}{s} = 2 + \frac{3}{p},$$

and

$$\frac{3}{\beta} + \frac{2}{\gamma} = 1 + \frac{3}{2p}.$$
Then, the proof is completed. □

Acknowledgements We thank the referees for their time and comments.

References