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Abstract Let S be a nonempty, proper subset of all possible refined inertias of real matrices

of order n. The set S is a critical set of refined inertias for irreducible sign patterns of order n,

if for each n × n irreducible sign pattern A, the condition S ⊆ ri(A) is sufficient for A to be

refined inertially arbitrary. If no proper subset of S is a critical set of refined inertias, then S is

a minimal critical set of refined inertias for irreducible sign patterns of order n.

All minimal critical sets of refined inertias for full sign patterns of order 3 have been identified

in [Wei GAO, Zhongshan LI, Lihua ZHANG, The minimal critical sets of refined inertias for 3×3

full sign patterns, Linear Algebra Appl. 458(2014), 183–196]. In this paper, the minimal critical

sets of refined inertias for irreducible sign patterns of order 3 are identified.
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1. Introduction

An n×n matrix A is called a sign pattern if its entries are from the set {+,−, 0}. For a real

matrix B, sgn(B) is the sign pattern matrix obtained by replacing each positive (resp., negative,

zero) entry of B by + (resp., −, 0). The set of all real matrices with the same sign pattern as

the n× n sign pattern A is the qualitative class

Q(A) = {B = [bij ] ∈ Mn(R)|sgn(B) = A}.

A subpattern of an n × n sign pattern A is a sign pattern B obtained by replacing some

(possible empty) subset of the nonzero entries of A with zero. If B is a subpattern of A, then A
is a superpattern of B.

Let A be a real matrix of order n. The inertia of A is the ordered triple i(A) = (n+, n−, n0),

where n+, n− and n0 are the numbers of its eigenvalues (counting multiplicities) with positive,

negative and zero real parts, respectively. The refined inertia of A is the ordered quadruple

ri(A) = (n+, n−, nz, 2np) of nonnegative integers that sum to n, in which (n+, n−, nz + 2np) is
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the inertia of A while nz is the number of 0 as an eigenvalue of A and 2np is the number of

nonzero pure imaginary eigenvalues of A.

For an n × n sign pattern A, the inertia of A is i(A) = {i(B)|B ∈ Q(A)}, and the refined

inertia of A is ri(A) = {ri(B)|B ∈ Q(A)}.
The reversal of an inertia (resp., refined inertia) is obtained by exchanging the first two entries

in the ordered triple (resp., quadruple), i.e., the reversal of (n+, n−, n0) (resp., (n+, n−, nz, 2np))

is (n−, n+, n0) (resp., (n−, n+, nz, 2np)). The reversal of a set of inertias (resp., refined inertias)

is the set of reversals of the inertias (resp., refined inertias) in the set. Clearly, for an n× n sign

pattern A, i(−A) is the reversal of i(A) and ri(−A) is the reversal of ri(A).

An n × n sign pattern A is called a spectrally arbitrary pattern (SAP) if for each real

monic polynomial r(x) of degree n, there exists some A ∈ Q(A) with characteristic polynomial

pA(x) = r(x). Thus, A is spectrally arbitrary, if given any self-conjugate spectrum, there exists

A ∈ Q(A) with that spectrum [1].

An n× n sign pattern A is called an inertially arbitrary pattern (IAP) if given any ordered

triple (n+, n−, n0) of nonnegative integers with n+ + n− + n0 = n, there exists a real matrix

A ∈ Q(A) such that i(A) = (n+, n−, n0). Similarly, A is a refined inertially arbitrary pattern

(rIAP) if given any ordered quadruple (n+, n−, nz, 2np) of nonnegative integers that sum to n,

there exists a real matrix A ∈ Q(A) such that ri(A) = (n+, n−, nz, 2np) (see [2, 3]).

Let S be a nonempty, proper subset of all possible refined inertias of real matrices of order n.

Then, S is a critical set of refined inertias for irreducible sign patterns of order n, if for each n×n

irreducible sign pattern A, the condition S ⊆ ri(A) is sufficient for A to be refined inertially

arbitrary.

If no proper subset of S is a critical set of refined inertias for irreducible sign patterns of

order n, then S is a minimal critical set of refined inertias for irreducible sign patterns of order

n.

A permutation sign pattern is a square sign pattern with entries 0 and +, where the entry

+ occurs precisely once in each row and in each column. A signature sign pattern is a square

diagonal sign pattern each of whose diagonal entries is nonzero. Let A and B be two square

sign patterns of the same order. We say that A is permutationally similar to B if there exists a

permutation sign pattern P such that B = PTAP, and that A is signature similar to B if there

exists a signature sign pattern D such that B = DAD.

Two square sign patternsA and B of the same order are equivalent if one can be obtained from

the other by any combination of negation, transposition, permutation similarity and signature

similarity. Clearly, if A and B are equivalent, then A is an rIAP (resp., IAP) if and only if B is

an rIAP (resp., IAP).

Let A = [aij ] be an n × n sign pattern. We say that A contains a negative 2-cycle (resp.,

positive 2-cycle) if aijaji = − (resp., aijaji = +) for some i ̸= j.

Recently, Kim et al. [4] have obtained the minimal critical sets of inertias for irreducible

zero-nonzero patterns of order n = 2, 3, 4 and for irreducible sign patterns of orders n = 2, 3. Yu

et al. [5] have given all the minimal critical sets of refined inertias and inertias for irreducible



248 Yajing WANG, Yubin GAO and Yanling SHAO

zero-nonzero patterns of order 2 and 3. Also, Yu [6] has identified all the minimal critical sets

of refined inertias for irreducible sign patterns of orders 2. All minimal critical sets of refined

inertias for full sign patterns of order 3 have been identified [7]. Identifying all minimal critical

sets of refined inertias and inertias for irreducible sign patterns that have at least one zero entry

has been posed as an open question in [7]. The minimum cardinality of such a set is also open.

In this paper, the minimal critical sets of refined inertias and the minimal critical sets of inertias

for irreducible sign patterns of order 3 with at least one zero entry are identified.

The main results are the following two theorems.

Theorem 1.1 The only minimal critical sets of refined inertias for 3×3 irreducible sign patterns

with at least one zero entry are the following sets and their reversals.

{(3, 0, 0, 0), (0, 3, 0, 0)}, {(3, 0, 0, 0), (0, 2, 1, 0)}, {(3, 0, 0, 0), (0, 1, 2, 0)}, {(3, 0, 0, 0), (0, 1, 0, 2)},

{(3, 0, 0, 0), (0, 0, 3, 0)}, {(3, 0, 0, 0), (0, 0, 1, 2)}, {(2, 0, 1, 0), (0, 2, 1, 0)}, {(2, 0, 1, 0), (0, 1, 2, 0)},

{(2, 0, 1, 0), (0, 1, 0, 2)}, {(2, 0, 1, 0), (0, 0, 3, 0)}, {(2, 0, 1, 0), (0, 0, 1, 2)}, {(1, 0, 2, 0), (0, 1, 2, 0)},

{(1, 0, 2, 0), (0, 1, 0, 2)}, {(1, 0, 2, 0), (0, 0, 3, 0)}, {(1, 0, 2, 0), (0, 0, 1, 2)}, {(1, 0, 0, 2), (0, 1, 0, 2)},

{(1, 0, 0, 2), (0, 0, 3, 0)}, {(1, 0, 0, 2), (0, 0, 1, 2)}.

Theorem 1.2 The only minimal critical sets of inertias for 3× 3 irreducible sign patterns with

at least one zero entry are the following sets and their reversals.

{(3, 0, 0), (0, 3, 0)}, {(3, 0, 0), (0, 2, 1)}, {(3, 0, 0), (0, 1, 2)},

{(3, 0, 0), (0, 0, 3)}, {(2, 0, 1), (0, 2, 1)}, {(2, 0, 1), (0, 1, 2)},

{(2, 0, 1), (0, 0, 3)}, {(1, 0, 2), (0, 1, 2)}, {(1, 0, 2), (0, 0, 3)}.

The followings are immediate from Theorems 1.1, 1.2 and results of the reference [7].

Theorem 1.3 The only minimal critical sets of refined inertias for 3×3 irreducible sign patterns

are the following sets and their reversals.

{(3, 0, 0, 0), (0, 3, 0, 0)}, {(3, 0, 0, 0), (0, 2, 1, 0)}, {(3, 0, 0, 0), (0, 1, 2, 0)},

{(3, 0, 0, 0), (0, 1, 0, 2)}, {(2, 0, 1, 0), (0, 2, 1, 0)}, {(2, 0, 1, 0), (0, 1, 2, 0)},

{(2, 0, 1, 0), (0, 1, 0, 2)}, {(1, 0, 2, 0), (0, 1, 2, 0)}, {(1, 0, 0, 2), (0, 1, 0, 2)}.

Theorem 1.4 The only minimal critical sets of inertias for 3 × 3 irreducible sign patterns are

the following sets and their reversals.

{(3, 0, 0), (0, 3, 0)}, {(3, 0, 0), (0, 2, 1)}, {(3, 0, 0), (0, 1, 2)},

{(2, 0, 1), (0, 2, 1)}, {(2, 0, 1), (0, 1, 2)}, {(1, 0, 2), (0, 1, 2)}.

We will give the proofs of Theorems 1.1 and 1.2 in Sections 3 and 4, respectively.

2. Preliminaries

In this section, we outline some results which are well known for the characterization of 3×3
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sign pattern.

Lemma 2.1 ([8]) If A is a sign pattern of order 3, then the following statements are equivalent:

(1) A is spectrally arbitrary.

(2) A is inertially arbitrary.

(3) A is refined inertially arbitrary.

(4) Up to equivalence, A is a superpattern of one of the following sign pattern:

D3,3 =

 − + 0

− 0 +

− 0 +

 , D3,2 =

 − + 0

− 0 +

0 − +

 , U =

 − + 0

− + +

0 + −

 , V =

 − 0 +

− 0 +

− + +

 .

Lemma 2.2 ([8, 9]) Let

G =

 − + +

− + −
− − +

 .

Then G requires a positive eigenvalue.

Lemma 2.3 ([8]) If φ is a subpattern of G , then φ requires a nonnegative eigenvalue.

Lemma 2.4 ([3]) Let m be the maximum number of distinct refined inertias allowed by any

sign pattern of order 3. Then m = 13.

3. The minimal critical sets of refined inertias for irreducible sign pat-
terns of order 3

In this section, we identify the minimal critical sets of refined inertias for 3 × 3 irreducible

sign patterns with at least one zero entry.

By Lemma 2.4, there are 13 possible distinct refined inertias for a sign pattern of order 3.

We use R to denote the set of these 13 possible distinct refined inertias, that is,

R = {(3, 0, 0, 0), (2, 1, 0, 0), (2, 0, 1, 0), (1, 2, 0, 0), (1, 1, 1, 0), (1, 0, 2, 0),

(1, 0, 0, 2), (0, 3, 0, 0), (0, 2, 1, 0), (0, 1, 2, 0), (0, 1, 0, 2), (0, 0, 3, 0), (0, 0, 1, 2)}.

Let A be an n × n sign pattern which is not an rIAP. We use R(A) to denote the set of all

possible refined inertias that are not in ri(A), that is,

R(A) = R\ri(A) = {(n+, n−, nz, 2np) ∈ Z4
+|n++n−+nz+2np = n, (n+, n−, nz, 2np) ̸∈ ri(A)},

where Z+ is the set of all nonnegative integers.

For convenience, write

R0 = {(0, 0, 3, 0), (0, 0, 1, 2)},

R1 = {(3, 0, 0, 0), (2, 0, 1, 0), (1, 0, 2, 0), (1, 0, 0, 2)},

R′
1 = {(0, 3, 0, 0), (0, 2, 1, 0), (0, 1, 2, 0), (0, 1, 0, 2)},
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where R′
1 is the reversal of R1. Let

P13 =

 0 0 +

0 + 0

+ 0 0

 ,P23 =

 + 0 0

0 0 +

0 + 0

 ,P12 =

 0 + 0

+ 0 0

0 0 +

 ,

and D1 = diag(−,+,+), D2 = diag(+,−,+), D3 = diag(+,+,−).

Lemma 3.1 Let A be a 3× 3 irreducible sign pattern with at least one zero entry. Suppose all

diagonal entries of A are nonzero, and the diagonal entries of A have different signs. If A is not

an rIAP, then one of the following conditions holds.

(1) R0 ∪R1 ⊆ R(A);

(2) R0 ∪R′
1 ⊆ R(A).

Proof Up to equivalence, we can assume that a11 = −, a22 = + and a33 = +. Note that A is

irreducible (this means A has at most three zero entries), and has at least one zero entry. We

consider the following three cases.

Case 1. Exactly one off-diagonal entry of A is zero.

Up to equivalence, A has the following forms.

(1.1)

 − ∗ ∗
∗ + ∗
0 ∗ +

 , (1.2)

 − ∗ ∗
∗ + ∗
∗ 0 +

 , (1.1)′

 − ∗ ∗
0 + ∗
∗ ∗ +

 ,

where ∗ ∈ {+,−}. Noting that P23(1.1)
′P23 = (1.1), so (1.1)′ and (1.1) are equivalent.

Let A = [aij ] have form (1.1). If a12 < 0, taking A′ = D2AD2, then A′ and A are equivalent

and the (1, 2) entry of A′ is positive. If a13 < 0, taking A′′ = D3AD3, then A′′ and A are

equivalent and the (1, 3) entry of A′′ is positive. So, without loss of generality, we can take

a12 = a13 = +.

According to the number of negative 2-cycles, A is possibly one of the following sign patterns.

A1 =

 − + +

+ + +

0 + +

 ,A2 =

 − + +

+ + −
0 − +

 ,A3 =

 − + +

− + +

0 + +

 ,A4 =

 − + +

− + −
0 − +

 ,

A5 =

 − + +

+ + +

0 − +

 ,A6 =

 − + +

+ + −
0 + +

 ,A7 =

 − + +

− + +

0 − +

 ,A8 =

 − + +

− + −
0 + +

 .

Let A = [aij ] have form (1.2). Without loss of generality, we can take a12 = a13 = +.

According to the number of negative 2-cycles, A is possibly one of the following sign patterns.

A9 =

 − + +

+ + +

+ 0 +

 ,A10 =

 − + +

+ + −
+ 0 +

 ,A11 =

 − + +

− + +

+ 0 +

 ,A12 =

 − + +

− + −
+ 0 +

 ,
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A13 =

 − + +

+ + +

− 0 +

 ,A14 =

 − + +

+ + −
− 0 +

 ,A15 =

 − + +

− + +

− 0 +

 ,A16 =

 − + +

− + −
− 0 +

 .

Firstly, let us notice the following facts.

(1) A15, D2P13(−A6)P13D2, D3A12D3, D1P23AT
13P23D1 are superpatterns of D3,3.

(2) A7, D3A8D3 are superpatterns of D3,2.

(3) D1P23AT
3 P23D1, −D3P13P23AT

11P23P13D3, D2P13(−A14)P13D2 are superpatterns of V.
Then by Lemma 2.1, A3, A6, A7, A8, A11, A12, A13, A14 and A15 are rIAPs.

Thus, A is equivalent to one of A1, A2, A4, A5, A9, A10 and A16.

Now, we consider A1. For any A ∈ Q(A1), we may assume A has been scaled so that a33 = 1.

We may also assume that a12 = a23 = 1 (otherwise they can be 1 by suitable similarities). Thus,

assume

A =

 −a 1 b

c d 1

0 e 1

 ∈ Q(A1),

where a, b, c, d, e > 0. Then the characteristic polynomial of A is

pA(x) = x3 + (a− d− 1)x2 + (−ad− a− c+ d− e)x+ ad− ae+ c− bce.

By the relationship between the coefficients of the characteristic polynomial and eigenvalues, if

ri(A) ∈ R0 ∪R′
1 = {(0, 3, 0, 0), (0, 2, 1, 0), (0, 1, 2, 0), (0, 1, 0, 2), (0, 0, 3, 0), (0, 0, 1, 2)}, then{

a− d− 1 ≥ 0,

−ad− a− c+ d− e ≥ 0.

Adding both sides of above two inequalities, respectively, we have −ad − c − e − 1 ≥ 0. It is a

contradiction. Hence R0 ∪R′
1 ⊆ R(A1).

By similar argument to A1, we can get R0 ∪R′
1 ⊆ R(Ai) for i = 2, 9, 10.

For A4, without loss of generality, let

A =

 −a 1 b

−c d −1

0 −e 1

 ∈ Q(A4),

where a, b, c, d, e > 0. Then the characteristic polynomial of A is

pA(x) = x3 + (a− d− 1)x2 + (−ad− a+ c+ d− e)x+ ad− ae− c− bce.

If ri(A) ∈ R0 ∪R′
1, then 

a− d− 1 ≥ 0,

−ad− a+ c+ d− e ≥ 0,

ad− ae− c− bce ≥ 0.

Adding both sides of above three inequalities, respectively, we have −1− e− ae− bce ≥ 0. It is

a contradiction. Hence, R0 ∪R′
1 ⊆ R(A4).

Noting that A5 requires negative determinant, we get R0 ∪R1 ⊆ R(A5).
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For A16, noting that A16 is a subpattern of G, by Lemma 2.3, we know that (0, 3, 0, 0) and

(0, 1, 0, 2) are not the refined inertias of A16. In the following, we show that (0, 2, 1, 0), (0, 1, 2, 0),

(0, 0, 3, 0) and (0, 0, 1, 2) are not the refined inertias of A16.

For any A ∈ Q(A16), without loss of generality, let

A =

 −a 1 b

−c d −1

−e 0 1

 ,

where a, b, c, d, e > 0. Then the characteristic polynomial of A is pA(x) = x3 + p1x
2 + p2x+ p3,

where 
p1 = −1 + a− d,

p2 = −a+ c+ d− ad+ be,

p3 = −c+ ad− e− bde.

If ri(A) ∈ {(0, 2, 1, 0), (0, 1, 2, 0), (0, 0, 3, 0), (0, 0, 1, 2)}, then p3 = 0, p1 ≥ 0 and p2 ≥ 0. By

p3 = 0, we have a = c+e+bde
d . Then

dp1 = −d+ c+ e+ bde− d2 ≥ 0,

dp2 = −(c+ e+ bde) + cd+ d2 − (c+ e+ bde)d+ bed

= −c− e+ d2 − ed− bed2 ≥ 0.

If be ≥ 1, then dp2 = −c− e+ d2 − ed− bed2 ≤ −c− e− ed < 0.

If c+ e > d2, then dp2 = −c− e+ d2 − ed− bed2 < −ed− bed2 < 0.

If be < 1 and c+ e ≤ d2, then dp1 = −d+ c+ e+ bde− d2 < 0.

All of above are contradictions. Hence, (0, 2, 1, 0), (0, 1, 2, 0), (0, 0, 3, 0) and (0, 0, 1, 2) are not

the refined inertias of A16 and so R0 ∪R′
1 ⊆ R(A16).

Case 2. Exactly two off-diagonal entries of A are zero.

According to whether the two zero entries are in one 2-cycle or not, up to equivalence, A has

the following forms

(2.1)

 − ∗ 0

∗ + ∗
0 ∗ +

 , (2.2)

 − ∗ ∗
∗ + 0

∗ 0 +

 , (2.1)′

 − 0 ∗
0 + ∗
∗ ∗ +

 ,

(2.3)

 − 0 ∗
∗ + ∗
0 ∗ +

 , (2.4)

 − ∗ ∗
∗ + 0

0 ∗ +

 , (2.4)′

 − 0 ∗
∗ + 0

∗ ∗ +

 ,

where ∗ ∈ {+,−}. Noting that P23(2.1)
′P23 = (2.1), P23((2.4)

′)TP23 = (2.4), so (2.1)′ and (2.1),

(2.4)′ and (2.4) are equivalent, respectively.

Let A = [aij ] have form (2.1). If a12 < 0, taking A′ = D1AD1, then A′ and A are equivalent

and the (1, 2) entry of A′ is positive. If a23 < 0, taking A′′ = D3AD3, then A′′ and A are

equivalent and the (2, 3) entry of A′′ is positive. So, without loss of generality, we can take

a12 = a23 = +.
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According to the number of the negative 2-cycles, A is possibly one of the following sign

patterns.

A17 =

 − + 0

+ + +

0 + +

 ,A18 =

 − + 0

− + +

0 + +

 ,A19 =

 − + 0

+ + +

0 − +

 ,A20 =

 − + 0

− + +

0 − +

 .

Let A have form (2.2). Without loss of generality, we can let a12 = a13 = +. According to

the number of the negative 2-cycles, A is possibly one of the following sign patterns.

A21 =

 − + +

+ + 0

+ 0 +

 ,A22 =

 − + +

− + 0

+ 0 +

 ,A23 =

 − + +

+ + 0

− 0 +

 ,A24 =

 − + +

− + 0

− 0 +

 .

Let A = [aij ] have form (2.3). If a13 < 0, taking A′ = D1AD1, then A′ and A are equivalent

and the (1, 3) entry of A′ is positive. If a23 < 0, taking A′′ = D2AD2, then A′′ and A are

equivalent and the (2, 3) entry of A′′ is positive. So, without loss of generality, we can take

a13 = a23 = +.

According to the number of the negative 2-cycles, A is possibly one of the following sign

patterns.

A25 =

 − 0 +

+ + +

0 + +

 ,A26 =

 − 0 +

− + +

0 + +

 ,A27 =

 − 0 +

+ + +

0 − +

 ,A28 =

 − 0 +

− + +

0 − +

 .

Assume that A has form (2.4). Without loss of generality, we can let a12 = a13 = +.

According to the number of the negative 2-cycles, A is possibly one of the following sign patterns.

A29 =

 − + +

+ + 0

0 + +

 ,A30 =

 − + +

+ + 0

0 − +

 ,A31 =

 − + +

− + 0

0 + +

 ,A32 =

 − + +

− + 0

0 − +

 .

Firstly, let us notice the following facts.

(1) P13(−A28)P13, D1AT
31D1 are superpatterns of D3,3.

(2) A20 is a superpattern of D3,2.

(3) D3P12(−A22)P12D3 = U .
(4) P23A23P23 = A22.

Then by Lemma 2.1, A20, A22, A23, A28 and A31 are rIAPs.

Thus, A is equivalent to one of patterns in Case 2 except for A20, A22, A23, A28 and A31.

By similar argument to A1 in Case 1, we can get R0∪R′
1 ⊆ R(Ai) for i = 17, 21, 25, 26, 29, 30.

By similar argument to A4 in Case 1, we can get R0 ∪R′
1 ⊆ R(Ai) for i = 18, 32.

Noting thatA19 andA27 require negative determinants, we getR0∪R1 ⊆ R(Ai) for i = 19, 27.

For A24, noting that it is a subpattern of G, by Lemma 2.3, we know that (0, 3, 0, 0) and

(0, 1, 0, 2) do not belong to the refined inertias of A24. In the following, we prove that (0, 2, 1, 0),

(0, 1, 2, 0), (0, 0, 3, 0) and (0, 0, 1, 2) do not belong to the refined inertias of A24 as well.



254 Yajing WANG, Yubin GAO and Yanling SHAO

For any A ∈ Q(A24), without loss of generality, let

A =

 −a 1 b

−c d 0

−e 0 1

 ,

where a, b, c, d, e > 0. Then the characteristic polynomial of A is pA(x) = x3 + p1x
2 + p2x+ p3,

where 
p1 = −1 + a− d,

p2 = −a+ c+ d− ad+ be,

p3 = −c+ ad− bde.

If ri(A) ∈ {(0, 2, 1, 0), (0, 1, 2, 0), (0, 0, 3, 0), (0, 0, 1, 2)}, then p3 = 0, p1 ≥ 0 and p2 ≥ 0. By

p3 = 0, we have a = c+bde
d . Then{

dp1 = −d+ c+ bde− d2 ≥ 0,

dp2 = −(c+ bde) + cd+ d2 − (c+ bde)d+ bed = −c+ d2 − bed2 ≥ 0.

If be ≥ 1, then dp2 = −c+ d2 − bed2 ≤ −c < 0.

If c > d2, then dp2 = −c+ d2 − bed2 < −bed2 < 0.

If be < 1 and c ≤ d2, then dp1 = −d+ c+ bde− d2 < 0.

All of above are contradictions. Hence, (0, 2, 1, 0), (0, 1, 2, 0), (0, 0, 3, 0) and (0, 0, 1, 2) do not

belong to the refined inertias of A24. Thus R0 ∪R′
1 ⊆ R(A24).

Case 3. Exactly three off-diagonal entries of A are zero.

Up to equivalence, A has the following unique form

(3.1)

 − 0 ∗
∗ + 0

0 ∗ +

 ,

where ∗ ∈ {+,−}.
Let A = [aij ] have form (3.1). If a13 < 0, taking A′ = D1AD1, then A′ and A are equivalent

and the (1, 3) entry of A′ is positive. If a32 < 0, taking A′′ = D2AD2, then A′′ and A are

equivalent and the (3, 2) entry of A′′ is positive. So, without loss of generality, we can take

a13 = a32 = +.

Then A is possibly one of the following sign patterns.

A33 =

 − 0 +

+ + 0

0 + +

 , A34 =

 − 0 +

− + 0

0 + +

 .

By similar argument to A1 in Case 1, we can get R0 ∪R′
1 ⊆ R(A33).

Noting that A34 requires negative determinant, we get R0 ∪R1 ⊆ R(A34). 2
Lemma 3.2 Let A be a 3× 3 irreducible sign pattern with at least one zero entry. Suppose A
has one zero diagonal entry, and two nonzero diagonal entries have different signs. If A is not

an rIAP, then one of the following conditions holds.
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(1) R0 ∪R1 ⊆ R(A);

(2) R0 ∪R′
1 ⊆ R(A).

Proof Up to equivalence, we can assume a11 = −, a22 = 0 and a33 = +. Note that A is

irreducible and has at least one zero entry. We consider the following three cases.

Case 1. All off-diagonal entries of A are nonzero.

Without loss of generality, we can take a12 = a13 = +. According to the number of negative

2-cycles, A is possibly one of the following sign patterns.

A1 =

 − + +

+ 0 +

+ + +

 ,A2 =

 − + +

+ 0 −
+ − +

 ,A3 =

 − + +

− 0 +

+ + +

 ,A4 =

 − + +

− 0 −
+ − +

 ,

A5 =

 − + +

+ 0 +

− + +

 ,A6 =

 − + +

+ 0 −
− − +

 ,A7 =

 − + +

+ 0 +

+ − +

 ,A8 =

 − + +

+ 0 −
+ + +

 ,

A9 =

 − + +

− 0 +

− + +

 ,A10 =

 − + +

− 0 −
− − +

 ,A11 =

 − + +

− 0 +

+ − +

 ,A12 =

 − + +

− 0 −
+ + +

 ,

A13 =

 − + +

+ 0 +

− − +

 ,A14 =

 − + +

+ 0 −
− + +

 ,A15 =

 − + +

− 0 +

− − +

 ,A16 =

 − + +

− 0 −
− + +

 .

Firstly, let us notice the following facts.

(1) A11, A15, D3A12D3, D3A16D3 are superpatterns of D3,2.

(2) D3A4D3, D3D2AT
3 D2D3 are superpatterns of D3,3.

(3) A9, D1AT
5 D1, D2A6D2, D2P13(−A14)P13D2 are superpatterns of V.

(4) AT
8 = A7, D3P13(−A7)P13D3 = A3.

Then by Lemma 2.1, A3, A4, A5, A6, A7, A8, A9, A11, A12, A14, A15 and A16 are rIAPs.

Thus, in this case, A is equivalent to one of A1, A2, A10 and A13.

For A1, without loss of generality, let

A =

 −a 1 b

c 0 1

d e 1

 ∈ Q(A1),

where a, b, c, d, e > 0. Then the characteristic polynomial of A is

pA(x) = x3 + (a− 1)x2 + (−c− bd− e− a)x+ c− d− ae− bce.

Since −c− bd− e− a < 0, we have n+(A) ≥ 1 and n−(A) ≥ 1. Then R0 ∪R′
1 ⊆ R(A1).

By similar argument to A1, we can get R0 ∪R′
1 ⊆ R(A2).

Noting that A10 requires positive determinant, we get R0 ∪R′
1 ⊆ R(A10).

Noting that A13 requires negative determinant, we get R0 ∪R1 ⊆ R(A13).
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Case 2. Exactly one off-diagonal entry of A is zero.

Up to equivalence, A has the following forms

(2.1)

 − ∗ ∗
∗ 0 ∗
0 ∗ +

 , (2.2)

 − ∗ ∗
∗ 0 ∗
∗ 0 +

 , (2.2)′

 − ∗ ∗
0 0 ∗
∗ ∗ +

 ,

where ∗ ∈ {+,−}. Noting that P13(−(2.2)′)TP13 = (2.2), so (2.2)′ and (2.2) are equivalent.

Let A have form (2.1). Without loss of generality, let a12 = a23 = +. According to the

number of the negative 2-cycles, A is possibly one of the following sign patterns.

A17 =

 − + +

+ 0 +

0 + +

 ,A18 =

 − + −
+ 0 +

0 + +

 ,A19 =

 − + +

− 0 +

0 + +

 ,A20 =

 − + −
− 0 +

0 + +

 ,

A21 =

 − + +

+ 0 +

0 − +

 ,A22 =

 − + −
+ 0 +

0 − +

 ,A23 =

 − + +

− 0 +

0 − +

 ,A24 =

 − + −
− 0 +

0 − +

 .

Let A have form (2.2). Without loss of generality, let a12 = a13 = +. According to the

number of the negative 2-cycles, A is possibly one of the following sign patterns.

A25 =

 − + +

+ 0 +

+ 0 +

 ,A26 =

 − + +

+ 0 −
+ 0 +

 ,A27 =

 − + +

− 0 +

+ 0 +

 ,A28 =

 − + +

− 0 −
+ 0 +

 ,

A29 =

 − + +

+ 0 +

− 0 +

 ,A30 =

 − + +

+ 0 −
− 0 +

 ,A31 =

 − + +

− 0 +

− 0 +

 ,A32 =

 − + +

− 0 −
− 0 +

 .

Firstly, let us notice the following facts.

(1) A31, D1AT
19D1, D3P13(−A22)P13D3, D3A28D3 are the superpatterns of D3,3.

(2) A23, A24 are the superpatterns of D3,2.

(3) P13D2(−A30)D2P13 = V.
Then by Lemma 2.1, A19, A22, A23, A24, A28, A30 and A31 are rIAPs.

Thus, in this case, A is equivalent to one of patterns in Case 2 except for A19, A22, A23,

A24, A28, A30 and A31.

By similar argument to A1 in Case 1, we can get R0 ∪R′
1 ⊆ R(Ai) for i = 17, 18, 25.

Noting that A20, A27 and A32 require positive determinants, we get R0 ∪ R′
1 ⊆ R(Ai) for

i = 20, 27, 32.

Noting that A21, A26 and A29 require negative determinants, we get R0 ∪ R1 ⊆ R(Ai) for

i = 21, 26, 29.

Case 3. Exactly two off-diagonal entries of A are zero.
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According to whether the two zero entries are in one 2-cycle or not, up to equivalence, A has

the following forms

(3.1)

 − ∗ 0

∗ 0 ∗
0 ∗ +

 , (3.2)

 − ∗ ∗
∗ 0 0

∗ 0 +

 , (3.2)′

 − 0 ∗
0 0 ∗
∗ ∗ +

 ,

(3.3)

 − 0 ∗
∗ 0 ∗
0 ∗ +

 , (3.3)′

 − ∗ ∗
∗ 0 0

0 ∗ +

 , (3.4)

 − ∗ ∗
0 0 ∗
∗ 0 +

 ,

where ∗ ∈ {+,−}. Noting that P13(−(3.2)′)P13 = (3.2), P13(−(3.3)′)TP13 = (3.3), so (3.2)′ and

(3.2), (3.3)′ and (3.3) are equivalent, respectively.

Let A have form (3.1). Without loss of generality, let a12 = a23 = +. According to the

number of the negative 2-cycles, A is possibly one of the following sign patterns.

A33 =

 − + 0

+ 0 +

0 + +

 ,A34 =

 − + 0

+ 0 +

0 − +

 ,A35 =

 − + 0

− 0 +

0 + +

 ,A36 =

 − + 0

− 0 +

0 − +

 .

Let A have form (3.2). Without loss of generality, let a12 = a13 = +. According to the

number of the negative 2-cycles, A is possibly one of the following sign patterns.

A37 =

 − + +

+ 0 0

+ 0 +

 ,A38 =

 − + +

− 0 0

+ 0 +

 ,A39 =

 − + +

+ 0 0

− 0 +

 ,A40 =

 − + +

− 0 0

− 0 +

 .

Let A have form (3.3). Without loss of generality, let a13 = a23 = +. According to the

number of the negative 2-cycles, A is possibly one of the following sign patterns.

A41 =

 − 0 +

+ 0 +

0 + +

 ,A42 =

 − 0 +

− 0 +

0 + +

 ,A43 =

 − 0 +

+ 0 +

0 − +

 ,A44 =

 − 0 +

− 0 +

0 − +

 .

Let A have form (3.4). Without loss of generality, let a12 = a13 = +. According to the

number of the negative 2-cycles, A is possibly one of the following sign patterns.

A45 =

 − + +

0 0 +

+ 0 +

 ,A46 =

 − + +

0 0 −
+ 0 +

 ,A47 =

 − + +

0 0 +

− 0 +

 ,A48 =

 − + +

0 0 −
− 0 +

 .

Firstly, let us notice the following facts.

(1) P13(−A44)P13 is a superpattern of D3,3.

(2) A36 is D3,2.

Then by Lemma 2.1, A36 and A44 are rIAPs.

Thus in this case, A is equivalent to one pattern in Case 3 except for A36 and A44.

By similar argument to A1 in Case 1, we can get R0 ∪R′
1 ⊆ R(Ai) for i = 33, 42.
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Noting that A34, A37, A39, A43, A46 and A47 require negative determinants, we get R0∪R1 ⊆
R(Ai) for i = 34, 37, 39, 43, 46, 47.

Noting that A35, A38, A40, A41, A45 and A48 require positive determinants, we get R0∪R′
1 ⊆

R(Ai) for i = 35, 38, 40, 41, 45, 48.

Case 4. Exactly three off-diagonal entries of A are zero.

Up to equivalence, A has the following unique form

(4.1)

 − 0 ∗
∗ 0 0

0 ∗ +

 ,

where ∗ ∈ {+,−}.
It is easy to see that A is sign nonsingular. If A requires positive determinant, then R0∪R′

1 ⊆
R(A). If A requires negative determinant, then R0 ∪R1 ⊆ R(A). 2
Theorem 3.3 Let A be a 3× 3 irreducible sign pattern with at least one zero entry. If A is not

an rIAP, then one of the following conditions holds:

(1) R0 ∪R1 ⊆ R(A);

(2) R0 ∪R′
1 ⊆ R(A);

(3) R1 ∪R′
1 ⊆ R(A).

Proof Let A be a 3× 3 irreducible sign pattern with at least one zero entry. Suppose A is not

an rIAP. We consider the following cases.

Case 1. All diagonal entries of A are zero.

SinceA requires the zero trace, (3, 0, 0, 0), (2, 0, 1, 0), (0, 1, 2, 0), (0, 1, 0, 2), (0, 3, 0, 0), (0, 2, 1, 0),

(0, 1, 2, 0), and (0, 1, 0, 2) do not belong to the refined inertias of A, and so R1 ∪R′
1 ⊆ R(A).

Case 2. Sign pattern A has at least one nonzero diagonal entry, and all nonzero diagonal

entries of A have the same sign.

If all nonzero diagonal entries of A are negative, then A requires the negative trace, and so

R0 ∪ R1 ⊆ R(A). If all nonzero diagonal entries of A are positive, then A requires the positive

trace, and so R0 ∪R′
1 ⊆ R(A).

Case 3. Sign pattern A has at least two nonzero diagonal entries, and the nonzero diagonal

entries of A have different signs.

By Lemmas 3.1 and 3.2, we know the result holds. 2
Theorem 3.4 There exists a 3× 3 irreducible sign pattern A with at least one zero entry such

that A is not an rIAP, and R(A) = R1 ∪R′
1.

Proof Let

S1 =

 0 + +

− 0 +

+ + 0

 .

It is easy to see that S1 is not an rIAP. Since S1 requires the zero trace, so R1 ∪R′
1 ⊆ R(S1).
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On the other hand, for any A ∈ Q(S1), we may assume that a12 = a13 = 1 (otherwise they

can be 1 by suitable similarities). Thus, without loss of generality, assume

A =

 0 1 1

−a 0 b

c d 0

 ,

where a, b, c, d > 0.

By taking suitable values of a, b, c, d shown in Table 1, we can find real matrices in Q(S1)

with each refined inertia in R \ (R1 ∪R′
1).

refined inertia a b c d

(2, 1, 0, 0) 2 1 1 1

(1, 2, 0, 0) 1 2 1 1

(1, 1, 1, 0) 1 1 1 1

(0, 0, 3, 0) 1 1 1
2

1
2

(0, 0, 1, 2) 4 2 1 1
2

Table 1 Realization of each refined inertia in R \ (R1 ∪R′
1)

Theorem 3.5 There exists a 3× 3 irreducible sign pattern A with at least one zero entry such

that A is not an rIAP, and R(A) = R0 ∪R′
1.

Proof Let

S2 =

 − + +

− + −
0 − +

 .

Noting that S2 is the sign pattern A4 in the proof of Lemma 3.1, by Lemma 3.1, S2 is not

an rIAP and R0 ∪R′
1 ⊆ R(S2).

On the other hand, take

A =

 −a 1 b

−c d −1

0 −e 1

 ∈ Q(S2),

where a, b, c, d, e > 0. By taking suitable values of a, b, c, d, e shown in Table 2, we can find real

matrices in Q(S2) with each refined inertia in R \ (R0 ∪R′
1). 2

Theorem 3.6 There exists a 3× 3 irreducible sign pattern A with at least one zero entry such

that A is not an rIAP, and R(A) = R0 ∪R1.

Proof Let S3 = −S2. By Theorem 3.5, the result follows. 2
Lemma 3.7 ([7]) Let H be a proper subset of set of all possible refined inertias of real matrices

of order n. Then H is a critical set of refined inertias for a family F of sign pattern of order n

if and only if every n× n sign pattern A in F that is not an rIAP, H ∩R(A) ̸= ∅.
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refined inertia a b c d e

(3, 0, 0, 0) 1 1 5 3 1

(2, 0, 1, 0) 1 1 2 7
2

1
2

(1, 0, 2, 0) 2 1
5 20 16 2

(1, 0, 0, 2) 1 1 2 7
3

1
2

(2, 1, 0, 0) 1 1 2 11 1
2

(1, 2, 0, 0) 1 1 1 1 1

(1, 1, 1, 0) 3 2 1 2 1

Table 2 Realization of each refined inertia in R \ (R0 ∪R′
1)

Theorem 3.8 Let H be a proper subset of R. Then H is a critical set of refined inertias for

irreducible sign patterns of order 3 with at least one zero entry if and only if one of the following

conditions holds:

(1) H ∩R1 ̸= ∅ and H ∩R′
1 ̸= ∅;

(2) H ∩R0 ̸= ∅ and H ∩R1 ̸= ∅;
(3) H ∩R0 ̸= ∅ and H ∩R′

1 ̸= ∅.

Proof Let F be the set of all irreducible sign patterns of order 3 with at least one zero entry

that are not rIAPs. By Lemma 3.7, we only need to prove H ∩R(A) ̸= ∅ for every A in F if and

only if one of the following conditions holds:

(1) H ∩R1 ̸= ∅ and H ∩R′
1 ̸= ∅;

(2) H ∩R0 ̸= ∅ and H ∩R1 ̸= ∅;
(3) H ∩R0 ̸= ∅ and H ∩R′

1 ̸= ∅.
By Theorem 3.3, the sufficiency is clear.

For the necessity, let H ∩R(A) ̸= ∅ for every A in F . Then by Theorems 3.4–3.6, H ∩ (R1 ∪
R′

1) ̸= ∅, H ∩ (R0 ∪R1) ̸= ∅, and H ∩ (R0 ∪R′
1) ̸= ∅. So the necessity holds. 2

Proof of Theorem 1.1 Let H be a proper subsets of the set of all possible refined inertias for

irreducible sign patterns of order 3 with at least one zero entry. By Theorem 3.8, H is critical

set of refined inertias if and only if H ∩R1 ̸= ∅ and H ∩R′
1 ̸= ∅, or H ∩R0 ̸= ∅ and H ∩R1 ̸= ∅,

or H ∩R0 ̸= ∅ and H ∩R′
1 ̸= ∅.

To make H a minimal critical set, then one of the following conditions holds:

(1) |H ∩R1| = 1 and |H ∩R′
1| = 1;

(2) |H ∩R0| = 1 and |H ∩R1| = 1;

(3) |H ∩R0| = 1 and |H ∩R′
1| = 1.

We pick up exactly one refined inertia from R1 and one refined inertia from R0 ∪ R′
1, or one

refined inertia from R′
1 and one refined inertia from R0, and let them form new sets as follows.

{(3, 0, 0, 0), (0, 3, 0, 0)}, {(3, 0, 0, 0), (0, 2, 1, 0)}, {(3, 0, 0, 0), (0, 1, 2, 0)}, {(3, 0, 0, 0), (0, 1, 0, 2)},

{(3, 0, 0, 0), (0, 0, 3, 0)}, {(3, 0, 0, 0), (0, 0, 1, 2)}, {(2, 0, 1, 0), (0, 3, 0, 0)}, {(2, 0, 1, 0), (0, 2, 1, 0)},

{(2, 0, 1, 0), (0, 1, 2, 0)}, {(2, 0, 1, 0), (0, 1, 0, 2)}, {(2, 0, 1, 0), (0, 0, 3, 0)}, {(2, 0, 1, 0), (0, 0, 1, 2)},
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{(1, 0, 2, 0), (0, 3, 0, 0)}, {(1, 0, 2, 0), (0, 2, 1, 0)}, {(1, 0, 2, 0), (0, 1, 2, 0)}, {(1, 0, 2, 0), (0, 1, 0, 2)},

{(1, 0, 2, 0), (0, 0, 3, 0)}, {(1, 0, 2, 0), (0, 0, 1, 2)}, {(1, 0, 0, 2), (0, 3, 0, 0)}, {(1, 0, 0, 2), (0, 2, 1, 0)},

{(1, 0, 0, 2), (0, 1, 2, 0)}, {(1, 0, 0, 2), (0, 1, 0, 2)}, {(1, 0, 0, 2), (0, 0, 3, 0)}, {(1, 0, 0, 2), (0, 0, 1, 2)},

{(0, 3, 0, 0), (0, 0, 3, 0)}, {(0, 3, 0, 0), (0, 0, 1, 2)}, {(0, 2, 1, 0), (0, 0, 3, 0)}, {(0, 2, 1, 0), (0, 0, 1, 2)},

{(0, 1, 2, 0), (0, 0, 3, 0)}, {(0, 1, 2, 0), (0, 0, 1, 2)}, {(0, 1, 0, 2), (0, 0, 3, 0)}, {(0, 1, 0, 2), (0, 0, 1, 2)}.

Note that

{(2, 0, 1, 0), (0, 3, 0, 0)} is the reversal of {(3, 0, 0, 0), (0, 2, 1, 0)},
{(1, 0, 2, 0), (0, 3, 0, 0)} is the reversal of {(3, 0, 0, 0), (0, 1, 2, 0)},
{(1, 0, 2, 0), (0, 2, 1, 0)} is the reversal of {(2, 0, 1, 0), (0, 1, 2, 0)},
{(1, 0, 0, 2), (0, 3, 0, 0)} is the reversal of {(3, 0, 0, 0), (0, 1, 0, 2)},
{(1, 0, 0, 2), (0, 2, 1, 0)} is the reversal of {(2, 0, 1, 0), (0, 1, 0, 2)},
{(1, 0, 0, 2), (0, 1, 2, 0)} is the reversal of {(1, 0, 2, 0), (0, 1, 0, 2)},
{(0, 3, 0, 0), (0, 0, 3, 0)} is the reversal of {(3, 0, 0, 0), (0, 0, 3, 0)},
{(0, 3, 0, 0), (0, 0, 1, 2)} is the reversal of {(3, 0, 0, 0), (0, 0, 1, 2)},
{(0, 2, 1, 0), (0, 0, 3, 0)} is the reversal of {(2, 0, 1, 0), (0, 0, 3, 0)},
{(0, 2, 1, 0), (0, 0, 1, 2)} is the reversal of {(2, 0, 1, 0), (0, 0, 1, 2)},
{(0, 1, 2, 0), (0, 0, 3, 0)} is the reversal of {(1, 0, 2, 0), (0, 0, 3, 0)},
{(0, 1, 2, 0), (0, 0, 1, 2)} is the reversal of {(1, 0, 2, 0), (0, 0, 1, 2)},
{(0, 1, 0, 2), (0, 0, 3, 0)} is the reversal of {(1, 0, 0, 2), (0, 0, 3, 0)},
{(0, 1, 0, 2), (0, 0, 1, 2)} is the reversal of {(1, 0, 0, 2), (0, 0, 1, 2)}.

So we drop them out.

Theorem 1.1 now follows. 2
By Theorem 1.1, it is clear that the maximum cardinality of a minimum critical set of refined

inertias for 3× 3 irreducible sign patterns with at least one zero entry is 2.

4. The minimal critical sets of inertias for irreducible sign patterns of
order 3

Using the same method as in the proof of Theorem 1.2 in [7], we can get the result of Theorem

1.2.

5. Summary and conclusions

In this paper, we obtained all the minimum critical sets of refined inertias and inertias for

3×3 irreducible sign patterns with at least one zero entry. Based on these conclusions and results

from the reference [7], we identified all the minimum critical sets of refined inertias and inertias

for 3× 3 irreducible sign patterns.

Further topics of interest for future research include the investigation of all the minimal

critical sets of refined inertias and inertias for sign patterns of order n (n ≥ 4) and other

parameters for sign patterns (see for instance the recent results in [10]).
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