Minimal Critical Sets of Refined Inertias for Irreducible Sign Patterns of Order 3

Yajing WANG ${ }^{1}$, Yubin GAO ${ }^{2, *}$, Yanling SHAO ${ }^{2}$
1. Department of Data Science and Technology, North University of China, Shanxi 030051, P. R. China;
2. Department of Mathematics, North University of China, Shanxi 030051, P. R. China

Abstract

Let S be a nonempty, proper subset of all possible refined inertias of real matrices of order n. The set S is a critical set of refined inertias for irreducible sign patterns of order n, if for each $n \times n$ irreducible sign pattern \mathcal{A}, the condition $S \subseteq r i(\mathcal{A})$ is sufficient for \mathcal{A} to be refined inertially arbitrary. If no proper subset of S is a critical set of refined inertias, then S is a minimal critical set of refined inertias for irreducible sign patterns of order n.

All minimal critical sets of refined inertias for full sign patterns of order 3 have been identified in [Wei GAO, Zhongshan LI, Lihua ZHANG, The minimal critical sets of refined inertias for 3×3 full sign patterns, Linear Algebra Appl. 458(2014), 183-196]. In this paper, the minimal critical sets of refined inertias for irreducible sign patterns of order 3 are identified.

Keywords sign pattern; refined inertia; refined inertially arbitrary sign pattern; critical set of refined inertias

MR(2010) Subject Classification 15B35; 15A18

1. Introduction

An $n \times n$ matrix \mathcal{A} is called a sign pattern if its entries are from the set $\{+,-, 0\}$. For a real matrix $B, \operatorname{sgn}(\mathrm{~B})$ is the sign pattern matrix obtained by replacing each positive (resp., negative, zero) entry of B by + (resp.,,- 0). The set of all real matrices with the same sign pattern as the $n \times n$ sign pattern \mathcal{A} is the qualitative class

$$
Q(\mathcal{A})=\left\{B=\left[b_{i j}\right] \in M_{n}(R) \mid \operatorname{sgn}(B)=\mathcal{A}\right\} .
$$

A subpattern of an $n \times n$ sign pattern \mathcal{A} is a sign pattern \mathcal{B} obtained by replacing some (possible empty) subset of the nonzero entries of \mathcal{A} with zero. If \mathcal{B} is a subpattern of \mathcal{A}, then \mathcal{A} is a superpattern of \mathcal{B}.

Let A be a real matrix of order n. The inertia of A is the ordered triple $i(A)=\left(n_{+}, n_{-}, n_{0}\right)$, where n_{+}, n_{-}and n_{0} are the numbers of its eigenvalues (counting multiplicities) with positive, negative and zero real parts, respectively. The refined inertia of A is the ordered quadruple $\operatorname{ri}(A)=\left(n_{+}, n_{-}, n_{z}, 2 n_{p}\right)$ of nonnegative integers that sum to n, in which $\left(n_{+}, n_{-}, n_{z}+2 n_{p}\right)$ is

Received January 25, 2019; Accepted December 8, 2019
Supported by Shanxi Province Science Foundation for Youths (Grant No. 201901D211227).

* Corresponding author

E-mail address: s1408028@st.nuc.edu.cn (Yajing WANG); ybgao@nuc.edu.cn (Yubin GAO)
the inertia of A while n_{z} is the number of 0 as an eigenvalue of A and $2 n_{p}$ is the number of nonzero pure imaginary eigenvalues of A.

For an $n \times n$ sign pattern \mathcal{A}, the inertia of \mathcal{A} is $i(\mathcal{A})=\{i(B) \mid B \in Q(\mathcal{A})\}$, and the refined inertia of \mathcal{A} is $r i(\mathcal{A})=\{r i(B) \mid B \in Q(\mathcal{A})\}$.

The reversal of an inertia (resp., refined inertia) is obtained by exchanging the first two entries in the ordered triple (resp., quadruple), i.e., the reversal of (n_{+}, n_{-}, n_{0}) (resp., $\left(n_{+}, n_{-}, n_{z}, 2 n_{p}\right)$) is (n_{-}, n_{+}, n_{0}) (resp., ($\left.n_{-}, n_{+}, n_{z}, 2 n_{p}\right)$). The reversal of a set of inertias (resp., refined inertias) is the set of reversals of the inertias (resp., refined inertias) in the set. Clearly, for an $n \times n$ sign pattern $\mathcal{A}, i(-\mathcal{A})$ is the reversal of $i(\mathcal{A})$ and $\operatorname{ri}(-\mathcal{A})$ is the reversal of $\operatorname{ri}(\mathcal{A})$.

An $n \times n \operatorname{sign}$ pattern \mathcal{A} is called a spectrally arbitrary pattern (SAP) if for each real monic polynomial $r(x)$ of degree n, there exists some $A \in Q(\mathcal{A})$ with characteristic polynomial $p_{A}(x)=r(x)$. Thus, \mathcal{A} is spectrally arbitrary, if given any self-conjugate spectrum, there exists $A \in Q(\mathcal{A})$ with that spectrum [1].

An $n \times n$ sign pattern \mathcal{A} is called an inertially arbitrary pattern (IAP) if given any ordered triple (n_{+}, n_{-}, n_{0}) of nonnegative integers with $n_{+}+n_{-}+n_{0}=n$, there exists a real matrix $A \in Q(\mathcal{A})$ such that $i(A)=\left(n_{+}, n_{-}, n_{0}\right)$. Similarly, \mathcal{A} is a refined inertially arbitrary pattern (rIAP) if given any ordered quadruple ($n_{+}, n_{-}, n_{z}, 2 n_{p}$) of nonnegative integers that sum to n, there exists a real matrix $A \in Q(\mathcal{A})$ such that $r i(A)=\left(n_{+}, n_{-}, n_{z}, 2 n_{p}\right)$ (see $\left.[2,3]\right)$.

Let S be a nonempty, proper subset of all possible refined inertias of real matrices of order n. Then, S is a critical set of refined inertias for irreducible sign patterns of order n, if for each $n \times n$ irreducible sign pattern \mathcal{A}, the condition $S \subseteq r i(\mathcal{A})$ is sufficient for \mathcal{A} to be refined inertially arbitrary.

If no proper subset of S is a critical set of refined inertias for irreducible sign patterns of order n, then S is a minimal critical set of refined inertias for irreducible sign patterns of order n.

A permutation sign pattern is a square sign pattern with entries 0 and + , where the entry + occurs precisely once in each row and in each column. A signature sign pattern is a square diagonal sign pattern each of whose diagonal entries is nonzero. Let \mathcal{A} and \mathcal{B} be two square sign patterns of the same order. We say that \mathcal{A} is permutationally similar to \mathcal{B} if there exists a permutation sign pattern \mathcal{P} such that $\mathcal{B}=\mathcal{P}^{T} \mathcal{A} \mathcal{P}$, and that \mathcal{A} is signature similar to \mathcal{B} if there exists a signature sign pattern \mathcal{D} such that $\mathcal{B}=\mathcal{D} \mathcal{A D}$.

Two square sign patterns \mathcal{A} and \mathcal{B} of the same order are equivalent if one can be obtained from the other by any combination of negation, transposition, permutation similarity and signature similarity. Clearly, if \mathcal{A} and \mathcal{B} are equivalent, then \mathcal{A} is an rIAP (resp., IAP) if and only if \mathcal{B} is an rIAP (resp., IAP).

Let $\mathcal{A}=\left[a_{i j}\right]$ be an $n \times n$ sign pattern. We say that \mathcal{A} contains a negative 2 -cycle (resp., positive 2 -cycle) if $a_{i j} a_{j i}=-$ (resp., $a_{i j} a_{j i}=+$) for some $i \neq j$.

Recently, Kim et al. [4] have obtained the minimal critical sets of inertias for irreducible zero-nonzero patterns of order $n=2,3,4$ and for irreducible sign patterns of orders $n=2,3$. Yu et al. [5] have given all the minimal critical sets of refined inertias and inertias for irreducible
zero-nonzero patterns of order 2 and 3 . Also, Yu [6] has identified all the minimal critical sets of refined inertias for irreducible sign patterns of orders 2. All minimal critical sets of refined inertias for full sign patterns of order 3 have been identified [7]. Identifying all minimal critical sets of refined inertias and inertias for irreducible sign patterns that have at least one zero entry has been posed as an open question in [7]. The minimum cardinality of such a set is also open. In this paper, the minimal critical sets of refined inertias and the minimal critical sets of inertias for irreducible sign patterns of order 3 with at least one zero entry are identified.

The main results are the following two theorems.
Theorem 1.1 The only minimal critical sets of refined inertias for 3×3 irreducible sign patterns with at least one zero entry are the following sets and their reversals.

$$
\begin{aligned}
& \{(3,0,0,0),(0,3,0,0)\},\{(3,0,0,0),(0,2,1,0)\},\{(3,0,0,0),(0,1,2,0)\},\{(3,0,0,0),(0,1,0,2)\}, \\
& \{(3,0,0,0),(0,0,3,0)\},\{(3,0,0,0),(0,0,1,2)\},\{(2,0,1,0),(0,2,1,0)\},\{(2,0,1,0),(0,1,2,0)\}, \\
& \{(2,0,1,0),(0,1,0,2)\},\{(2,0,1,0),(0,0,3,0)\},\{(2,0,1,0),(0,0,1,2)\},\{(1,0,2,0),(0,1,2,0)\}, \\
& \{(1,0,2,0),(0,1,0,2)\},\{(1,0,2,0),(0,0,3,0)\},\{(1,0,2,0),(0,0,1,2)\},\{(1,0,0,2),(0,1,0,2)\}, \\
& \{(1,0,0,2),(0,0,3,0)\},\{(1,0,0,2),(0,0,1,2)\}
\end{aligned}
$$

Theorem 1.2 The only minimal critical sets of inertias for 3×3 irreducible sign patterns with at least one zero entry are the following sets and their reversals.

$$
\begin{aligned}
& \{(3,0,0),(0,3,0)\},\{(3,0,0),(0,2,1)\},\{(3,0,0),(0,1,2)\}, \\
& \{(3,0,0),(0,0,3)\},\{(2,0,1),(0,2,1)\},\{(2,0,1),(0,1,2)\}, \\
& \{(2,0,1),(0,0,3)\},\{(1,0,2),(0,1,2)\},\{(1,0,2),(0,0,3)\} .
\end{aligned}
$$

The followings are immediate from Theorems 1.1, 1.2 and results of the reference [7].
Theorem 1.3 The only minimal critical sets of refined inertias for 3×3 irreducible sign patterns are the following sets and their reversals.

$$
\begin{aligned}
& \{(3,0,0,0),(0,3,0,0)\},\{(3,0,0,0),(0,2,1,0)\},\{(3,0,0,0),(0,1,2,0)\}, \\
& \{(3,0,0,0),(0,1,0,2)\},\{(2,0,1,0),(0,2,1,0)\},\{(2,0,1,0),(0,1,2,0)\}, \\
& \{(2,0,1,0),(0,1,0,2)\},\{(1,0,2,0),(0,1,2,0)\},\{(1,0,0,2),(0,1,0,2)\} .
\end{aligned}
$$

Theorem 1.4 The only minimal critical sets of inertias for 3×3 irreducible sign patterns are the following sets and their reversals.

$$
\begin{aligned}
& \{(3,0,0),(0,3,0)\},\{(3,0,0),(0,2,1)\},\{(3,0,0),(0,1,2)\} \\
& \{(2,0,1),(0,2,1)\},\{(2,0,1),(0,1,2)\},\{(1,0,2),(0,1,2)\}
\end{aligned}
$$

We will give the proofs of Theorems 1.1 and 1.2 in Sections 3 and 4, respectively.

2. Preliminaries

In this section, we outline some results which are well known for the characterization of 3×3
sign pattern.
Lemma 2.1 ([8]) If \mathcal{A} is a sign pattern of order 3 , then the following statements are equivalent:
(1) \mathcal{A} is spectrally arbitrary.
(2) \mathcal{A} is inertially arbitrary.
(3) \mathcal{A} is refined inertially arbitrary.
(4) Up to equivalence, \mathcal{A} is a superpattern of one of the following sign pattern:

$$
\mathcal{D}_{3,3}=\left[\begin{array}{ccc}
- & + & 0 \\
- & 0 & + \\
- & 0 & +
\end{array}\right], \mathcal{D}_{3,2}=\left[\begin{array}{ccc}
- & + & 0 \\
- & 0 & + \\
0 & - & +
\end{array}\right], \mathcal{U}=\left[\begin{array}{ccc}
- & + & 0 \\
- & + & + \\
0 & + & -
\end{array}\right], \mathcal{V}=\left[\begin{array}{ccc}
- & 0 & + \\
- & 0 & + \\
- & + & +
\end{array}\right]
$$

Lemma $2.2([8,9])$ Let

$$
\mathcal{G}=\left[\begin{array}{lll}
- & + & + \\
- & + & - \\
- & - & +
\end{array}\right]
$$

Then \mathcal{G} requires a positive eigenvalue.
Lemma 2.3 ([8]) If φ is a subpattern of \mathcal{G}, then φ requires a nonnegative eigenvalue.
Lemma 2.4 ([3]) Let m be the maximum number of distinct refined inertias allowed by any sign pattern of order 3 . Then $m=13$.

3. The minimal critical sets of refined inertias for irreducible sign patterns of order 3

In this section, we identify the minimal critical sets of refined inertias for 3×3 irreducible sign patterns with at least one zero entry.

By Lemma 2.4, there are 13 possible distinct refined inertias for a sign pattern of order 3. We use R to denote the set of these 13 possible distinct refined inertias, that is,

$$
\begin{aligned}
R=\{ & (3,0,0,0),(2,1,0,0),(2,0,1,0),(1,2,0,0),(1,1,1,0),(1,0,2,0), \\
& (1,0,0,2),(0,3,0,0),(0,2,1,0),(0,1,2,0),(0,1,0,2),(0,0,3,0),(0,0,1,2)\}
\end{aligned}
$$

Let \mathcal{A} be an $n \times n$ sign pattern which is not an rIAP. We use $R(\mathcal{A})$ to denote the set of all possible refined inertias that are not in $\operatorname{ri}(\mathcal{A})$, that is,
$R(\mathcal{A})=R \backslash r i(\mathcal{A})=\left\{\left(n_{+}, n_{-}, n_{z}, 2 n_{p}\right) \in Z_{+}^{4} \mid n_{+}+n_{-}+n_{z}+2 n_{p}=n,\left(n_{+}, n_{-}, n_{z}, 2 n_{p}\right) \notin \operatorname{ri}(\mathcal{A})\right\}$,
where Z_{+}is the set of all nonnegative integers.
For convenience, write

$$
\begin{gathered}
R_{0}=\{(0,0,3,0),(0,0,1,2)\}, \\
R_{1}=\{(3,0,0,0),(2,0,1,0),(1,0,2,0),(1,0,0,2)\}, \\
R_{1}^{\prime}=\{(0,3,0,0),(0,2,1,0),(0,1,2,0),(0,1,0,2)\},
\end{gathered}
$$

where R_{1}^{\prime} is the reversal of R_{1}. Let

$$
\mathcal{P}_{13}=\left[\begin{array}{ccc}
0 & 0 & + \\
0 & + & 0 \\
+ & 0 & 0
\end{array}\right], \mathcal{P}_{23}=\left[\begin{array}{ccc}
+ & 0 & 0 \\
0 & 0 & + \\
0 & + & 0
\end{array}\right], \mathcal{P}_{12}=\left[\begin{array}{ccc}
0 & + & 0 \\
+ & 0 & 0 \\
0 & 0 & +
\end{array}\right]
$$

and $\mathcal{D}_{1}=\operatorname{diag}(-,+,+), \mathcal{D}_{2}=\operatorname{diag}(+,-,+), \mathcal{D}_{3}=\operatorname{diag}(+,+,-)$.
Lemma 3.1 Let \mathcal{A} be a 3×3 irreducible sign pattern with at least one zero entry. Suppose all diagonal entries of \mathcal{A} are nonzero, and the diagonal entries of \mathcal{A} have different signs. If \mathcal{A} is not an rIAP, then one of the following conditions holds.
(1) $R_{0} \cup R_{1} \subseteq R(\mathcal{A})$;
(2) $R_{0} \cup R_{1}^{\prime} \subseteq R(\mathcal{A})$.

Proof Up to equivalence, we can assume that $a_{11}=-, a_{22}=+$ and $a_{33}=+$. Note that \mathcal{A} is irreducible (this means \mathcal{A} has at most three zero entries), and has at least one zero entry. We consider the following three cases.

Case 1. Exactly one off-diagonal entry of \mathcal{A} is zero.
Up to equivalence, \mathcal{A} has the following forms.

$$
(1.1)\left[\begin{array}{ccc}
- & * & * \\
* & + & * \\
0 & * & +
\end{array}\right], \quad(1.2)\left[\begin{array}{ccc}
- & * & * \\
* & + & * \\
* & 0 & +
\end{array}\right], \quad(1.1)^{\prime}\left[\begin{array}{ccc}
- & * & * \\
0 & + & * \\
* & * & +
\end{array}\right]
$$

where $* \in\{+,-\}$. Noting that $\mathcal{P}_{23}(1.1)^{\prime} \mathcal{P}_{23}=(1.1)$, so (1.1) ${ }^{\prime}$ and (1.1) are equivalent.
Let $\mathcal{A}=\left[a_{i j}\right]$ have form (1.1). If $a_{12}<0$, taking $\mathcal{A}^{\prime}=\mathcal{D}_{2} \mathcal{A} \mathcal{D}_{2}$, then \mathcal{A}^{\prime} and \mathcal{A} are equivalent and the $(1,2)$ entry of \mathcal{A}^{\prime} is positive. If $a_{13}<0$, taking $\mathcal{A}^{\prime \prime}=\mathcal{D}_{3} \mathcal{A} \mathcal{D}_{3}$, then $\mathcal{A}^{\prime \prime}$ and \mathcal{A} are equivalent and the $(1,3)$ entry of $\mathcal{A}^{\prime \prime}$ is positive. So, without loss of generality, we can take $a_{12}=a_{13}=+$.

According to the number of negative 2 -cycles, \mathcal{A} is possibly one of the following sign patterns.

$$
\begin{gathered}
\mathcal{A}_{1}=\left[\begin{array}{lll}
- & + & + \\
+ & + & + \\
0 & + & +
\end{array}\right], \mathcal{A}_{2}=\left[\begin{array}{ccc}
- & + & + \\
+ & + & - \\
0 & - & +
\end{array}\right], \mathcal{A}_{3}=\left[\begin{array}{ccc}
- & + & + \\
- & + & + \\
0 & + & +
\end{array}\right], \mathcal{A}_{4}=\left[\begin{array}{ccc}
- & + & + \\
- & + & - \\
0 & - & +
\end{array}\right] \\
\mathcal{A}_{5}=\left[\begin{array}{lll}
- & + & + \\
+ & + & + \\
0 & - & +
\end{array}\right], \mathcal{A}_{6}=\left[\begin{array}{lll}
- & + & + \\
+ & + & - \\
0 & + & +
\end{array}\right], \mathcal{A}_{7}=\left[\begin{array}{ccc}
- & + & + \\
- & + & + \\
0 & - & +
\end{array}\right], \mathcal{A}_{8}=\left[\begin{array}{ccc}
- & + & + \\
- & + & - \\
0 & + & +
\end{array}\right] .
\end{gathered}
$$

Let $\mathcal{A}=\left[a_{i j}\right]$ have form (1.2). Without loss of generality, we can take $a_{12}=a_{13}=+$. According to the number of negative 2 -cycles, \mathcal{A} is possibly one of the following sign patterns.

$$
\mathcal{A}_{9}=\left[\begin{array}{lll}
- & + & + \\
+ & + & + \\
+ & 0 & +
\end{array}\right], \mathcal{A}_{10}=\left[\begin{array}{ccc}
- & + & + \\
+ & + & - \\
+ & 0 & +
\end{array}\right], \mathcal{A}_{11}=\left[\begin{array}{ccc}
- & + & + \\
- & + & + \\
+ & 0 & +
\end{array}\right], \mathcal{A}_{12}=\left[\begin{array}{ccc}
- & + & + \\
- & + & - \\
+ & 0 & +
\end{array}\right]
$$

$$
\mathcal{A}_{13}=\left[\begin{array}{ccc}
- & + & + \\
+ & + & + \\
- & 0 & +
\end{array}\right], \mathcal{A}_{14}=\left[\begin{array}{ccc}
- & + & + \\
+ & + & - \\
- & 0 & +
\end{array}\right], \mathcal{A}_{15}=\left[\begin{array}{ccc}
- & + & + \\
- & + & + \\
- & 0 & +
\end{array}\right], \mathcal{A}_{16}=\left[\begin{array}{ccc}
- & + & + \\
- & + & - \\
- & 0 & +
\end{array}\right] .
$$

Firstly, let us notice the following facts.
(1) $\mathcal{A}_{15}, \mathcal{D}_{2} \mathcal{P}_{13}\left(-\mathcal{A}_{6}\right) \mathcal{P}_{13} \mathcal{D}_{2}, \mathcal{D}_{3} \mathcal{A}_{12} \mathcal{D}_{3}, \mathcal{D}_{1} \mathcal{P}_{23} \mathcal{A}_{13}^{T} \mathcal{P}_{23} \mathcal{D}_{1}$ are superpatterns of $\mathcal{D}_{3,3}$.
(2) $\mathcal{A}_{7}, \mathcal{D}_{3} \mathcal{A}_{8} \mathcal{D}_{3}$ are superpatterns of $\mathcal{D}_{3,2}$.
(3) $\mathcal{D}_{1} \mathcal{P}_{23} \mathcal{A}_{3}^{T} \mathcal{P}_{23} \mathcal{D}_{1},-\mathcal{D}_{3} \mathcal{P}_{13} \mathcal{P}_{23} \mathcal{A}_{11}^{T} \mathcal{P}_{23} \mathcal{P}_{13} \mathcal{D}_{3}, \mathcal{D}_{2} \mathcal{P}_{13}\left(-\mathcal{A}_{14}\right) \mathcal{P}_{13} \mathcal{D}_{2}$ are superpatterns of \mathcal{V}.

Then by Lemma 2.1, $\mathcal{A}_{3}, \mathcal{A}_{6}, \mathcal{A}_{7}, \mathcal{A}_{8}, \mathcal{A}_{11}, \mathcal{A}_{12}, \mathcal{A}_{13}, \mathcal{A}_{14}$ and \mathcal{A}_{15} are rIAPs.
Thus, \mathcal{A} is equivalent to one of $\mathcal{A}_{1}, \mathcal{A}_{2}, \mathcal{A}_{4}, \mathcal{A}_{5}, \mathcal{A}_{9}, \mathcal{A}_{10}$ and \mathcal{A}_{16}.
Now, we consider \mathcal{A}_{1}. For any $A \in Q\left(\mathcal{A}_{1}\right)$, we may assume A has been scaled so that $a_{33}=1$. We may also assume that $a_{12}=a_{23}=1$ (otherwise they can be 1 by suitable similarities). Thus, assume

$$
A=\left[\begin{array}{ccc}
-a & 1 & b \\
c & d & 1 \\
0 & e & 1
\end{array}\right] \in Q\left(\mathcal{A}_{1}\right)
$$

where $a, b, c, d, e>0$. Then the characteristic polynomial of A is

$$
p_{A}(x)=x^{3}+(a-d-1) x^{2}+(-a d-a-c+d-e) x+a d-a e+c-b c e .
$$

By the relationship between the coefficients of the characteristic polynomial and eigenvalues, if $r i(A) \in R_{0} \cup R_{1}^{\prime}=\{(0,3,0,0),(0,2,1,0),(0,1,2,0),(0,1,0,2),(0,0,3,0),(0,0,1,2)\}$, then

$$
\left\{\begin{array}{l}
a-d-1 \geq 0 \\
-a d-a-c+d-e \geq 0
\end{array}\right.
$$

Adding both sides of above two inequalities, respectively, we have $-a d-c-e-1 \geq 0$. It is a contradiction. Hence $R_{0} \cup R_{1}^{\prime} \subseteq R\left(\mathcal{A}_{1}\right)$.

By similar argument to \mathcal{A}_{1}, we can get $R_{0} \cup R_{1}^{\prime} \subseteq R\left(\mathcal{A}_{i}\right)$ for $i=2,9,10$.
For \mathcal{A}_{4}, without loss of generality, let

$$
A=\left[\begin{array}{ccc}
-a & 1 & b \\
-c & d & -1 \\
0 & -e & 1
\end{array}\right] \in Q\left(\mathcal{A}_{4}\right)
$$

where $a, b, c, d, e>0$. Then the characteristic polynomial of A is

$$
p_{A}(x)=x^{3}+(a-d-1) x^{2}+(-a d-a+c+d-e) x+a d-a e-c-b c e .
$$

If $r i(A) \in R_{0} \cup R_{1}^{\prime}$, then

$$
\left\{\begin{array}{l}
a-d-1 \geq 0 \\
-a d-a+c+d-e \geq 0 \\
a d-a e-c-b c e \geq 0
\end{array}\right.
$$

Adding both sides of above three inequalities, respectively, we have $-1-e-a e-b c e \geq 0$. It is a contradiction. Hence, $R_{0} \cup R_{1}^{\prime} \subseteq R\left(\mathcal{A}_{4}\right)$.

Noting that \mathcal{A}_{5} requires negative determinant, we get $R_{0} \cup R_{1} \subseteq R\left(\mathcal{A}_{5}\right)$.

For \mathcal{A}_{16}, noting that \mathcal{A}_{16} is a subpattern of \mathcal{G}, by Lemma 2.3, we know that $(0,3,0,0)$ and $(0,1,0,2)$ are not the refined inertias of \mathcal{A}_{16}. In the following, we show that $(0,2,1,0),(0,1,2,0)$, $(0,0,3,0)$ and $(0,0,1,2)$ are not the refined inertias of \mathcal{A}_{16}.

For any $A \in Q\left(\mathcal{A}_{16}\right)$, without loss of generality, let

$$
A=\left[\begin{array}{ccc}
-a & 1 & b \\
-c & d & -1 \\
-e & 0 & 1
\end{array}\right]
$$

where $a, b, c, d, e>0$. Then the characteristic polynomial of A is $p_{A}(x)=x^{3}+p_{1} x^{2}+p_{2} x+p_{3}$, where

$$
\left\{\begin{array}{l}
p_{1}=-1+a-d \\
p_{2}=-a+c+d-a d+b e \\
p_{3}=-c+a d-e-b d e
\end{array}\right.
$$

If $\operatorname{ri}(A) \in\{(0,2,1,0),(0,1,2,0),(0,0,3,0),(0,0,1,2)\}$, then $p_{3}=0, p_{1} \geq 0$ and $p_{2} \geq 0$. By $p_{3}=0$, we have $a=\frac{c+e+b d e}{d}$. Then

$$
\left\{\begin{aligned}
d p_{1} & =-d+c+e+b d e-d^{2} \geq 0 \\
d p_{2} & =-(c+e+b d e)+c d+d^{2}-(c+e+b d e) d+b e d \\
& =-c-e+d^{2}-e d-b e d^{2} \geq 0
\end{aligned}\right.
$$

If $b e \geq 1$, then $d p_{2}=-c-e+d^{2}-e d-b e d^{2} \leq-c-e-e d<0$.
If $c+e>d^{2}$, then $d p_{2}=-c-e+d^{2}-e d-b e d^{2}<-e d-b e d^{2}<0$.
If $b e<1$ and $c+e \leq d^{2}$, then $d p_{1}=-d+c+e+b d e-d^{2}<0$.
All of above are contradictions. Hence, $(0,2,1,0),(0,1,2,0),(0,0,3,0)$ and $(0,0,1,2)$ are not the refined inertias of \mathcal{A}_{16} and so $R_{0} \cup R_{1}^{\prime} \subseteq R\left(\mathcal{A}_{16}\right)$.

Case 2. Exactly two off-diagonal entries of \mathcal{A} are zero.
According to whether the two zero entries are in one 2 -cycle or not, up to equivalence, \mathcal{A} has the following forms

$$
\begin{aligned}
& (2.1)\left[\begin{array}{lll}
- & * & 0 \\
* & + & * \\
0 & * & +
\end{array}\right],(2.2)\left[\begin{array}{ccc}
- & * & * \\
* & + & 0 \\
* & 0 & +
\end{array}\right],(2.1)^{\prime}\left[\begin{array}{ccc}
- & 0 & * \\
0 & + & * \\
* & * & +
\end{array}\right] \\
& (2.3)\left[\begin{array}{lll}
- & 0 & * \\
* & + & * \\
0 & * & +
\end{array}\right],(2.4)\left[\begin{array}{ccc}
- & * & * \\
* & + & 0 \\
0 & * & +
\end{array}\right],(2.4)^{\prime}\left[\begin{array}{ccc}
- & 0 & * \\
* & + & 0 \\
* & * & +
\end{array}\right],
\end{aligned}
$$

where $* \in\{+,-\}$. Noting that $\mathcal{P}_{23}(2.1)^{\prime} \mathcal{P}_{23}=(2.1), \mathcal{P}_{23}\left((2.4)^{\prime}\right)^{T} \mathcal{P}_{23}=(2.4)$, so (2.1 $)^{\prime}$ and (2.1), (2.4) ${ }^{\prime}$ and (2.4) are equivalent, respectively.

Let $\mathcal{A}=\left[a_{i j}\right]$ have form (2.1). If $a_{12}<0$, taking $\mathcal{A}^{\prime}=\mathcal{D}_{1} \mathcal{A} \mathcal{D}_{1}$, then \mathcal{A}^{\prime} and \mathcal{A} are equivalent and the $(1,2)$ entry of \mathcal{A}^{\prime} is positive. If $a_{23}<0$, taking $\mathcal{A}^{\prime \prime}=\mathcal{D}_{3} \mathcal{A} \mathcal{D}_{3}$, then $\mathcal{A}^{\prime \prime}$ and \mathcal{A} are equivalent and the $(2,3)$ entry of $\mathcal{A}^{\prime \prime}$ is positive. So, without loss of generality, we can take $a_{12}=a_{23}=+$.

According to the number of the negative 2 -cycles, \mathcal{A} is possibly one of the following sign patterns.

$$
\mathcal{A}_{17}=\left[\begin{array}{ccc}
- & + & 0 \\
+ & + & + \\
0 & + & +
\end{array}\right], \mathcal{A}_{18}=\left[\begin{array}{ccc}
- & + & 0 \\
- & + & + \\
0 & + & +
\end{array}\right], \mathcal{A}_{19}=\left[\begin{array}{ccc}
- & + & 0 \\
+ & + & + \\
0 & - & +
\end{array}\right], \mathcal{A}_{20}=\left[\begin{array}{ccc}
- & + & 0 \\
- & + & + \\
0 & - & +
\end{array}\right]
$$

Let \mathcal{A} have form (2.2). Without loss of generality, we can let $a_{12}=a_{13}=+$. According to the number of the negative 2 -cycles, \mathcal{A} is possibly one of the following sign patterns.

$$
\mathcal{A}_{21}=\left[\begin{array}{ccc}
- & + & + \\
+ & + & 0 \\
+ & 0 & +
\end{array}\right], \mathcal{A}_{22}=\left[\begin{array}{ccc}
- & + & + \\
- & + & 0 \\
+ & 0 & +
\end{array}\right], \mathcal{A}_{23}=\left[\begin{array}{ccc}
- & + & + \\
+ & + & 0 \\
- & 0 & +
\end{array}\right], \mathcal{A}_{24}=\left[\begin{array}{ccc}
- & + & + \\
- & + & 0 \\
- & 0 & +
\end{array}\right]
$$

Let $\mathcal{A}=\left[a_{i j}\right]$ have form (2.3). If $a_{13}<0$, taking $\mathcal{A}^{\prime}=\mathcal{D}_{1} \mathcal{A} \mathcal{D}_{1}$, then \mathcal{A}^{\prime} and \mathcal{A} are equivalent and the $(1,3)$ entry of \mathcal{A}^{\prime} is positive. If $a_{23}<0$, taking $\mathcal{A}^{\prime \prime}=\mathcal{D}_{2} \mathcal{A} \mathcal{D}_{2}$, then $\mathcal{A}^{\prime \prime}$ and \mathcal{A} are equivalent and the $(2,3)$ entry of $\mathcal{A}^{\prime \prime}$ is positive. So, without loss of generality, we can take $a_{13}=a_{23}=+$.

According to the number of the negative 2 -cycles, \mathcal{A} is possibly one of the following sign patterns.

$$
\mathcal{A}_{25}=\left[\begin{array}{ccc}
- & 0 & + \\
+ & + & + \\
0 & + & +
\end{array}\right], \mathcal{A}_{26}=\left[\begin{array}{ccc}
- & 0 & + \\
- & + & + \\
0 & + & +
\end{array}\right], \mathcal{A}_{27}=\left[\begin{array}{ccc}
- & 0 & + \\
+ & + & + \\
0 & - & +
\end{array}\right], \mathcal{A}_{28}=\left[\begin{array}{ccc}
- & 0 & + \\
- & + & + \\
0 & - & +
\end{array}\right]
$$

Assume that \mathcal{A} has form (2.4). Without loss of generality, we can let $a_{12}=a_{13}=+$. According to the number of the negative 2 -cycles, \mathcal{A} is possibly one of the following sign patterns.

$$
\mathcal{A}_{29}=\left[\begin{array}{ccc}
- & + & + \\
+ & + & 0 \\
0 & + & +
\end{array}\right], \mathcal{A}_{30}=\left[\begin{array}{ccc}
- & + & + \\
+ & + & 0 \\
0 & - & +
\end{array}\right], \mathcal{A}_{31}=\left[\begin{array}{ccc}
- & + & + \\
- & + & 0 \\
0 & + & +
\end{array}\right], \mathcal{A}_{32}=\left[\begin{array}{ccc}
- & + & + \\
- & + & 0 \\
0 & - & +
\end{array}\right]
$$

Firstly, let us notice the following facts.
(1) $\mathcal{P}_{13}\left(-\mathcal{A}_{28}\right) \mathcal{P}_{13}, \mathcal{D}_{1} \mathcal{A}_{31}^{T} \mathcal{D}_{1}$ are superpatterns of $\mathcal{D}_{3,3}$.
(2) \mathcal{A}_{20} is a superpattern of $\mathcal{D}_{3,2}$.
(3) $\mathcal{D}_{3} \mathcal{P}_{12}\left(-\mathcal{A}_{22}\right) \mathcal{P}_{12} \mathcal{D}_{3}=\mathcal{U}$.
(4) $\mathcal{P}_{23} \mathcal{A}_{23} \mathcal{P}_{23}=\mathcal{A}_{22}$.

Then by Lemma 2.1, $\mathcal{A}_{20}, \mathcal{A}_{22}, \mathcal{A}_{23}, \mathcal{A}_{28}$ and \mathcal{A}_{31} are rIAPs.
Thus, \mathcal{A} is equivalent to one of patterns in Case 2 except for $\mathcal{A}_{20}, \mathcal{A}_{22}, \mathcal{A}_{23}, \mathcal{A}_{28}$ and \mathcal{A}_{31}.
By similar argument to \mathcal{A}_{1} in Case 1 , we can get $R_{0} \cup R_{1}^{\prime} \subseteq R\left(\mathcal{A}_{i}\right)$ for $i=17,21,25,26,29,30$.
By similar argument to \mathcal{A}_{4} in Case 1 , we can get $R_{0} \cup R_{1}^{\prime} \subseteq R\left(\mathcal{A}_{i}\right)$ for $i=18,32$.
Noting that \mathcal{A}_{19} and \mathcal{A}_{27} require negative determinants, we get $R_{0} \cup R_{1} \subseteq R\left(\mathcal{A}_{i}\right)$ for $i=19,27$.
For \mathcal{A}_{24}, noting that it is a subpattern of \mathcal{G}, by Lemma 2.3 , we know that $(0,3,0,0)$ and $(0,1,0,2)$ do not belong to the refined inertias of \mathcal{A}_{24}. In the following, we prove that $(0,2,1,0)$, $(0,1,2,0),(0,0,3,0)$ and $(0,0,1,2)$ do not belong to the refined inertias of \mathcal{A}_{24} as well.

For any $A \in Q\left(\mathcal{A}_{24}\right)$, without loss of generality, let

$$
A=\left[\begin{array}{lll}
-a & 1 & b \\
-c & d & 0 \\
-e & 0 & 1
\end{array}\right]
$$

where $a, b, c, d, e>0$. Then the characteristic polynomial of A is $p_{A}(x)=x^{3}+p_{1} x^{2}+p_{2} x+p_{3}$, where

$$
\left\{\begin{array}{l}
p_{1}=-1+a-d \\
p_{2}=-a+c+d-a d+b e \\
p_{3}=-c+a d-b d e
\end{array}\right.
$$

If $\operatorname{ri}(A) \in\{(0,2,1,0),(0,1,2,0),(0,0,3,0),(0,0,1,2)\}$, then $p_{3}=0, p_{1} \geq 0$ and $p_{2} \geq 0$. By $p_{3}=0$, we have $a=\frac{c+b d e}{d}$. Then

$$
\left\{\begin{array}{l}
d p_{1}=-d+c+b d e-d^{2} \geq 0 \\
d p_{2}=-(c+b d e)+c d+d^{2}-(c+b d e) d+b e d=-c+d^{2}-b e d^{2} \geq 0
\end{array}\right.
$$

If $b e \geq 1$, then $d p_{2}=-c+d^{2}-b e d^{2} \leq-c<0$.
If $c>d^{2}$, then $d p_{2}=-c+d^{2}-b e d^{2}<-b e d^{2}<0$.
If $b e<1$ and $c \leq d^{2}$, then $d p_{1}=-d+c+b d e-d^{2}<0$.
All of above are contradictions. Hence, $(0,2,1,0),(0,1,2,0),(0,0,3,0)$ and $(0,0,1,2)$ do not belong to the refined inertias of \mathcal{A}_{24}. Thus $R_{0} \cup R_{1}^{\prime} \subseteq R\left(\mathcal{A}_{24}\right)$.

Case 3. Exactly three off-diagonal entries of \mathcal{A} are zero.
Up to equivalence, \mathcal{A} has the following unique form

$$
(3.1)\left[\begin{array}{ccc}
- & 0 & * \\
* & + & 0 \\
0 & * & +
\end{array}\right]
$$

where $* \in\{+,-\}$.
Let $\mathcal{A}=\left[a_{i j}\right]$ have form (3.1). If $a_{13}<0$, taking $\mathcal{A}^{\prime}=\mathcal{D}_{1} \mathcal{A} \mathcal{D}_{1}$, then \mathcal{A}^{\prime} and \mathcal{A} are equivalent and the $(1,3)$ entry of \mathcal{A}^{\prime} is positive. If $a_{32}<0$, taking $\mathcal{A}^{\prime \prime}=\mathcal{D}_{2} \mathcal{A} \mathcal{D}_{2}$, then $\mathcal{A}^{\prime \prime}$ and \mathcal{A} are equivalent and the $(3,2)$ entry of $\mathcal{A}^{\prime \prime}$ is positive. So, without loss of generality, we can take $a_{13}=a_{32}=+$.

Then \mathcal{A} is possibly one of the following sign patterns.

$$
\mathcal{A}_{33}=\left[\begin{array}{ccc}
- & 0 & + \\
+ & + & 0 \\
0 & + & +
\end{array}\right], \quad \mathcal{A}_{34}=\left[\begin{array}{ccc}
- & 0 & + \\
- & + & 0 \\
0 & + & +
\end{array}\right]
$$

By similar argument to \mathcal{A}_{1} in Case 1 , we can get $R_{0} \cup R_{1}^{\prime} \subseteq R\left(\mathcal{A}_{33}\right)$.
Noting that \mathcal{A}_{34} requires negative determinant, we get $R_{0} \cup R_{1} \subseteq R\left(\mathcal{A}_{34}\right)$.
Lemma 3.2 Let \mathcal{A} be a 3×3 irreducible sign pattern with at least one zero entry. Suppose \mathcal{A} has one zero diagonal entry, and two nonzero diagonal entries have different signs. If \mathcal{A} is not an rIAP, then one of the following conditions holds.
(1) $R_{0} \cup R_{1} \subseteq R(\mathcal{A})$;
(2) $R_{0} \cup R_{1}^{\prime} \subseteq R(\mathcal{A})$.

Proof Up to equivalence, we can assume $a_{11}=-, a_{22}=0$ and $a_{33}=+$. Note that \mathcal{A} is irreducible and has at least one zero entry. We consider the following three cases.

Case 1. All off-diagonal entries of \mathcal{A} are nonzero.
Without loss of generality, we can take $a_{12}=a_{13}=+$. According to the number of negative 2 -cycles, \mathcal{A} is possibly one of the following sign patterns.

$$
\begin{gathered}
\mathcal{A}_{1}=\left[\begin{array}{lll}
- & + & + \\
+ & 0 & + \\
+ & + & +
\end{array}\right], \mathcal{A}_{2}=\left[\begin{array}{lll}
- & + & + \\
+ & 0 & - \\
+ & - & +
\end{array}\right], \mathcal{A}_{3}=\left[\begin{array}{ccc}
- & + & + \\
- & 0 & + \\
+ & + & +
\end{array}\right], \mathcal{A}_{4}=\left[\begin{array}{ccc}
- & + & + \\
- & 0 & - \\
+ & - & +
\end{array}\right], \\
\mathcal{A}_{5}=\left[\begin{array}{lll}
- & + & + \\
+ & 0 & + \\
- & + & +
\end{array}\right], \mathcal{A}_{6}=\left[\begin{array}{lll}
- & + & + \\
+ & 0 & - \\
- & - & +
\end{array}\right], \mathcal{A}_{7}=\left[\begin{array}{lll}
- & + & + \\
+ & 0 & + \\
+ & - & +
\end{array}\right], \mathcal{A}_{8}=\left[\begin{array}{lll}
- & + & + \\
+ & 0 & - \\
+ & + & +
\end{array}\right], \\
\mathcal{A}_{9}=\left[\begin{array}{lll}
- & + & + \\
- & 0 & + \\
- & + & +
\end{array}\right], \mathcal{A}_{10}=\left[\begin{array}{lll}
- & + & + \\
- & 0 & - \\
- & - & +
\end{array}\right], \mathcal{A}_{11}=\left[\begin{array}{ccc}
- & + & + \\
- & 0 & + \\
+ & - & +
\end{array}\right], \mathcal{A}_{12}=\left[\begin{array}{ccc}
- & + & + \\
- & 0 & - \\
+ & + & +
\end{array}\right], \\
\mathcal{A}_{13}=\left[\begin{array}{lll}
- & + & + \\
+ & 0 & + \\
- & - & +
\end{array}\right], \mathcal{A}_{14}=\left[\begin{array}{lll}
- & + & + \\
+ & 0 & - \\
- & + & +
\end{array}\right], \mathcal{A}_{15}=\left[\begin{array}{lll}
- & + & + \\
- & 0 & + \\
- & - & +
\end{array}\right], \mathcal{A}_{16}=\left[\begin{array}{lll}
- & + & + \\
- & 0 & - \\
- & + & +
\end{array}\right] .
\end{gathered}
$$

Firstly, let us notice the following facts.
(1) $\mathcal{A}_{11}, \mathcal{A}_{15}, \mathcal{D}_{3} \mathcal{A}_{12} \mathcal{D}_{3}, \mathcal{D}_{3} \mathcal{A}_{16} \mathcal{D}_{3}$ are superpatterns of $\mathcal{D}_{3,2}$.
(2) $\mathcal{D}_{3} \mathcal{A}_{4} \mathcal{D}_{3}, \mathcal{D}_{3} \mathcal{D}_{2} \mathcal{A}_{3}^{T} \mathcal{D}_{2} \mathcal{D}_{3}$ are superpatterns of $\mathcal{D}_{3,3}$.
(3) $\mathcal{A}_{9}, \mathcal{D}_{1} \mathcal{A}_{5}^{T} \mathcal{D}_{1}, \mathcal{D}_{2} \mathcal{A}_{6} \mathcal{D}_{2}, \mathcal{D}_{2} \mathcal{P}_{13}\left(-\mathcal{A}_{14}\right) \mathcal{P}_{13} \mathcal{D}_{2}$ are superpatterns of \mathcal{V}.
(4) $\mathcal{A}_{8}^{T}=\mathcal{A}_{7}, \mathcal{D}_{3} \mathcal{P}_{13}\left(-\mathcal{A}_{7}\right) \mathcal{P}_{13} \mathcal{D}_{3}=\mathcal{A}_{3}$.

Then by Lemma $2.1, \mathcal{A}_{3}, \mathcal{A}_{4}, \mathcal{A}_{5}, \mathcal{A}_{6}, \mathcal{A}_{7}, \mathcal{A}_{8}, \mathcal{A}_{9}, \mathcal{A}_{11}, \mathcal{A}_{12}, \mathcal{A}_{14}, \mathcal{A}_{15}$ and \mathcal{A}_{16} are rIAPs.
Thus, in this case, \mathcal{A} is equivalent to one of $\mathcal{A}_{1}, \mathcal{A}_{2}, \mathcal{A}_{10}$ and \mathcal{A}_{13}.
For \mathcal{A}_{1}, without loss of generality, let

$$
A=\left[\begin{array}{ccc}
-a & 1 & b \\
c & 0 & 1 \\
d & e & 1
\end{array}\right] \in Q\left(\mathcal{A}_{1}\right)
$$

where $a, b, c, d, e>0$. Then the characteristic polynomial of A is

$$
p_{A}(x)=x^{3}+(a-1) x^{2}+(-c-b d-e-a) x+c-d-a e-b c e .
$$

Since $-c-b d-e-a<0$, we have $n_{+}(A) \geq 1$ and $n_{-}(A) \geq 1$. Then $R_{0} \cup R_{1}^{\prime} \subseteq R\left(\mathcal{A}_{1}\right)$.
By similar argument to \mathcal{A}_{1}, we can get $R_{0} \cup R_{1}^{\prime} \subseteq R\left(\mathcal{A}_{2}\right)$.
Noting that \mathcal{A}_{10} requires positive determinant, we get $R_{0} \cup R_{1}^{\prime} \subseteq R\left(\mathcal{A}_{10}\right)$.
Noting that \mathcal{A}_{13} requires negative determinant, we get $R_{0} \cup R_{1} \subseteq R\left(\mathcal{A}_{13}\right)$.

Case 2. Exactly one off-diagonal entry of \mathcal{A} is zero.
Up to equivalence, \mathcal{A} has the following forms

$$
(2.1)\left[\begin{array}{ccc}
- & * & * \\
* & 0 & * \\
0 & * & +
\end{array}\right], \quad(2.2)\left[\begin{array}{ccc}
- & * & * \\
* & 0 & * \\
* & 0 & +
\end{array}\right], \quad(2.2)^{\prime}\left[\begin{array}{ccc}
- & * & * \\
0 & 0 & * \\
* & * & +
\end{array}\right]
$$

where $* \in\{+,-\}$. Noting that $\mathcal{P}_{13}\left(-(2.2)^{\prime}\right)^{T} \mathcal{P}_{13}=(2.2)$, so $(2.2)^{\prime}$ and (2.2) are equivalent.
Let \mathcal{A} have form (2.1). Without loss of generality, let $a_{12}=a_{23}=+$. According to the number of the negative 2 -cycles, \mathcal{A} is possibly one of the following sign patterns.

$$
\begin{aligned}
& \mathcal{A}_{17}=\left[\begin{array}{ccc}
- & + & + \\
+ & 0 & + \\
0 & + & +
\end{array}\right], \mathcal{A}_{18}=\left[\begin{array}{ccc}
- & + & - \\
+ & 0 & + \\
0 & + & +
\end{array}\right], \mathcal{A}_{19}=\left[\begin{array}{ccc}
- & + & + \\
- & 0 & + \\
0 & + & +
\end{array}\right], \mathcal{A}_{20}=\left[\begin{array}{ccc}
- & + & - \\
- & 0 & + \\
0 & + & +
\end{array}\right], \\
& \mathcal{A}_{21}=\left[\begin{array}{lll}
- & + & + \\
+ & 0 & + \\
0 & - & +
\end{array}\right], \mathcal{A}_{22}=\left[\begin{array}{ccc}
- & + & - \\
+ & 0 & + \\
0 & - & +
\end{array}\right], \mathcal{A}_{23}=\left[\begin{array}{ccc}
- & + & + \\
- & 0 & + \\
0 & - & +
\end{array}\right], \mathcal{A}_{24}=\left[\begin{array}{ccc}
- & + & - \\
- & 0 & + \\
0 & - & +
\end{array}\right] .
\end{aligned}
$$

Let \mathcal{A} have form (2.2). Without loss of generality, let $a_{12}=a_{13}=+$. According to the number of the negative 2 -cycles, \mathcal{A} is possibly one of the following sign patterns.

$$
\begin{aligned}
& \mathcal{A}_{25}=\left[\begin{array}{lll}
- & + & + \\
+ & 0 & + \\
+ & 0 & +
\end{array}\right], \mathcal{A}_{26}=\left[\begin{array}{ccc}
- & + & + \\
+ & 0 & - \\
+ & 0 & +
\end{array}\right], \mathcal{A}_{27}=\left[\begin{array}{ccc}
- & + & + \\
- & 0 & + \\
+ & 0 & +
\end{array}\right], \mathcal{A}_{28}=\left[\begin{array}{ccc}
- & + & + \\
- & 0 & - \\
+ & 0 & +
\end{array}\right], \\
& \mathcal{A}_{29}=\left[\begin{array}{lll}
- & + & + \\
+ & 0 & + \\
- & 0 & +
\end{array}\right], \mathcal{A}_{30}=\left[\begin{array}{ccc}
- & + & + \\
+ & 0 & - \\
- & 0 & +
\end{array}\right], \mathcal{A}_{31}=\left[\begin{array}{ccc}
- & + & + \\
- & 0 & + \\
- & 0 & +
\end{array}\right], \mathcal{A}_{32}=\left[\begin{array}{ccc}
- & + & + \\
- & 0 & - \\
- & 0 & +
\end{array}\right] .
\end{aligned}
$$

Firstly, let us notice the following facts.
(1) $\mathcal{A}_{31}, \mathcal{D}_{1} \mathcal{A}_{19}^{T} \mathcal{D}_{1}, \mathcal{D}_{3} \mathcal{P}_{13}\left(-\mathcal{A}_{22}\right) \mathcal{P}_{13} \mathcal{D}_{3}, \mathcal{D}_{3} \mathcal{A}_{28} \mathcal{D}_{3}$ are the superpatterns of $\mathcal{D}_{3,3}$.
(2) $\mathcal{A}_{23}, \mathcal{A}_{24}$ are the superpatterns of $\mathcal{D}_{3,2}$.
(3) $\mathcal{P}_{13} \mathcal{D}_{2}\left(-\mathcal{A}_{30}\right) \mathcal{D}_{2} \mathcal{P}_{13}=\mathcal{V}$.

Then by Lemma $2.1, \mathcal{A}_{19}, \mathcal{A}_{22}, \mathcal{A}_{23}, \mathcal{A}_{24}, \mathcal{A}_{28}, \mathcal{A}_{30}$ and \mathcal{A}_{31} are rIAPs.
Thus, in this case, \mathcal{A} is equivalent to one of patterns in Case 2 except for $\mathcal{A}_{19}, \mathcal{A}_{22}, \mathcal{A}_{23}$, $\mathcal{A}_{24}, \mathcal{A}_{28}, \mathcal{A}_{30}$ and \mathcal{A}_{31}.

By similar argument to \mathcal{A}_{1} in Case 1, we can get $R_{0} \cup R_{1}^{\prime} \subseteq R\left(\mathcal{A}_{i}\right)$ for $i=17,18,25$.
Noting that $\mathcal{A}_{20}, \mathcal{A}_{27}$ and \mathcal{A}_{32} require positive determinants, we get $R_{0} \cup R_{1}^{\prime} \subseteq R\left(\mathcal{A}_{i}\right)$ for $i=20,27,32$.

Noting that $\mathcal{A}_{21}, \mathcal{A}_{26}$ and \mathcal{A}_{29} require negative determinants, we get $R_{0} \cup R_{1} \subseteq R\left(\mathcal{A}_{i}\right)$ for $i=21,26,29$.

Case 3 . Exactly two off-diagonal entries of \mathcal{A} are zero.

According to whether the two zero entries are in one 2 -cycle or not, up to equivalence, \mathcal{A} has the following forms
(3.1) $\left[\begin{array}{lll}- & * & 0 \\ * & 0 & * \\ 0 & * & +\end{array}\right]$,
(3.2) $\left[\begin{array}{ccc}- & * & * \\ * & 0 & 0 \\ * & 0 & +\end{array}\right]$,
$(3.2)^{\prime}\left[\begin{array}{ccc}- & 0 & * \\ 0 & 0 & * \\ * & * & +\end{array}\right]$
(3.3) $\left[\begin{array}{ccc}- & 0 & * \\ * & 0 & * \\ 0 & * & +\end{array}\right]$,
$(3.3)^{\prime}\left[\begin{array}{ccc}- & * & * \\ * & 0 & 0 \\ 0 & * & +\end{array}\right]$
(3.4) $\left[\begin{array}{ccc}- & * & * \\ 0 & 0 & * \\ * & 0 & +\end{array}\right]$
where $* \in\{+,-\}$. Noting that $\mathcal{P}_{13}\left(-(3.2)^{\prime}\right) \mathcal{P}_{13}=(3.2), \mathcal{P}_{13}\left(-(3.3)^{\prime}\right)^{T} \mathcal{P}_{13}=(3.3)$, so $(3.2)^{\prime}$ and (3.2), (3.3) ${ }^{\prime}$ and (3.3) are equivalent, respectively.

Let \mathcal{A} have form (3.1). Without loss of generality, let $a_{12}=a_{23}=+$. According to the number of the negative 2 -cycles, \mathcal{A} is possibly one of the following sign patterns.

$$
\mathcal{A}_{33}=\left[\begin{array}{ccc}
- & + & 0 \\
+ & 0 & + \\
0 & + & +
\end{array}\right], \mathcal{A}_{34}=\left[\begin{array}{ccc}
- & + & 0 \\
+ & 0 & + \\
0 & - & +
\end{array}\right], \mathcal{A}_{35}=\left[\begin{array}{ccc}
- & + & 0 \\
- & 0 & + \\
0 & + & +
\end{array}\right], \mathcal{A}_{36}=\left[\begin{array}{ccc}
- & + & 0 \\
- & 0 & + \\
0 & - & +
\end{array}\right]
$$

Let \mathcal{A} have form (3.2). Without loss of generality, let $a_{12}=a_{13}=+$. According to the number of the negative 2 -cycles, \mathcal{A} is possibly one of the following sign patterns.

$$
\mathcal{A}_{37}=\left[\begin{array}{ccc}
- & + & + \\
+ & 0 & 0 \\
+ & 0 & +
\end{array}\right], \mathcal{A}_{38}=\left[\begin{array}{ccc}
- & + & + \\
- & 0 & 0 \\
+ & 0 & +
\end{array}\right], \mathcal{A}_{39}=\left[\begin{array}{ccc}
- & + & + \\
+ & 0 & 0 \\
- & 0 & +
\end{array}\right], \mathcal{A}_{40}=\left[\begin{array}{ccc}
- & + & + \\
- & 0 & 0 \\
- & 0 & +
\end{array}\right] .
$$

Let \mathcal{A} have form (3.3). Without loss of generality, let $a_{13}=a_{23}=+$. According to the number of the negative 2 -cycles, \mathcal{A} is possibly one of the following sign patterns.

$$
\mathcal{A}_{41}=\left[\begin{array}{ccc}
- & 0 & + \\
+ & 0 & + \\
0 & + & +
\end{array}\right], \mathcal{A}_{42}=\left[\begin{array}{ccc}
- & 0 & + \\
- & 0 & + \\
0 & + & +
\end{array}\right], \mathcal{A}_{43}=\left[\begin{array}{ccc}
- & 0 & + \\
+ & 0 & + \\
0 & - & +
\end{array}\right], \mathcal{A}_{44}=\left[\begin{array}{ccc}
- & 0 & + \\
- & 0 & + \\
0 & - & +
\end{array}\right] .
$$

Let \mathcal{A} have form (3.4). Without loss of generality, let $a_{12}=a_{13}=+$. According to the number of the negative 2 -cycles, \mathcal{A} is possibly one of the following sign patterns.

$$
\mathcal{A}_{45}=\left[\begin{array}{ccc}
- & + & + \\
0 & 0 & + \\
+ & 0 & +
\end{array}\right], \mathcal{A}_{46}=\left[\begin{array}{ccc}
- & + & + \\
0 & 0 & - \\
+ & 0 & +
\end{array}\right], \mathcal{A}_{47}=\left[\begin{array}{ccc}
- & + & + \\
0 & 0 & + \\
- & 0 & +
\end{array}\right], \mathcal{A}_{48}=\left[\begin{array}{ccc}
- & + & + \\
0 & 0 & - \\
- & 0 & +
\end{array}\right] .
$$

Firstly, let us notice the following facts.
(1) $\mathcal{P}_{13}\left(-\mathcal{A}_{44}\right) \mathcal{P}_{13}$ is a superpattern of $\mathcal{D}_{3,3}$.
(2) \mathcal{A}_{36} is $\mathcal{D}_{3,2}$.

Then by Lemma 2.1, \mathcal{A}_{36} and \mathcal{A}_{44} are rIAPs.
Thus in this case, \mathcal{A} is equivalent to one pattern in Case 3 except for \mathcal{A}_{36} and \mathcal{A}_{44}.
By similar argument to \mathcal{A}_{1} in Case 1 , we can get $R_{0} \cup R_{1}^{\prime} \subseteq R\left(\mathcal{A}_{i}\right)$ for $i=33,42$.

Noting that $\mathcal{A}_{34}, \mathcal{A}_{37}, \mathcal{A}_{39}, \mathcal{A}_{43}, \mathcal{A}_{46}$ and \mathcal{A}_{47} require negative determinants, we get $R_{0} \cup R_{1} \subseteq$ $R\left(\mathcal{A}_{i}\right)$ for $i=34,37,39,43,46,47$.

Noting that $\mathcal{A}_{35}, \mathcal{A}_{38}, \mathcal{A}_{40}, \mathcal{A}_{41}, \mathcal{A}_{45}$ and \mathcal{A}_{48} require positive determinants, we get $R_{0} \cup R_{1}^{\prime} \subseteq$ $R\left(\mathcal{A}_{i}\right)$ for $i=35,38,40,41,45,48$.

Case 4. Exactly three off-diagonal entries of \mathcal{A} are zero.
Up to equivalence, \mathcal{A} has the following unique form

$$
(4.1)\left[\begin{array}{ccc}
- & 0 & * \\
* & 0 & 0 \\
0 & * & +
\end{array}\right]
$$

where $* \in\{+,-\}$.
It is easy to see that \mathcal{A} is sign nonsingular. If \mathcal{A} requires positive determinant, then $R_{0} \cup R_{1}^{\prime} \subseteq$ $R(\mathcal{A})$. If \mathcal{A} requires negative determinant, then $R_{0} \cup R_{1} \subseteq R(\mathcal{A})$.

Theorem 3.3 Let \mathcal{A} be a 3×3 irreducible sign pattern with at least one zero entry. If \mathcal{A} is not an rIAP, then one of the following conditions holds:
(1) $R_{0} \cup R_{1} \subseteq R(\mathcal{A})$;
(2) $R_{0} \cup R_{1}^{\prime} \subseteq R(\mathcal{A})$;
(3) $R_{1} \cup R_{1}^{\prime} \subseteq R(\mathcal{A})$.

Proof Let \mathcal{A} be a 3×3 irreducible sign pattern with at least one zero entry. Suppose \mathcal{A} is not an rIAP. We consider the following cases.

Case 1. All diagonal entries of \mathcal{A} are zero.
Since \mathcal{A} requires the zero trace, $(3,0,0,0),(2,0,1,0),(0,1,2,0),(0,1,0,2),(0,3,0,0),(0,2,1,0)$, $(0,1,2,0)$, and $(0,1,0,2)$ do not belong to the refined inertias of \mathcal{A}, and so $R_{1} \cup R_{1}^{\prime} \subseteq R(\mathcal{A})$.

Case 2. Sign pattern \mathcal{A} has at least one nonzero diagonal entry, and all nonzero diagonal entries of \mathcal{A} have the same sign.

If all nonzero diagonal entries of \mathcal{A} are negative, then \mathcal{A} requires the negative trace, and so $R_{0} \cup R_{1} \subseteq R(\mathcal{A})$. If all nonzero diagonal entries of \mathcal{A} are positive, then \mathcal{A} requires the positive trace, and so $R_{0} \cup R_{1}^{\prime} \subseteq R(\mathcal{A})$.

Case 3. Sign pattern \mathcal{A} has at least two nonzero diagonal entries, and the nonzero diagonal entries of \mathcal{A} have different signs.

By Lemmas 3.1 and 3.2, we know the result holds.
Theorem 3.4 There exists a 3×3 irreducible sign pattern \mathcal{A} with at least one zero entry such that \mathcal{A} is not an rIAP, and $R(\mathcal{A})=R_{1} \cup R_{1}^{\prime}$.

Proof Let

$$
\mathcal{S}_{1}=\left[\begin{array}{ccc}
0 & + & + \\
- & 0 & + \\
+ & + & 0
\end{array}\right]
$$

It is easy to see that \mathcal{S}_{1} is not an rIAP. Since \mathcal{S}_{1} requires the zero trace, so $R_{1} \cup R_{1}^{\prime} \subseteq R\left(\mathcal{S}_{1}\right)$.

On the other hand, for any $A \in Q\left(\mathcal{S}_{1}\right)$, we may assume that $a_{12}=a_{13}=1$ (otherwise they can be 1 by suitable similarities). Thus, without loss of generality, assume

$$
A=\left[\begin{array}{ccc}
0 & 1 & 1 \\
-a & 0 & b \\
c & d & 0
\end{array}\right]
$$

where $a, b, c, d>0$.
By taking suitable values of a, b, c, d shown in Table 1, we can find real matrices in $Q\left(\mathcal{S}_{1}\right)$ with each refined inertia in $R \backslash\left(R_{1} \cup R_{1}^{\prime}\right)$.

refined inertia	a	b	c	d
$(2,1,0,0)$	2	1	1	1
$(1,2,0,0)$	1	2	1	1
$(1,1,1,0)$	1	1	1	1
$(0,0,3,0)$	1	1	$\frac{1}{2}$	$\frac{1}{2}$
$(0,0,1,2)$	4	2	1	$\frac{1}{2}$

Table 1 Realization of each refined inertia in $R \backslash\left(R_{1} \cup R_{1}^{\prime}\right)$
Theorem 3.5 There exists a 3×3 irreducible sign pattern \mathcal{A} with at least one zero entry such that \mathcal{A} is not an rIAP, and $R(\mathcal{A})=R_{0} \cup R_{1}^{\prime}$.

Proof Let

$$
\mathcal{S}_{2}=\left[\begin{array}{ccc}
- & + & + \\
- & + & - \\
0 & - & +
\end{array}\right]
$$

Noting that \mathcal{S}_{2} is the sign pattern \mathcal{A}_{4} in the proof of Lemma 3.1, by Lemma 3.1, \mathcal{S}_{2} is not an rIAP and $R_{0} \cup R_{1}^{\prime} \subseteq R\left(\mathcal{S}_{2}\right)$.

On the other hand, take

$$
A=\left[\begin{array}{ccc}
-a & 1 & b \\
-c & d & -1 \\
0 & -e & 1
\end{array}\right] \in Q\left(\mathcal{S}_{2}\right)
$$

where $a, b, c, d, e>0$. By taking suitable values of a, b, c, d, e shown in Table 2, we can find real matrices in $Q\left(\mathcal{S}_{2}\right)$ with each refined inertia in $R \backslash\left(R_{0} \cup R_{1}^{\prime}\right)$.

Theorem 3.6 There exists a 3×3 irreducible sign pattern \mathcal{A} with at least one zero entry such that \mathcal{A} is not an rIAP, and $R(\mathcal{A})=R_{0} \cup R_{1}$.

Proof Let $\mathcal{S}_{3}=-\mathcal{S}_{2}$. By Theorem 3.5, the result follows.
Lemma 3.7 ([7]) Let H be a proper subset of set of all possible refined inertias of real matrices of order n. Then H is a critical set of refined inertias for a family \mathcal{F} of sign pattern of order n if and only if every $n \times n$ sign pattern \mathcal{A} in \mathcal{F} that is not an rIAP, $H \cap R(\mathcal{A}) \neq \emptyset$.

refined inertia	a	b	c	d	e
$(3,0,0,0)$	1	1	5	3	1
$(2,0,1,0)$	1	1	2	$\frac{7}{2}$	$\frac{1}{2}$
$(1,0,2,0)$	2	$\frac{1}{5}$	20	16	2
$(1,0,0,2)$	1	1	2	$\frac{7}{3}$	$\frac{1}{2}$
$(2,1,0,0)$	1	1	2	11	$\frac{1}{2}$
$(1,2,0,0)$	1	1	1	1	1
$(1,1,1,0)$	3	2	1	2	1

Table 2 Realization of each refined inertia in $R \backslash\left(R_{0} \cup R_{1}^{\prime}\right)$
Theorem 3.8 Let H be a proper subset of R. Then H is a critical set of refined inertias for irreducible sign patterns of order 3 with at least one zero entry if and only if one of the following conditions holds:
(1) $H \cap R_{1} \neq \emptyset$ and $H \cap R_{1}^{\prime} \neq \emptyset$;
(2) $H \cap R_{0} \neq \emptyset$ and $H \cap R_{1} \neq \emptyset$;
(3) $H \cap R_{0} \neq \emptyset$ and $H \cap R_{1}^{\prime} \neq \emptyset$.

Proof Let \mathcal{F} be the set of all irreducible sign patterns of order 3 with at least one zero entry that are not rIAPs. By Lemma 3.7, we only need to prove $H \cap R(\mathcal{A}) \neq \emptyset$ for every \mathcal{A} in \mathcal{F} if and only if one of the following conditions holds:
(1) $H \cap R_{1} \neq \emptyset$ and $H \cap R_{1}^{\prime} \neq \emptyset$;
(2) $H \cap R_{0} \neq \emptyset$ and $H \cap R_{1} \neq \emptyset$;
(3) $H \cap R_{0} \neq \emptyset$ and $H \cap R_{1}^{\prime} \neq \emptyset$.

By Theorem 3.3, the sufficiency is clear.
For the necessity, let $H \cap R(\mathcal{A}) \neq \emptyset$ for every \mathcal{A} in \mathcal{F}. Then by Theorems 3.4-3.6, $H \cap\left(R_{1} \cup\right.$ $\left.R_{1}^{\prime}\right) \neq \emptyset, H \cap\left(R_{0} \cup R_{1}\right) \neq \emptyset$, and $H \cap\left(R_{0} \cup R_{1}^{\prime}\right) \neq \emptyset$. So the necessity holds.

Proof of Theorem 1.1 Let H be a proper subsets of the set of all possible refined inertias for irreducible sign patterns of order 3 with at least one zero entry. By Theorem 3.8, H is critical set of refined inertias if and only if $H \cap R_{1} \neq \emptyset$ and $H \cap R_{1}^{\prime} \neq \emptyset$, or $H \cap R_{0} \neq \emptyset$ and $H \cap R_{1} \neq \emptyset$, or $H \cap R_{0} \neq \emptyset$ and $H \cap R_{1}^{\prime} \neq \emptyset$.

To make H a minimal critical set, then one of the following conditions holds:
(1) $\left|H \cap R_{1}\right|=1$ and $\left|H \cap R_{1}^{\prime}\right|=1$;
(2) $\left|H \cap R_{0}\right|=1$ and $\left|H \cap R_{1}\right|=1$;
(3) $\left|H \cap R_{0}\right|=1$ and $\left|H \cap R_{1}^{\prime}\right|=1$.

We pick up exactly one refined inertia from R_{1} and one refined inertia from $R_{0} \cup R_{1}^{\prime}$, or one refined inertia from R_{1}^{\prime} and one refined inertia from R_{0}, and let them form new sets as follows.

$$
\begin{aligned}
& \{(3,0,0,0),(0,3,0,0)\},\{(3,0,0,0),(0,2,1,0)\},\{(3,0,0,0),(0,1,2,0)\},\{(3,0,0,0),(0,1,0,2)\}, \\
& \{(3,0,0,0),(0,0,3,0)\},\{(3,0,0,0),(0,0,1,2)\},\{(2,0,1,0),(0,3,0,0)\},\{(2,0,1,0),(0,2,1,0)\}, \\
& \{(2,0,1,0),(0,1,2,0)\},\{(2,0,1,0),(0,1,0,2)\},\{(2,0,1,0),(0,0,3,0)\},\{(2,0,1,0),(0,0,1,2)\}
\end{aligned}
$$

$$
\begin{aligned}
& \{(1,0,2,0),(0,3,0,0)\},\{(1,0,2,0),(0,2,1,0)\},\{(1,0,2,0),(0,1,2,0)\},\{(1,0,2,0),(0,1,0,2)\}, \\
& \{(1,0,2,0),(0,0,3,0)\},\{(1,0,2,0),(0,0,1,2)\},\{(1,0,0,2),(0,3,0,0)\},\{(1,0,0,2),(0,2,1,0)\}, \\
& \{(1,0,0,2),(0,1,2,0)\},\{(1,0,0,2),(0,1,0,2)\},\{(1,0,0,2),(0,0,3,0)\},\{(1,0,0,2),(0,0,1,2)\}, \\
& \{(0,3,0,0),(0,0,3,0)\},\{(0,3,0,0),(0,0,1,2)\},\{(0,2,1,0),(0,0,3,0)\},\{(0,2,1,0),(0,0,1,2)\}, \\
& \{(0,1,2,0),(0,0,3,0)\},\{(0,1,2,0),(0,0,1,2)\},\{(0,1,0,2),(0,0,3,0)\},\{(0,1,0,2),(0,0,1,2)\} .
\end{aligned}
$$

Note that
$\{(2,0,1,0),(0,3,0,0)\}$ is the reversal of $\{(3,0,0,0),(0,2,1,0)\}$,
$\{(1,0,2,0),(0,3,0,0)\}$ is the reversal of $\{(3,0,0,0),(0,1,2,0)\}$,
$\{(1,0,2,0),(0,2,1,0)\}$ is the reversal of $\{(2,0,1,0),(0,1,2,0)\}$,
$\{(1,0,0,2),(0,3,0,0)\}$ is the reversal of $\{(3,0,0,0),(0,1,0,2)\}$,
$\{(1,0,0,2),(0,2,1,0)\}$ is the reversal of $\{(2,0,1,0),(0,1,0,2)\}$,
$\{(1,0,0,2),(0,1,2,0)\}$ is the reversal of $\{(1,0,2,0),(0,1,0,2)\}$,
$\{(0,3,0,0),(0,0,3,0)\}$ is the reversal of $\{(3,0,0,0),(0,0,3,0)\}$,
$\{(0,3,0,0),(0,0,1,2)\}$ is the reversal of $\{(3,0,0,0),(0,0,1,2)\}$,
$\{(0,2,1,0),(0,0,3,0)\}$ is the reversal of $\{(2,0,1,0),(0,0,3,0)\}$,
$\{(0,2,1,0),(0,0,1,2)\}$ is the reversal of $\{(2,0,1,0),(0,0,1,2)\}$,
$\{(0,1,2,0),(0,0,3,0)\}$ is the reversal of $\{(1,0,2,0),(0,0,3,0)\}$,
$\{(0,1,2,0),(0,0,1,2)\}$ is the reversal of $\{(1,0,2,0),(0,0,1,2)\}$,
$\{(0,1,0,2),(0,0,3,0)\}$ is the reversal of $\{(1,0,0,2),(0,0,3,0)\}$,
$\{(0,1,0,2),(0,0,1,2)\}$ is the reversal of $\{(1,0,0,2),(0,0,1,2)\}$.
So we drop them out.
Theorem 1.1 now follows.
By Theorem 1.1, it is clear that the maximum cardinality of a minimum critical set of refined inertias for 3×3 irreducible sign patterns with at least one zero entry is 2 .

4. The minimal critical sets of inertias for irreducible sign patterns of order 3

Using the same method as in the proof of Theorem 1.2 in [7], we can get the result of Theorem 1.2.

5. Summary and conclusions

In this paper, we obtained all the minimum critical sets of refined inertias and inertias for 3×3 irreducible sign patterns with at least one zero entry. Based on these conclusions and results from the reference [7], we identified all the minimum critical sets of refined inertias and inertias for 3×3 irreducible sign patterns.

Further topics of interest for future research include the investigation of all the minimal critical sets of refined inertias and inertias for sign patterns of order $n(n \geq 4)$ and other parameters for sign patterns (see for instance the recent results in [10]).

Acknowledgements We thank the referees for their time and comments.

References

[1] J. H. DREW, C. R. JOHNSON, D. D. OLESKY, et al. Spectrally arbitrary patterns. Linear Algebra Appl., 2000, 308(1-3): 121-137.
[2] Yubin GAO, Yanling SHAO. Inertially arbitrary patterns. Linear and Multilinear Algebra, 2001, 49(2): 161-168.
[3] L. DEAETT, D. D. OLESKY, P. DRIESSCHE. Refined inertially and spectrally arbitrary zero-nonzero patterns. Electron. J. Linear Algebra, 2010, 20: 449-467.
[4] I. J. KIM, D. D. OLESKY, P. DRIESSCHE. Critical sets of inertias for matrix patterns. Linear and Multilinear Algebra, 2009, 57(3): 293-306.
[5] B. YU, Tingzhu HUANG, Hongbo HUA. Critical sets of refined inertias for irreducible zero-nonzero patterns of orders 2 and 3. Linear Algebra Appl., 2012, 437(2): 490-498.
[6] B. YU. Minimal critical sets of refined inertias for irreducible sign patterns of order 2. Adv. Linear Algebra Matrix Theory, 2013, 3(2): 7-10.
[7] Wei GAO, Zhongshan LI, Lihua ZHANG. The minimal critical sets of refined inertias for 3×3 full sign patterns. Linear Algebra Appl., 2014, 458: 183-196.
[8] M. S. CAVERS, K. N. V. MEULEN. Spectrally and inertially arbitrary sign patterns. Linear Algebra Appl., 2005, 394: 53-72.
[9] S. J. KIRKLAND, J. J. MCDONALD, M. J. TSATSOMEROS. Sign patterns which require a positive eigenvalue. Linear and Multilinear Algebra, 1996, 41(3): 199-210.
[10] Wei FANG, Wei GAO, Yubin GAO. Rational realization of the minimum ranks of nonnegative sign pattern matrices. Czechoslovak Math. J., 2016, 66(3): 895-911.

