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More Asymptotic Expansions for the Harmonic Numbers
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Abstract In this paper, by exponential complete Bell polynomials, we establish a (general)

harmonic number asymptotic expansion, and give the corresponding recurrence of the coefficient

sequence in the expansion. By the methods of the generating functions and summation trans-

formations, we also present an explicit expression for the coefficient sequence of the expansion.

Moreover, we establish two (general) lacunary harmonic number asymptotic expansions, which

contain only even or odd power terms in the logarithmic term.
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1. Introduction

Ramanujan (see [1, p.276] and [2, p.531]) proposed the following asymptotic expansion for

the nth harmonic number:

Hn :=
n∑

k=1

1

k
∼ 1

2
ln(2m) + γ +

∞∑
k=1

Rk

mk

=
1

2
ln(2m) + γ +

1

12m
− 1

120m2
+

1

630m3
− 1

1680m4
+

1

2310m5
−

191

360360m6
+

29

30030m7
− 2833

1166880m8
+

140051

17459442m9
− · · · , (1.1)

as n → ∞, where γ is the Euler-Mascheroni constant and m = 1
2n(n + 1) is the nth triangular

number. In [1], Ramanujan did not give the formula’s proof and the explicit expression for the

coefficient sequence. Until 2008, Villarino [3] gave the complete proof of the expansion (1.1) and

established an explicit expression for the coefficient sequence (Rk) as

Rk =
(−1)k−1

2k · 8k
k∑

j=0

(
k

j

)
(−4)jB2j(

1

2
), (1.2)

where Bk(x) are the Bernoulli polynomials. In 2015, Chen and Cheng [4] gave a recurrence for

(Rk):

R1 =
1

12
, Rk =

1

2k

{ 1

4k
− B2k

2k
−

k−1∑
j=1

2jRj

(
2k − j − 1

j − 1

)}
, k ≥ 2, (1.3)
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where Bk are the classical Bernoulli numbers. In 2016, Wang and Feng [5] verified directly that

the sequences defined by (1.2) and (1.3) are indeed the same by using Riordan arrays.

Recently, many researches have been devoted to the harmonic number expansions of the

Ramanujan type. For example, in 1991, DeTemple and Wang [6] established the half integer

expansion

Hn ∼ ln(n+
1

2
) + γ +

∞∑
k=1

αk

(n+ 1
2 )

2k
, n → ∞,

which can be written as

Hn ∼ 1

2
ln(2m+

1

4
) + γ +

∞∑
k=1

αk

(2m+ 1
4 )

k
, n → ∞. (1.4)

Further, in 2015, Mortici and Villarino [7] proposed the following expansion of the Ramanujan

type:

Hn ∼ 1

2
ln(2m+

1

3
) + γ +

∞∑
k=2

dk

(m+ 1
6 )

k
, n → ∞.

It is equivalent to

Hn ∼ 1

2
ln(2m+

1

3
) + γ +

∞∑
k=2

ck

(2m+ 1
3 )

k
, n → ∞, (1.5)

with ck = 2kdk, which is also one result given in [8]. Very recently, motivated by these works,

Wang [9] gave a general harmonic number expansion of the Ramanujan type, which is of the

form

Hn ∼ 1

2
ln(2m+ h) + γ +

∞∑
k=1

αk(h)

(2m+ h)k
, n → ∞,

where h is a parameter. The classical Ramanujan formula (1.1), the DeTemple-Wang formula

(1.4) and the Chen-Mortici-Villarino formula (1.5) are all special cases of this formula.

In 2016, Chen [8] established another harmonic number expansion form:

Hn ∼ 1

2
ln
(
2m+

1

3
+

∞∑
k=1

bk
(2m)k

)
+ γ, n → ∞. (1.6)

By changing the logarithmic term, many researchers, for example, DeTemple [10], Negoi [11],

Chen-Srivastava-Li-Manyama [12], Chen-Mortici [13] and Yang [14] also gave some faster and

faster asymptotic expansions for the harmonic number and the Euler-Mascheroni constant. For

other recent works on the asymptotic expansions of the harmonic numbers, the readers are

referred to, for example, the papers [15–19].

Inspired by these works, in this paper, by using exponential complete Bell polynomials, we

establish a general harmonic number asymptotic expansion, which is of the form

Hn ∼ 1

2
ln
(
2m+

1

3
+

∞∑
k=1

bk(h)

(2m+ h)k

)
+ γ, n → ∞.
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When h = 0, it reduces to the asymptotic expansion (1.6). Then, similar to the lacunary

expansions in [20], we give another two asymptotic expansions, which have only even or odd

power terms in the logarithmic term:

Hn ∼ 1

2
ln
(
2m+

1

3
− 1

180m
+

∞∑
k=1

uk

(2m+ vk)2k

)
+ γ, n → ∞,

Hn ∼ 1

2
ln
(
2m+

1

3
+

∞∑
k=1

pk
(2m+ qk)2k−1

)
+ γ, n → ∞.

2. A general harmonic number asymptotic expansion

The exponential complete Bell polynomials Yn are defined by [21, Section 3.3]

exp
( ∞∑

k=1

xk
tk

k!

)
=

∞∑
n=0

Yn(x1, x2, . . . , xn)
tn

n!
. (2.1)

Then Y0 = 1 and

Yn(x1, x2, . . . , xn) =
∑

c1+2c2+···+ncn=n

n!

c1!c2! · · · cn!

(x1

1!

)c1(x2

2!

)c2
· · ·

(xn

n!

)cn
, n ≥ 1.

Additionally, based on [22, Eq. (2.44)], the polynomials Yn satisfy the following recurrence:

Yn(x1, x2, . . . , xn) =
n−1∑
j=0

(
n− 1

j

)
xn−jYj(x1, x2, . . . , xj), n ≥ 1,

from which, we can obtain the explicit expressions of the sequence (Yn)n≥0 immediately. The

first few terms are

Y0 = 1, Y1(x1) = x1, Y2(x1, x2) = x2 + x2
1, Y3(x1, x2, x3) = x3 + 3x2x1 + x3

1,

Y4(x1, x2, x3, x4) = x4 + 4x3x1 + 3x2
2 + 6x2x

2
1 + x4

1,

Y5(x1, x2, x3, x4, x5) = x5 + 5x4x1 + 10x3x2 + 10x3x
2
1 + 15x2

2x1 + 10x2x
3
1 + x5

1.

Recently, the Bell polynomials are used to establish asymptotic expansions for the gamma func-

tion, the hyperfactorial function and the Barnes G-function by Wang, Liu and Xu [23–25]. In this

section, we use the Bell polynomials to deduce a general asymptotic expansion for the harmonic

numbers.

Theorem 2.1 Let h be a real number. Then we have

Hn ∼ 1

2
ln
(
2m+

1

3
+

∞∑
k=1

bk(h)

(2m+ h)k

)
+ γ, (2.2)

as n → ∞, where the sequence (bk(h))k≥1 can be determined by the recurrence

b1(h) =− 1

90
,
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bk(h) =
2k+1

(k + 1)!
Yk+1(2R1, 2 · 2!R2, . . . , 2(k + 1)!Rk+1)−

k−1∑
j=1

bj(h)

(
k − 1

j − 1

)
(−h)k−j , k ≥ 2,

(2.3)

where Rk are the coefficients in Ramanujan’s formula (1.1).

Proof The Ramanujan’s expansion (1.1) can be rewritten as

exp(2Hn − 2γ) ∼ 2m · exp
( ∞∑

k=1

2Rk

mk

)
, n → ∞.

By the definition of the Bell polynomial (2.1), we have

exp(2Hn − 2γ) ∼ 2m
∞∑
k=0

Yk(2R1, 2 · 2!R2, . . . , 2 · k!Rk)
( 1
m )k

k!
, n → ∞. (2.4)

The asymptotic expansion of the form (2.2) can also be expressed as

exp(2Hn − 2γ) ∼2m+
1

3
+

∞∑
k=1

bk(h)

(2m+ h)k

=2m
(
1 +

1

6m
+

1

2m

∞∑
k=1

bk(h)

(2m+ h)k

)
, n → ∞.

To establish the expansion formula (2.2), it is sufficient to show that

1 +
1

6m
+

1

2m

∞∑
k=1

bk(h)

(2m+ h)k
=

∞∑
k=0

Yk(2R1, 2 · 2!R2, . . . , 2 · k!Rk)
( 1
m )k

k!
.

In view of Y0 = 1 and Y1(2R1) =
1
6 , we only make

1

2m

∞∑
k=1

bk(h)

(2m+ h)k
=

∞∑
k=2

Yk(2R1, 2 · 2!R2, . . . , 2 · k!Rk)
( 1
m )k

k!
. (2.5)

The left side of the formula (2.5) can be expanded as

1

2m

∞∑
j=1

bj(h)

(2m+ h)j
=

1

2m

∞∑
j=1

bj(h)
∞∑
i=0

(
−j

i

)
hi(2m)−j−i

=
∞∑
j=1

bj(h)
∞∑
i=0

(
j + i− 1

j − 1

)
(−h)i(2m)−j−i−1

=
∞∑
k=1

k!

2k+1

k∑
j=1

bj(h)

(
k − 1

j − 1

)
(−h)k−j (

1
m )k+1

k!

=
∞∑
k=2

k!

2k

k−1∑
j=1

bj(h)

(
k − 2

j − 1

)
(−h)k−j−1 (

1
m )k

k!
.

Equating the coefficients of
(

1
m

)k
/k! of the both sides in the formula (2.5), we obtain the result

in this theorem. �

3. An explicit expression of the coefficient sequence
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In this section, we present an explicit expression of the coefficient sequence (bk(h)) in the

asymptotic expansion (2.2).

Theorem 3.1 The coefficient sequence (bk(h)) in the asymptotic expansion (2.2) is expressed

by

bk(h) =

k∑
i=1

2i+1

(i+ 1)!

(
k − 1

i− 1

)
hk−iYi+1(2R1, 2 · 2!R2, . . . , 2(i+ 1)!Ri+1). (3.1)

Proof Let the generating function of the sequence (bk(h)) be

f(t) =
∞∑
k=1

bk(h)t
k.

By the recurrence relation (2.3), we have

f(t) =
∞∑
k=1

2k+1

(k + 1)!
Yk+1(2R1, 2 · 2!R2, . . . , 2(k + 1)!Rk+1)t

k−

∞∑
k=1

k−1∑
i=1

bi(h)(−h)k−i

(
k − 1

k − i

)
tk.

The second term of the right side of the above equation can be computed as

∞∑
k=1

k−1∑
i=1

bi(h)(−h)k−i

(
k − 1

k − i

)
tk

=
∞∑
i=1

∞∑
k=i+1

bi(h)(−h)k−i

(
k − 1

k − i

)
tk

=
∞∑
i=1

bi(h)t
i

∞∑
j=1

(
−i

j

)
(ht)j

=
∞∑
i=1

bi(h)t
i[(1 + ht)−i − 1] = f(

t

1 + ht
)− f(t).

So, we have

f(t) =
∞∑
k=1

2k+1

(k + 1)!
Yk+1(2R1, 2 · 2!R2, . . . , 2(k + 1)!Rk+1)t

k − f(
t

1 + ht
) + f(t).

Then

f(
t

1 + ht
) =

∞∑
k=1

2k+1

(k + 1)!
Yk+1(2R1, 2 · 2!R2, . . . , 2(k + 1)!Rk+1)t

k.

Setting T = t
1+ht , we have

f(T ) =

∞∑
k=1

2k+1

(k + 1)!
Yk+1(2R1, 2 · 2!R2, . . . , 2(k + 1)!Rk+1)

( T

1− hT

)k

=
∞∑
k=1

2k+1

(k + 1)!
Yk+1(2R1, 2 · 2!R2, . . . , 2(k + 1)!Rk+1)

∞∑
i=0

(
k + i− 1

i

)
hiT k+i
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=
∞∑

N=1

{ N∑
k=1

(
N − 1

k − 1

)
hN−k 2k+1

(k + 1)!
Yk+1(2R1, 2 · 2!R2, . . . , 2(k + 1)!Rk+1)

}
TN .

Equating the coefficients of TN in both sides of the above formula, we obtain the desired result. �
By the formula (3.1), we can compute the coefficients bk(h) immediately. The first few are

b2(h) =
53

5670
− 1

90
h, b3(h) = − 3929

340200
+

53

2835
h− 1

90
h2,

b4(h) =
9817

449064
− 3929

113400
h+

53

1890
h2 − 1

90
h3.

When h = 0 in Theorem 2.1, the expansion formula (1.6) is deduced. Setting h = 1
3 gives the

following asymptotic expansion:

Hn ∼ γ +
1

2
ln

(
2m+

1

3
− 1

90

1

2m+ 1
3

+
16

2835

1

(2m+ 1
3 )

2
− 743

113400

1

(2m+ 1
3 )

3
+

18266

1403325

1

(2m+ 1
3 )

4
+ · · ·

)
,

as n → ∞, which can be seen an asymptotic expansion into powers of 1
2m+ 1

3

for the harmonic

numbers and Euler-Mascheroni constant.

4. Lacunary expansions with only even or odd power terms

In this section, we establish two asymptotic expansions with only even power terms or odd

power terms for the harmonic numbers and Euler-Mascheroni constant.

Theorem 4.1 For the nth harmonic number, we have the following asymptotic expansion:

Hn ∼1

2
ln
(
2m+

1

3
− 1

180m
+

∞∑
k=1

uk

(2m+ vk)2k

)
+ γ (4.1)

=
1

2
ln
(
2m+

1

3
− 1

180m
+

53
5670

(2m+ 3929
6360 )

2
+

511031167
47600784000

(2m+ 47635062807384026280841
357647578568210810880000000 )

4
+ · · ·

)
+

γ,

as n → ∞, where the sequences (uk)k≥1 and (vk)k≥1 can be determined by the recurrences

ul =
22l+1

(2l + 1)!
Y2l+1(2R1, 2 · 2!R2, . . . , 2(2l + 1)!R2l+1)−

l−1∑
j=1

(
2l − 1

2j − 1

)
ujv

2l−2j
j , l ≥ 1, (4.2)

2lulvl =− 22l+2

(2l + 2)!
Y2l+2(2R1, 2 · 2!R2, . . . , 2(2l + 2)!R2l+2)−

l−1∑
j=1

(
2l

2j − 1

)
ujv

2l+1−2j
j , l ≥ 1. (4.3)
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Proof We expand the following sum in powers of 1/m:

∞∑
k=1

uk

(2m+ vk)2k
=

∞∑
k=2

{ (−1)k

2k

⌊ k
2 ⌋∑

j=1

(
k − 1

k − 2j

)
ujv

k−2j
j

} 1

mk
. (4.4)

When k = 1, the coefficient of 1/mk in (2.4) is equal to Y2(2R1, 4R2) = − 1
180 , which is just

the coefficient of 1/m in the logarithmic term of (4.1). To establish the expansion (4.1), the

coefficient of 1/mk in (2.4) should be equal to the coefficient of 1/mk in (4.4) for k ≥ 2, that is

(−1)k

2k

⌊ k
2 ⌋∑

j=1

(
k − 1

k − 2j

)
ujv

k−2j
j =

2

(k + 1)!
Yk+1(2R1, 2 · 2!R2, . . . , 2(k + 1)!Rk+1). (4.5)

Then by setting k = 2l in (4.5), for l = 1, 2, 3, . . . , we have

1

22l

l∑
j=1

(
2l − 1

2l − 2j

)
ujv

2l−2j
j =

2

(2l + 1)!
Y2l+1(2R1, 2 · 2!R2, . . . , 2(2l + 1)!R2l+1).

Then the recurrence (4.2) is obtained. Setting k = 2l + 1 in (4.5), we establish the recurrence

(4.3). �

Theorem 4.2 For the nth harmonic number, we have the following asymptotic expansion:

Hn ∼ 1

2
ln

(
2m+

1

3
+

∞∑
k=1

pk
(2m+ qk)2k−1

)
+ γ

=
1

2
ln

(
2m+

1

3
+

− 1
90

2m+ 53
63

+
− 26329

7144200

(2m+ 73383853
54737991 )

3
+ · · ·

)
+ γ, (4.6)

as n → ∞, where the sequences (pk)k≥1 and (qk)k≥1 can be determined by the recurrences

pl =
22l

(2l)!
Y2l(2R1, 2 · 2!R2, . . . , 2(2l)!R2l)−

l−1∑
i=1

(
2l − 2

2i− 2

)
piq

2l−2i
i , l ≥ 1, (4.7)

(2l − 1)plql =− 22l+1

(2l + 1)!
Y2l+1(2R1, 2 · 2!R2, . . . , 2(2l + 1)!R2l+1)−

l−1∑
i=1

(
2l − 1

2i− 2

)
piq

2l+1−2i
i , l ≥ 1. (4.8)

Proof Similarly, we also expand the following sum in powers of 1/m:

∞∑
k=1

pk
(2m+ qk)2k−1

=
∞∑
k=1

{ (−1)k+1

2k

⌊ k+1
2 ⌋∑

i=1

(
k − 1

2i− 2

)
piq

k+1−2i
i

} 1

mk
.

By (2.4), to establish the expansion (4.6), it suffices to show that, for k ≥ 1,

(−1)k+1

2k

⌊ k+1
2 ⌋∑

i=1

(
k − 1

2i− 2

)
piq

k+1−2i
i =

2

(k + 1)!
Yk+1(2R1, 2 · 2!R2, . . . , 2(k + 1)!Rk+1).

By setting k = 2l − 1 and k = 2l in the above equation, for l = 1, 2, 3, . . . , we obtain the

recurrences (4.7) and (4.8). �
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