The Hyper-Wiener Index of Unicyclic Graph with Given Diameter

Gaixiang CAI ${ }^{1, *}$, Guidong $\mathbf{Y U}^{1,2}$, Peilin MEI ${ }^{1}$
1. School of Mathematics and Physics, Anqing Normal University, Anhui 246133, P. R. China;
2. Hefei Preschool Education College, Anhui 230013, P. R. China

Abstract

The hyper-Wiener index is a kind of extension of the Wiener index, used for predicting physicochemical properties of organic compounds. The hyper-Wiener index $W W(G)$ is defined as $W W(G)=\frac{1}{2} \sum_{u, v \in V(G)}\left(d_{G}(u, v)+d_{G}^{2}(u, v)\right)$ with the summation going over all pairs of vertices in $G, d_{G}(u, v)$ denotes the distance of the two vertices u and v in the graph G. In this paper, we study the minimum hyper-Wiener indices among all the unicyclic graph with n vertices and diameter d, and characterize the corresponding extremal graphs.

Keywords hyper-Wiener index; unicyclic graph; diameter
MR(2010) Subject Classification 05C12; 05C35; 92E10

1. Introduction

All graphs considered in this paper are finite and simple. Let G be a simple graph of order n with vertex set $V(G)=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ and edge set $E(G)$. The distance between two vertices u, v of G, denoted by $d_{G}(u, v)$ or $d(u, v)$, is defined as the minimum length of the paths between u and v in G. The diameter of a graph G is the maximum distance between any two vertices of G. For a vertex $v \in V(G)$, the degree and the neighborhood of v, are denoted by $d_{G}(v)$ and $N_{G}(v)$ (or written as $d(v)$ and $N(v)$ for short). A vertex v of degree 1 is called pendant vertex. An edge $e=u v$ incident with the pendant vertex v is called a pendant edge. Let $P V(G)=\left\{v: d_{G}(v)=1\right\}$. For a subset U of $V(G)$, let $G-U$ be the subgraph of G obtained from G by deleting the vertices of U and the edges incident with them. Similarly, for a subset E^{\prime} of $E(G)$, we denote by $G-E^{\prime}$ the subgraph of G obtained from G by deleting the edges of E^{\prime}. If $U=\{v\}$ and $E^{\prime}=\{u v\}$, the subgraphs $G-U$ and $G-E^{\prime}$ will be written as $G-v$ and $G-u v$ for short, respectively. For any two nonadjacent vertices u and v in graph G, we use $G+u v$ to denote the graph obtained from G by adding a new edge $u v$. Denote by S_{n}, P_{n} and C_{n} the star, the path and cycle on n vertices, respectively.

The Wiener index of a graph G, denoted by $W(G)$, is one of the oldest topological index, which was first introduced by Wiener [1] in 1947. It is defined as $W(G)=\sum_{u, v \in V(G)} d_{G}(u, v)$

Received April 19, 2019; Accepted April 21, 2020
Supported by the National Natural Science Foundation of China (Grant No. 11871077), the Natural Science Foundation of Anhui Province (Grant No. 1808085MA04) and the Natural Science Foundation of Department of Education of Anhui Province (Grant No. KJ2017A362).

* Corresponding author

E-mail address: caigaixiang@qq.com (Gaixiang CAI); guidongy@163.com (Guidong YU)
where the summation goes over all pairs of vertices of G. The hyper-Wiener index of acyclic graphs was introduced by Milan Randić in 1993 (see [2]). Then Klein et al. [3], extended the definition for all connected graphs, as a generalization of the Wiener index. Similar to the symbol $W(G)$ for the Wiener index, the hyper-Wiener index is traditionally denoted by $W W(G)$. The hyper-Wiener index of a graph G is defined as

$$
W W(G)=\frac{1}{2}\left(\sum_{u, v \in V(G)} d_{G}(u, v)+\sum_{u, v \in V(G)} d_{G}^{2}(u, v)\right) .
$$

Let $S(G)=\sum_{u, v \in V(G)} d_{G}^{2}(u, v)$. Then

$$
W W(G)=\frac{1}{2} W(G)+\frac{1}{2} S(G)
$$

We denote $D_{G}(u)=\sum_{v \in V(G)} d_{G}(u, v), D D_{G}(u)=\sum_{v \in V(G)} d_{G}^{2}(u, v)$, then

$$
W(G)=\frac{1}{2} \sum_{u \in V(G)} D_{G}(u), \quad S(G)=\frac{1}{2} \sum_{u \in V(G)} D D_{G}(u)
$$

Recently, the properties and uses of the hyper-Wiener index have received a lot of attention. Feng et al. [4] studied hyper-Wiener indices of graphs with given matching number. Feng et al. [5] researched the hyper-Wiener index of unicyclic graphs. Feng et al. [6] discussed the hyperWiener index of bicyclic graphs. Feng et al. [7] studied the hyper-Wiener index of graphs with given bipartition. Xu et al. [8] discussed Hyper-Wiener index of graphs with cut edges. Liu et al. [9] determined trees with the seven smallest and fifteen greatest hyper-Wiener indices. Yu et al. [10] studied the hyper-Wiener index of trees with given parameters. Gutman [11] obtained the relation between hyper-Wiener and Wiener index. Cai et al. [12] studied the hyper-Wiener index of trees of order n with diameter d.

A unicyclic graph is a connected graph with n vertices and n edges. Let $\mathscr{U}_{n, d}$ be the set of all unicyclic graphs order n with diameter d. Obviously, $d \leq n-2$. And if $d=1, G \cong C_{3}$. Therefore, in the following, we assume that $2 \leq d \leq n-2$. For the graphs in $\mathscr{U}_{n, d}$, some parameters, such as the spectral radius, spectral moments, energy, least eigenvalue of adjacency matrix, spectral radius of signless Laplacian et al., have been extensively studied [13-16]. Especially, in recent years $\mathrm{Xu}[17]$ characterized the smallest Hosoya index of unicyclic graphs with given diameter; Tan [18] investigated the minimum Wiener index of unicyclic graphs with a fixed diameter. Motivated by these articles, we will study the the minimum hyper-Wiener indices of unicyclic in the set $\mathscr{U}_{n, d}$ in this paper. Moreover, if $d \equiv 0(\bmod 2)$ and $4 \leq d \leq n-3$, then the second minimum hyper-Wiener indices of special unicyclic graphs with girth 3 in the set $\mathscr{U}_{n, d}$ are characterized.

2. Lemmas

In this section, we list some lemmas which will be used to prove our main results.
Lemma 2.1 ([8]) Let H, X and Y be three connected graphs disjoint in pair. Suppose that u, v are two vertices of H, v_{1} is a vertex of X, u_{1} is a vertex of Y. Let G be the graph obtained from
H, X and Y by identifying v with v_{1} and u with u_{1}, respectively. Let G_{1} be the graph obtained from H, X and Y by identifying three vertices v, v_{1} and u_{1}, and let G_{2} be the graph obtained from H, X and Y by identifying three vertices u, v_{1} and u_{1}. Then we have

$$
W W\left(G_{1}\right)<W W(G) \text { or } W W\left(G_{2}\right)<W W(G)
$$

Let G_{1}, G_{2} be two connected graphs with $V\left(G_{1}\right) \cap V\left(G_{2}\right)=\{v\}$. Denote $G_{1} v G_{2}$ to be a graph with $V\left(G_{1}\right) \cup V\left(G_{2}\right)$ as its vertex set and $E\left(G_{1}\right) \cup E\left(G_{2}\right)$ as its edge set. We have the following result.

Lemma $2.2([8])$ Let H be a connected graph, T_{m} be a tree of order m, and $V(H) \cap V\left(T_{m}\right)=\{v\}$. Then

$$
W W\left(H v T_{m}\right) \geq W W\left(H v S_{m}\right)
$$

and equality holds if and only if $H v T_{m} \cong H v S_{m}$, where v is the center of star S_{m}.
Lemma 2.3 ([6]) Let G be a connected graph of order n, v be a pendant vertex of G, and $v w \in E(G)$. Then
(1) $W(G)=W(G-v)+D_{G-v}(w)+n-1$;
(2) $S(G)=S(G-v)+D D_{G-v}(w)+2 D_{G-v}(w)+n-1$.

By Lemma 2.3 and the definition of hyper-Wiener index, we have the following result.
Corollary 2.4 Let G be a connected graph of order n, v be a pendant vertex of G and $v w \in E(G)$. Then

$$
W W(G)=W W(G-v)+\frac{1}{2} D D_{G-v}(w)+\frac{3}{2} D_{G-v}(w)+n-1
$$

Lemma 2.5 ([7]) Let G and H be two connected graphs with $u, v \in V(G)$ and $w \in V(H)$. Let $G u H$ ($G v H$, respectively) be the graph obtained from G and H by identifying u (v, respectively) with w. If $D_{G}(u)<D_{G}(v)$ and $D D_{G}(u)<D D_{G}(v)$, then $W W(G u H)<W W(G v H)$.

Lemma 2.6 Let G be a connected graph on $n \geq 2$ vertices and $u v \in E(G)$. Let $G_{k, l}^{*}$ be the graph obtained from G by attaching two new paths $P: u u_{1} u_{2} \cdots u_{k}$ and $Q: v v_{1} v_{2} \cdots, v_{l}$ of length k and l at u, v, respectively, where u_{1}, \ldots, u_{k} and v_{1}, \ldots, v_{l} are distinct new vertices. Let $G_{k+1, l-1}^{*}=G_{k, l}^{*}-v_{l-1} v_{l}+u_{k} v_{l}$. If $k \geq l \geq 1$, then

$$
W W\left(G_{k, l}^{*}\right) \leq W W\left(G_{k+1, l-1}^{*}\right)
$$

Proof Let $V_{0}=V(G) \backslash\{u, v\}, V_{1}=\left\{w_{i} \mid w_{i} \in V_{0}, d\left(w_{i}, u\right)=d\left(w_{i}, v\right)-1\right\}, V_{2}=\left\{w_{i} \mid w_{i} \in\right.$ $\left.V_{0}, d\left(w_{i}, u\right)=d\left(w_{i}, v\right)+1\right\}, V_{3}=\left\{w_{i} \mid w_{i} \in V_{0}, d\left(w_{i}, u\right)=d\left(w_{i}, v\right)\right\}$, then $V_{0}=V_{1} \cup V_{2} \cup V_{3}$. By Corollary 2.4,

$$
\begin{aligned}
W W\left(G_{k+1, l-1}^{*}\right) & =W W\left(G_{k, l-1}^{*}\right)+\frac{1}{2} D D_{G_{k, l-1}^{*}}\left(u_{k}\right)+\frac{3}{2} D_{G_{k, l-1}^{*}}\left(u_{k}\right)+n+k+l-1 \\
& =W W\left(G_{k, l-1}^{*}\right)+\frac{1}{2}\left(\sum_{w_{i} \in V_{0}} d^{2}\left(w_{i}, u_{k}\right)+\sum_{w_{i} \in V\left(G_{k, l-1}^{*}\right) \backslash V_{0}} d^{2}\left(w_{i}, u_{k}\right)\right)+
\end{aligned}
$$

$$
\begin{aligned}
& \frac{3}{2}\left(\sum_{w_{i} \in V_{0}} d\left(w_{i}, u_{k}\right)+\sum_{w_{i} \in V\left(G_{k, l-1}^{*}\right) \backslash V_{0}} d\left(w_{i}, u_{k}\right)\right)+n+k+l-1 \\
= & W W\left(G_{k, l-1}^{*}\right)+\frac{1}{2} \sum_{w_{i} \in V\left(G_{k, l-1}^{*}\right) \backslash V_{0}} d^{2}\left(w_{i}, u_{k}\right)+\frac{3}{2} \sum_{w_{i} \in V\left(G_{k, l-1}^{*}\right) \backslash V_{0}} d\left(w_{i}, u_{k}\right)+ \\
& \frac{1}{2}\left(\sum_{w_{i} \in V_{1}} d^{2}\left(w_{i}, u_{k}\right)+\sum_{w_{i} \in V_{2}} d^{2}\left(w_{i}, u_{k}\right)+\sum_{w_{i} \in V_{3}} d^{2}\left(w_{i}, u_{k}\right)\right)+ \\
& \frac{3}{2}\left(\sum_{w_{i} \in V_{1}} d\left(w_{i}, u_{k}\right)+\sum_{w_{i} \in V_{2}} d\left(w_{i}, u_{k}\right)+\sum_{w_{i} \in V_{3}} d\left(w_{i}, u_{k}\right)\right)+n+k+l-1 .
\end{aligned}
$$

$W W\left(G_{k, l}^{*}\right)=W W\left(G_{k, l-1}^{*}\right)+\frac{1}{2} D D_{G_{k, l-1}^{*}}\left(v_{l-1}\right)+\frac{3}{2} D_{G_{k, l-1}^{*}}\left(v_{l-1}\right)+n+k+l-1$

$$
\begin{aligned}
= & W W\left(G_{k, l-1}^{*}\right)+\frac{1}{2}\left(\sum_{w_{i} \in V_{0}} d^{2}\left(w_{i}, v_{l-1}\right)+\sum_{w_{i} \in V\left(G_{k, l-1}^{*}\right) \backslash V_{0}} d^{2}\left(w_{i}, v_{l-1}\right)\right)+ \\
& \frac{3}{2}\left(\sum_{w_{i} \in V_{0}} d\left(w_{i}, v_{l-1}\right)+\sum_{w_{i} \in V\left(G_{k, l-1}^{*}\right) \backslash V_{0}} d\left(w_{i}, v_{l-1}\right)\right)+n+k+l-1 \\
= & W W\left(G_{k, l-1}^{*}\right)+\frac{1}{2} \sum_{w_{i} \in V\left(G_{k, l-1}^{*}\right) \backslash V_{0}} d^{2}\left(w_{i}, v_{l-1}\right)+\frac{3}{2} \sum_{w_{i} \in V\left(G_{k, l-1}^{*}\right) \backslash V_{0}} d\left(w_{i}, v_{l-1}\right)+ \\
& \frac{1}{2}\left(\sum_{w_{i} \in V_{1}} d^{2}\left(w_{i}, v_{l-1}\right)+\sum_{w_{i} \in V_{2}} d^{2}\left(w_{i}, v_{l-1}\right)+\sum_{w_{i} \in V_{3}} d^{2}\left(w_{i}, v_{l-1}\right)\right)+ \\
& \frac{3}{2}\left(\sum_{w_{i} \in V_{1}} d\left(w_{i}, v_{l-1}\right)+\sum_{w_{i} \in V_{2}} d\left(w_{i}, v_{l-1}\right)+\sum_{w_{i} \in V_{3}} d\left(w_{i}, v_{l-1}\right)\right)+n+k+l-1 .
\end{aligned}
$$

Obviously,

$$
\begin{gathered}
\sum_{w_{i} \in V\left(G_{k, l-1}^{*}\right) \backslash V_{0}} d\left(w_{i}, u_{k}\right)=\sum_{w_{i} \in V\left(G_{k, l-1}^{*}\right) \backslash V_{0}} d\left(w_{i}, v_{l-1}\right), \\
\sum_{w_{i} \in V\left(G_{k, l-1}^{*}\right) \backslash V_{0}} d^{2}\left(w_{i}, u_{k}\right)=\sum_{w_{i} \in V\left(G_{k, l-1}^{*}\right) \backslash V_{0}} d^{2}\left(w_{i}, v_{l-1}\right), \\
\sum_{w_{i} \in V_{1}} d\left(w_{i}, u_{k}\right) \geq \sum_{w_{i} \in V_{1}} d\left(w_{i}, v_{l-1}\right), \sum_{w_{i} \in V_{1}} d^{2}\left(w_{i}, u_{k}\right) \geq \sum_{w_{i} \in V_{1}} d^{2}\left(w_{i}, v_{l-1}\right), \\
\sum_{w_{i} \in V_{2}} d\left(w_{i}, u_{k}\right) \geq \sum_{w_{i} \in V_{2}} d\left(w_{i}, v_{l-1}\right), \sum_{w_{i} \in V_{2}} d^{2}\left(w_{i}, u_{k}\right) \geq \sum_{w_{i} \in V_{2}} d^{2}\left(w_{i}, v_{l-1}\right), \\
\sum_{w_{i} \in V_{3}} d\left(w_{i}, u_{k}\right) \geq \sum_{w_{i} \in V_{3}} d\left(w_{i}, v_{l-1}\right), \sum_{w_{i} \in V_{3}} d^{2}\left(w_{i}, u_{k}\right) \geq \sum_{w_{i} \in V_{3}} d^{2}\left(w_{i}, v_{l-1}\right) .
\end{gathered}
$$

So, $W W\left(G_{k, l}^{*}\right) \leq W W\left(G_{k+1, l-1}^{*}\right)$.
Lemma 2.7 ([12]) Let $P=v_{0} v_{1} \cdots v_{d}$ be a path of order $d+1$. Then

$$
D_{P}\left(v_{j}\right)=\frac{2 j^{2}-2 d j+d^{2}+d}{2},
$$

and

$$
D D_{P}\left(v_{j}\right)=\frac{6 j^{2}+6 d j^{2}-6 d^{2} j-6 d j+2 d^{3}+3 d^{2}+d}{6}
$$

for $1 \leq j \leq d-1$. Moreover, if $1 \leq i<j \leq \frac{d}{2}, D_{P}\left(v_{i}\right)>D_{P}\left(v_{j}\right)$, and $D D_{P}\left(v_{i}\right)>D D_{P}\left(v_{j}\right)$; if $\frac{d}{2} \leq i<j \leq(d-1), D_{P}\left(v_{i}\right)<D_{P}\left(v_{j}\right)$, and $D D_{P}\left(v_{i}\right)<D D_{P}\left(v_{j}\right)$.

3. Conclusions

In this section, we will give the minimum hyper-Wiener index in the set $\mathscr{U}_{n, d}(2 \leq d \leq n-2)$. For any graph $G \in \mathscr{U}_{n, d}$, a path with length d of G is called the diametrical path of G, the only cycle of G is called a unique cycle of G. Note that the number of diametrical paths in $\mathscr{U}_{n, d}$ is possibly more than one. The following propositions present some properties of graphs from $\mathscr{U}_{n, d}$ with the smallest hyper-Wiener index.

Proposition 3.1 Let $G \in \mathscr{U}_{n, d}$ such that $W W(G)$ is as small as possible. Let C_{g} be a unique cycle of G, then there exists a diametrical path P_{d+1} of G such that $V\left(C_{g}\right) \cap V\left(P_{d+1}\right) \neq \varnothing$.

Proof If $V\left(C_{g}\right) \cap V\left(P_{d+1}\right)=\varnothing$, since G is connected, there exists an only path

$$
P=v_{i} v_{k} v_{k+1} \cdots v_{l-1} v_{l}
$$

connecting C_{g} and P_{d+1}, where $v_{i} \in V\left(C_{g}\right), v_{l} \in V\left(P_{d+1}\right)$ and $v_{k}, \ldots, v_{l-1} \in V(G) \backslash\left(V\left(C_{g}\right) \cup\right.$ $\left.V\left(P_{d+1}\right)\right)$. Let $u_{1}, \ldots, u_{p} \in N_{G}\left(v_{l}\right) \backslash\left\{v_{l-1}\right\}, p=d\left(v_{l}\right)-1, w_{1}, \ldots, w_{q} \in N_{G}\left(v_{i}\right) \backslash\left\{v_{k}\right\}, q=d\left(v_{i}\right)-1$ and $G_{1}=G-v_{l} u_{1}-\cdots-v_{l} u_{p}+v_{i} u_{1}+\cdots+v_{i} u_{p}, G_{2}=G-v_{i} w_{1}-\cdots v_{i} w_{q}+v_{l} w_{1}+\cdots+v_{l} w_{q}$. Thus by Lemma 2.1, $W W\left(G_{1}\right)<W W(G)$ or $W W\left(G_{2}\right)<W W(G)$, a contradiction.

Proposition 3.2 Let $G \in \mathscr{U}_{n, d}$ such that $W W(G)$ is as small as possible. Let C_{g} be a unique cycle of G and P_{d+1} be a diametrical path of G. Then for $v \in V(G) \backslash\left(V\left(C_{g}\right) \cup V\left(P_{d+1}\right)\right), d(v)=1$ and they are adjacent to the same vertex in $V\left(C_{g}\right) \cup V\left(P_{d+1}\right)$.

Proof By Lemmas 2.1 and 2.2, we have for $v \in V(G) \backslash\left(V\left(C_{g}\right) \cup V\left(P_{d+1}\right)\right), d(v)=1$ and they are adjacent to the same vertex in $V\left(P_{d+1}\right)$.

By Proposition 3.1, denote

$$
C_{g}=v_{k} v_{k+1} \cdots v_{l-1} v_{l} v_{d+2} v_{d+3} \cdots v_{s} v_{k}, \quad s \geq d+2
$$

where

$$
\left\{v_{k}, v_{k+1}, \ldots, v_{l-1}, v_{l}\right\}=V\left(C_{g}\right) \cap V\left(P_{d+1}\right) \text { and }\left\{v_{d+2}, v_{d+3}, \ldots, v_{s}\right\}=V\left(C_{g}\right) \backslash V\left(P_{d+1}\right)
$$

Proposition 3.3 Let $G \in \mathscr{U}_{n, d}$ such that $W W(G)$ is as small as possible. Let $P=v_{1} v_{2} \cdots v_{k} v_{k+1}$ $\cdots v_{d} v_{d+1}\left(d\left(v_{1}\right)=1\right)$ be the diametrical path and C_{g} the unique cycle of G. Then
(i) $k \neq l$.
(ii) If $l=k+1$, then $s-d=2$; and if $l \geq k+2$, then $s-d=l-k$.

Proof (i) If $k=l$, then $s \geq d+3$ and $k \neq 1, d+1$. Denote $u_{1}, \ldots, u_{p} \in N_{G}\left(v_{d+2}\right) \backslash\left\{v_{k}\right\}, p=$ $d\left(v_{d+2}\right)-1$. Let $G^{*}=G-v_{d+2} u_{1}-\cdots-v_{d+2} u_{p}+v_{k+1} u_{1}+\cdots+v_{k+1} u_{p}, G^{*} \in \mathscr{U}_{n, d}$. Denote $V_{1}=\left\{v_{i}: v_{i} \in C_{g} \backslash\left\{v_{k}\right\}, d\left(v_{i}, v_{d+2}\right)<d\left(v_{i}, v_{k}\right)+1\right\}, V_{2}=\left\{v_{j}: v_{j} \in\left(\bigcup_{v_{i} \in V_{1}} N_{G}\left(v_{i}\right)\right) \backslash V\left(C_{g}\right)\right\}$.

Then for any $v \in V_{1} \bigcup V_{2}$,

$$
\begin{aligned}
& d_{G^{*}}\left(v, v_{d+2}\right)-d_{G}\left(v, v_{d+2}\right)=2 \\
& d_{G^{*}}^{2}\left(v, v_{d+2}\right)-d_{G}^{2}\left(v, v_{d+2}\right)=4 d_{G}\left(v, v_{d+2}\right)+4 \leq 4 d_{G}\left(v, v_{k}\right)+4=4 d_{G}\left(v, v_{k+2}\right)-4, \\
& d_{G^{*}}\left(v, v_{k+1}\right)-d_{G}\left(v, v_{k+1}\right)=-2, d_{G^{*}}^{2}\left(v, v_{k+1}\right)-d_{G}^{2}\left(v, v_{k+1}\right)=-4 d_{G}\left(v, v_{k+1}\right)+4<0, \\
& d_{G^{*}}\left(v, v_{k+2}\right)-d_{G}\left(v, v_{k+2}\right)=-2 . d_{G^{*}}^{2}\left(v, v_{k+2}\right)-d_{G}^{2}\left(v, v_{k+2}\right)=-4 d_{G}\left(v, v_{k+2}\right)+4 .
\end{aligned}
$$

The distance between all other vertices is unchanged or reduced. So, $W W\left(G^{*}\right)<W W(G)$, a contradiction.
(ii) Otherwise, since $s-d>l-k$, we have $s-d \geq 3$. Thus v_{s-1} exists. Denote $u_{1}, \ldots, u_{p} \in$ $N_{G}\left(v_{d+2}\right) \backslash\left\{v_{l}\right\}, p=d\left(v_{d+2}\right)-1$,

Let $G^{*}=G-v_{d+2} u_{1}-\cdots-v_{d+2} u_{p}+v_{l} u_{1}+\cdots+v_{l} u_{p}, G^{*} \in \mathscr{U}_{n, d}$. Denote $V_{1}=\left\{v_{i}: v_{i} \in\right.$ $\left.C_{g} \backslash\left\{v_{k}, \ldots, v_{l}\right\}, d\left(v_{i}, v_{d+2}\right)<d\left(v_{i}, v_{l}\right)+1\right\}, V_{2}=\left\{v_{j}: v_{j} \in\left(\bigcup_{v_{i} \in V_{1}} N_{G}\left(v_{i}\right)\right) \backslash V\left(C_{g}\right)\right\}$. Then for any $v \in V_{1} \bigcup V_{2}$,

$$
\begin{aligned}
& d_{G^{*}}\left(v, v_{d+2}\right)-d_{G}\left(v, v_{d+2}\right)=1, \\
& d_{G^{*}}^{2}\left(v, v_{d+2}\right)-d_{G}^{2}\left(v, v_{d+2}\right)=2 d_{G}\left(v, v_{d+2}\right)+1 \leq 2 d_{G}\left(v, v_{l}\right)+1, \\
& d_{G^{*}}\left(v, v_{l}\right)-d_{G}\left(v, v_{l}\right)=-1, \\
& d_{G^{*}}^{2}\left(v, v_{l}\right)-d_{G}^{2}\left(v, v_{l}\right)=-2 d_{G}\left(v, v_{l}\right)+1, \\
& d_{G^{*}}\left(v_{d+3}, v_{l-1}\right)-d_{G}\left(v_{d+3}, v_{l-1}\right)=-1, \\
& d_{G^{*}}^{2}\left(v_{d+3}, v_{l-1}\right)-d_{G}^{2}\left(v_{d+3}, v_{l-1}\right)=-2 d_{G}\left(v_{d+3}, v_{l-1}\right)+1=-5
\end{aligned}
$$

The distance between all other vertices is unchanged or reduced. So, $W W\left(G^{*}\right)<W W(G)$, a contradiction.

Let U_{0} be the unicyclic graph of order $d+2$ shown in Figure 1. Let $U_{0}\left(n_{2}, \ldots, n_{d}, n_{d+2}\right)$ be a graph of order n obtained from U_{0} by attaching n_{i} pendant vertices to each $v_{i} \in V\left(U_{0}\right) \backslash\left\{v_{1}, v_{d+1}\right\}$, respectively, where $n_{d+2}=0$ when $k=1$ or $k=d$. Denote $\tilde{\mathscr{U}}_{n, d}=\left\{U_{0}\left(n_{2}, \ldots, n_{d}, n_{d+2}\right)\right.$: $\left.\sum_{i=2}^{d} n_{i}+n_{d+2}=n-d-2\right\}$ and $\overline{\mathscr{U}}_{n, d}=\left\{U_{0}\left(0, \ldots, 0, n_{i}, 0, \ldots, 0\right): n_{i} \geq 0\right\}$.

U_{0}
Figure 1 Graph U_{0}
By Lemma 2.1, we have the following result.
Proposition 3.4 Let $G \in \tilde{\mathscr{U}}_{n, d} \backslash \overline{\mathscr{U}}_{n, d}$. Then there is a graph $G^{*} \in \overline{\mathscr{U}}_{n, d}$ such that $W W\left(G^{*}\right)<$ $W W(G)$.

Let $\triangle(n, d)$ be a graph of order n obtained from a triangle C_{3} by attaching $n-d-2$ pendant edges and a path of length $\left\lceil\frac{d}{2}\right\rceil$ at one vertex of the triangle C_{3}, and a path of length $\left\lceil\frac{d}{2}\right\rceil-1$ to another vertex of the triangle C_{3}, respectively. Let $\nabla(n, d)$ be a graph of order n obtained from
a triangle C_{3} by attaching $n-d-2$ pendant edges and a path of length $\left\lceil\frac{d}{2}\right\rceil-1$ at one vertex of the triangle C_{3}, and a path of length $\left\lceil\frac{d}{2}\right\rceil$ to another vertex of the triangle C_{3}, respectively. Note that if $d=n-2$ or $d \equiv 1(\bmod 2)$, then $\triangle(n, d) \cong \nabla(n, d)$.

Figure 2 Graphs $\nabla(n, d)$ and $\triangle(n, d)$
Proposition 3.5 Let $\nabla(n, d)$ and $\triangle(n, d)$ be the above two graphs shown in Figure 2. Suppose that $4 \leq d \leq n-3$ and $d \equiv 0(\bmod) 2$. Then $W W(\triangle(n, d))<W W(\nabla(n, d))$.

Proof By Corollary 2.4,

$$
\begin{aligned}
& W W(\triangle(n, d))=W W\left(\triangle(n, d)-v_{d+1}\right)+\frac{1}{2} D D_{\triangle(n, d)-v_{d+1}}\left(v_{d}\right)+\frac{3}{2} D_{\triangle(n, d)-v_{d+1}}\left(v_{d}\right)+n-1 \\
& W W(\nabla(n, d))=W W\left(\nabla(n, d)-v_{d+1}\right)+\frac{1}{2} D D_{\nabla(n, d)-v_{d+1}}\left(v_{d}\right)+\frac{3}{2} D_{\nabla(n, d)-v_{d+1}}\left(v_{d}\right)+n-1
\end{aligned}
$$

Since $\triangle(n, d)-v_{d+1} \cong \nabla(n, d)-v_{d+1}$, so

$$
\begin{aligned}
W W(\triangle(n, d))-W W(\nabla(n, d))= & \frac{1}{2}\left(D D_{\triangle(n, d)-v_{d+1}}\left(v_{d}\right)\right)-D D_{\nabla(n, d)-v_{d+1}}\left(v_{d}\right)+ \\
& \frac{3}{2}\left(D_{\triangle(n, d)-v_{d+1}}\left(v_{d}\right)-D_{\nabla(n, d)-v_{d+1}}\left(v_{d}\right)\right) \\
= & -\frac{1}{2}(d+1)(n-d-2)-\frac{3}{2}(n-d-2) \\
= & -\left(\left\lceil\frac{d}{2}\right\rceil+2\right)(n-d-2)<0 .
\end{aligned}
$$

Theorem 3.6 Let $G \in \mathscr{U}_{n, 2}$. Then $W W(G) \geq W W(\triangle(n, 2)$, and equality holds if and only if (i) $n=4, G \cong C_{4}$ or $G \cong \triangle(4,2)$; (ii) $n=5, G \cong C_{5}$ or $G \cong \triangle(5,2)$; (iii) $n \geq 6, G \cong \triangle(n, 2)$.

Proof If $d=2$, then $G \cong C_{4}, G \cong C_{5}$ or $G \cong \triangle(n, 2)$. $W W\left(C_{4}\right)=W W(\triangle(4,2))=20$. $W W\left(C_{5}\right)=W W(\triangle(5,2))=40$. The results hold for $d=2$.

Theorem 3.7 For any graph $G \in \tilde{\mathscr{U}}_{n, d}, 3 \leq d \leq n-2$, we have $W W(G) \geq W W(\triangle(n, d))$, and equality holds if and only if $G \cong \triangle(n, d)$.

Proof Let $G \in \tilde{\mathscr{U}}_{n, d}$ such that the $W W(G)$ is as small as possible. Then by Lemma 2.1, $G \in \overline{\mathscr{U}}_{n, d}$. Let $N\left(v_{i}\right) \cap P V(G)=\left\{w_{1}, w_{2}, \ldots, w_{n_{i}}\right\}$ if $n_{i}>0, P=v_{1} v_{2} \cdots v_{k} v_{k+1} \cdots v_{d} v_{d+1}$ be a path length d of G and $C=v_{k} v_{k+1} v_{d+2} v_{k}$ the only cycle of G. Since $\min \left\{d\left(v_{1}\right), d\left(v_{d+1}\right)\right\}=1$, we assume $d\left(v_{1}\right)=1, k \neq 1$.

Claim 1. If $n_{i}>0$, then $i \neq d+2$.
If $i=d+2$, let $G_{1}=G-v_{d+2} w_{1}-v_{d+2} w_{2}-\cdots-v_{d+2} w_{n_{i}}+v_{k} w_{1}+v_{k} w_{2}+\cdots+v_{k} w_{n_{i}}$, $G_{2}=G-v_{k-1} v_{k}+v_{d+2} v_{k-1}$. Then $G_{1}, G_{2} \in \overline{\mathscr{U}}_{n, d}$. By Lemma 2.1, we have $W W\left(G_{1}\right)<W W(G)$ or $W W\left(G_{2}\right)<W W(G)$, a contradiction.

Claim 2. If $n_{i}>0$, then $i \in\{k, k+1\}$.
Assume to the contrary. According to symmetry, we consider the case $v_{i} \in V(P) \backslash V(C)$ and $i>k+1$.

Case 1. If $i-1>d+1-i$.
Let $G^{*}=G-v_{i} w_{1}-v_{i} w_{2}-\cdots-v_{i} w_{n_{i}}+v_{i-1} w_{1}+v_{i-1} w_{2}+\cdots+v_{i-1} w_{n_{i}}, G^{*} \in \overline{\mathscr{U}}_{n, d}$.
$2\left(W W\left(G^{*}\right)-W W(G)\right)$

$$
\begin{aligned}
& =\left(d-i+3-i+(i-k)-(i-k+1)+(d-i+3)^{2}-i^{2}+(i-k)^{2}-(i-k+1)^{2}\right) n_{i} \\
& <\left(d-i+3-i+(i-k)-(i-k+1)+(d-i+3)^{2}-i^{2}\right) n_{i} \\
& =(d+1-i-(i-1))+(d+1-i-(i-2))(d+3) n_{i}<0,
\end{aligned}
$$

a contradiction.
Case 2. If $i-1 \leq d+1-i$.
Since $i-1 \leq d+1-i$, then $k<i-1 \leq d+1-i<d+1-k-1=d-k$.
Let $G^{*}=G-v_{k} v_{d+2}+v_{k+2} v_{d+2}, G^{*} \in \overline{\mathscr{U}}_{n, d}$.

$$
\begin{aligned}
& 2\left(W W(G)-W W\left(G^{*}\right)\right) \\
& \quad=-(k+1)+d-k+1+n_{i}-(k+1)^{2}+(d-k+1)^{2}+n_{i}\left((i-k)^{2}-(i-k-1)^{2}\right. \\
& \quad=d-k-k+n_{i}+(d+2)(d-k-k)+n_{i}\left((i-k)^{2}-(i-k-1)^{2}\right. \\
& \quad>d-k-k+(d+2)(d-k-k)>0,
\end{aligned}
$$

a contradiction.
Combining Cases 1 and 2, if $G \in \overline{\mathscr{U}}_{n, d}$ and $W W(G)$ is as small as possible, then $i \in\{k, k+1\}$.
Claim 3. $k \neq d$.
If $k=d$, let $G^{*}=G-v_{d+1} v_{d+2}+v_{d-1} v_{d+2}, G^{*} \in \overline{\mathscr{U}}_{n, d}$.
$2\left(W W\left(G^{*}\right)-W W(G)\right)=-d+2-d^{2}+4<0$, a contradiction.
Claim 4. $k=\left\lceil\frac{d}{2}\right\rceil$.
If $k<\left\lceil\frac{d}{2}\right\rceil$, let $G^{*}=G-v_{d} v_{d+1}+v_{1} v_{d+1}$. If $k>\left\lceil\frac{d}{2}\right\rceil$, let $G^{*}=G-v_{1} v_{2}+v_{d+1} v_{1}$. In all cases, $G^{*} \in \overline{\mathscr{U}}_{n, d}$. By Lemma 2.6, $W W\left(G^{*}\right) \leq W W(G)$, a contradiction.

By Claims $1-4, G \in\{\triangle(n, d)), \nabla(n, d)\}$. By Proposition 3.4, our result holds.
By Proposition 3.5, we have the following result.
Theorem 3.8 For $G \in \overline{\mathscr{U}}_{n, d} \backslash \triangle(n, d)$ with $d \equiv 0(\bmod 2)$ and $4 \leq d \leq n-3$, we have $W W(G) \geq W W(\nabla(n, d))$ and equality holds if and only if $G \cong \nabla(n, d)$.

Let n, m and d be integers with $3 \leq d \leq n-2$. For $a \geq b \geq 0$ and $a \geq 1$, let $U_{n, 2 m, d}^{x}(a, b)$ be the unicyclic graph obtained from the cycle $C_{2 m}=a_{0} a_{1} \cdots a_{2 m-1} a_{0}$ by attaching a path P_{a+1} to a_{0} and a path P_{b+1} to a_{m}, respectively, where $a+b=d-m$, and attaching $l=n-d-m$ pendent vertices $w_{1}, w_{2}, \ldots, w_{l}$ to the vertex x, where $x \in\left\{v_{a-1}, \ldots, v_{1}, a_{0}, a_{1}, \ldots, a_{m}, u_{1}, u_{2}, \ldots, u_{b-1}\right\}$. Denote $U_{n, 2 m, d}^{i}(a, b)=U_{n, 2 m, d}^{x}(a, b), x \in\left\{a_{0}, a_{1}, \ldots, a_{\left\lfloor\frac{m}{2}\right\rfloor}\right\}$.

Figure 3 Graphs $U_{n, 2 m, d}^{i}(a, b)$
Proposition 3.9 Let $G \in U_{n, 2 m, d}^{x}(a, b)$ such that $W W(G)$ is as small as possible. Then $x \notin\left\{u_{1}, u_{2}, \ldots, u_{b-1}\right\}$.

Proof Otherwise, if $x=u_{j}(1 \leq j \leq b-1)$, let $G_{1}=G-x w_{1}-x w_{2}-\cdots-x w_{l}, G^{*}=$ $G-x w_{1}-x w_{2}-\cdots-x w_{l}+a_{m} w_{1}+a_{m} w_{2}+\cdots+a_{m} w_{l}$. By Lemma 2.7, let $k_{1}=a+m+j$, $k_{2}=a+m, d=a+m+b$. So

$$
\begin{aligned}
D_{G_{1}}\left(u_{j}\right)-D_{G_{1}}\left(a_{m}\right)= & k_{1}^{2}-d k_{1}-k_{2}^{2}+d k_{2}+(m-1) j \\
= & j(m+j+a-b)+(m-1) j>0, \\
D D_{G_{1}}\left(v_{j}\right)-D D_{G_{1}}\left(a_{m}\right)= & (d+1)\left(k_{1}-d\right) k_{1}+(j+1)^{2}+(j+2)^{2}+\cdots+ \\
& (j+m-1)^{2}-\left((d+1)\left(k_{2}-d\right) k_{2}+1^{2}+2^{2}+\cdots+(m-1)^{2}\right) \\
= & (a+m+b+1) j(m+j+a-b)+(m-1) j^{2}+m(m-1) j>0 .
\end{aligned}
$$

By Lemma 2.5, $W W\left(G^{*}\right)<W W(G)$ a contradiction.
Proposition 3.10 Let $G \in U_{n, 2 m, d}^{x}(a, b)$ such that $W W(G)$ is as small as possible. Then $x \notin\left\{v_{1}, v_{2}, \ldots, v_{a-1}\right\}$.

Proof Otherwise, let $x=v_{i}(1 \leq i \leq a-1)$. If $m+b>a$, let $G_{1}=G-x w_{1}-x w_{2}-\cdots-x w_{l}$, $G^{*}=G-x w_{1}-x w_{2}-\cdots-x w_{l}+a_{0} w_{1}+a_{0} w_{2}+\cdots+a_{0} w_{l}$. By Lemma 2.7, let $k_{1}=a-i$, $k_{2}=a, d=a+m+b$. So

$$
\begin{aligned}
D_{G_{1}}\left(v_{i}\right)-D_{G_{1}}\left(a_{0}\right)= & k_{1}^{2}-d k_{1}-k_{2}^{2}+d k_{2}+(m-1) i=-i(2 a-i-d)+(m-1) i \\
= & (m-1+m-a+b+i) i>0, \\
D D_{G_{1}}\left(v_{i}\right)-D D_{G_{1}}\left(a_{0}\right)= & (d+1)\left(k_{1}-d\right) k_{1}+(i+1)^{2}+(i+2)^{2}+\cdots+ \\
& (i+m-1)^{2}-\left((d+1)\left(k_{2}-d\right) k_{2}+1^{2}+2^{2}+\cdots+(m-1)^{2}\right) \\
= & (-2 a+d+i) i(1+d)+(m-1) i^{2}+m(m-1) i \\
= & (m-a+b+i) i(1+d)+(m-1) i^{2}+m(m-1) i>0 .
\end{aligned}
$$

By Lemma 2.5, $W W\left(G^{*}\right)<W W(G)$, a contradiction.
If $m+b \leq a$, let $G^{*}=G-v_{i} w_{1}-v_{i} w_{2}-\cdots-v_{i} w_{l}+v_{i-1} w_{1}+v_{i-1} w_{2}+\cdots+v_{i-1} w_{l}-v_{a} v_{a-1}+u_{b} v_{a}$.
Since $d_{G}\left(w_{i}, a_{j}\right)-d_{G^{*}}\left(w_{i}, a_{j}\right)=1(i=1,2, \ldots, r, j=m+1, m+2, \ldots, 2 m-1)$,

$$
\begin{aligned}
& \sum_{j=m+1}^{2 m-1} d_{G}\left(v_{a}, a_{j}\right)-\sum_{j=m+1}^{2 m-1} d_{G^{*}}\left(v_{a}, a_{j}\right) \\
& \quad=(a+1+a+2+\cdots+a+m-1)-((b+1)+1+(b+1)+2+\cdots+(b+1)+m-1))
\end{aligned}
$$

$$
\begin{aligned}
& \quad=(a-b-1)(m-1)>0 \\
& \sum_{j=m+1}^{2 m-1} d_{G}^{2}\left(v_{a}, a_{j}\right)-\sum_{j=m+1}^{2 m-1} d_{G^{*}}^{2}\left(v_{a}, a_{j}\right) \\
& =\left((a+1)^{2}+(a+2)^{2}+\cdots+(a+m-1)^{2}\right)-\left(((b+1)+1)^{2}+\right. \\
& \left.\left.\quad((b+1)+2)^{2}+\cdots+((b+1)+m-1)\right)^{2}\right) \\
& =(a-b-1)(m-1)(a+b+1+m)>0 .
\end{aligned}
$$

So

$$
\begin{aligned}
2 W W(G)-2 W W\left(G^{*}\right)= & \sum_{i, j}\left(d_{G}\left(w_{i}, a_{j}\right)-d_{G^{*}}\left(w_{i}, a_{j}\right)\right)+\sum_{j=m+1}^{2 m-1} d_{G}\left(v_{a}, a_{j}\right)- \\
& \sum_{j=m+1}^{2 m-1} d_{G^{*}}\left(v_{a}, a_{j}\right)+\sum_{i, j}\left(d_{G}^{2}\left(w_{i}, a_{j}\right)-d_{G^{*}}^{2}\left(w_{i}, a_{j}\right)\right)+ \\
& \sum_{j=m+1}^{2 m-1} d_{G}^{2}\left(v_{a}, a_{j}\right)-\sum_{j=m+1}^{2 m-1} d_{G^{*}}^{2}\left(v_{a}, a_{j}\right)>0,
\end{aligned}
$$

a contradiction.
The result holds.
Proposition 3.11 Let $G \in U_{n, 2 m, d}^{x}(a, b)$ such that $W W(G)$ is as small as possible. If $a=b$, then $x=a_{\left\lfloor\frac{m}{2}\right\rfloor}$. If $a>b$, then $x \notin\left\{a_{\left\lfloor\frac{m}{2}\right\rfloor+1}, \ldots, a_{m}\right\}$.

Proof Let $G_{1}=G-x w_{1}-x w_{2}-\cdots-x w_{l}, 0 \leq i \leq m$,

$$
D_{G_{1}}\left(a_{i}\right)=(i+1+i+2+\cdots+i+a)+(m-i+1+m-i+2+\cdots+m-i+b)+(1+2+
$$

$$
\cdots+m+1+2+\cdots+m-1)=(a-b) i+m b+\frac{a(a+1)}{2}+\frac{b(b+1)}{2}+m^{2} .
$$

$D D_{G_{1}}\left(a_{i}\right)=\left((i+1)^{2}+(i+2)^{2}+\cdots+(i+a)^{2}\right)+\left((m-i+1)^{2}+(m-i+2)^{2}+\cdots+(m-\right.$ $\left.i+b)^{2}\right)+\left(1^{2}+2^{2}+\cdots+m^{2}+1^{2}+2^{2}+\cdots+(m-1)^{2}\right)=(a+b) i^{2}+a(a+1) i-b(b+1) i-$ $2 m b i+b m^{2}+m b(b+1)+\frac{a(a+1)(2 a+1)}{6}+\frac{b(b+1)(2 b+1)}{6}+\frac{m\left(2 m^{2}+1\right)}{3}$.
$D_{G_{1}}\left(a_{i}\right)-D_{G_{1}}\left(a_{j}\right)=(a-b)(i-j)$.
$D D_{G_{1}}\left(a_{i}\right)-D D_{G_{1}}\left(a_{j}\right)=((a+b)(i+j)+a(a+1)-b(b+1)-2 m b)(i-j)$.
If $a=b,\left\lfloor\frac{m}{2}\right\rfloor \geq i>j \geq 1, D_{G_{1}}\left(a_{i}\right)=D_{G_{1}}\left(a_{j}\right), D D_{G_{1}}\left(a_{i}\right)-D D_{G_{1}}\left(a_{j}\right)=2 b(i+j-m)(i-j)<$ $0, m \geq i>j \geq\left\lfloor\frac{m}{2}\right\rfloor, D_{G_{1}}\left(a_{i}\right)=D_{G_{1}}\left(a_{j}\right), D D_{G_{1}}\left(a_{i}\right)-D D_{G_{1}}\left(a_{j}\right)=2 b(i+j-m)(i-j)>0$. So, if $a=b$, then $x=a_{\left\lfloor\frac{m}{2}\right\rfloor}$.

If $a>b, m \geq i>j \geq\left\lfloor\frac{m}{2}\right\rfloor, D_{G_{1}}\left(a_{i}\right)>D_{G_{1}}\left(a_{j}\right), D D_{G_{1}}\left(a_{i}\right)>D D_{G_{1}}\left(a_{j}\right)$. By Lemma 2.5, $x \notin\left\{a_{\left\lfloor\frac{m}{2}\right\rfloor+1}, \ldots, a_{m}\right\}$.

By Theorem 3.7, Propositions 3.9-3.11, we have the following result.
Theorem 3.12 Let G be a graph in $\mathscr{U}_{n, d}(3 \leq d \leq n-2)$ having the minimum hyper-Wiener index. Then $G \cong \triangle(n, d)$ or $G \cong U_{n, 2 m, d}^{i}(a, b)$.

References

[1] H. WIENER. Structural determination of paraffin boiling point. J. Amer. Chem. Soc., 1947, 69(1): 17-20.
[2] M. RANDIĆ. Novel molecular descriptor for structure-property studies. Chem. Phys. Lett., 1993, 211(4-5): 478-483.
[3] D. J. KLEIN, I. LUKOVITS, I. GUTMAN. On the definition of the hyper-Wiener index for Cycle-Containing structures. J. Chem. Inform. Model., 1995, 35(1): 50-52.
[4] Lihua FENG, A. ILIĆ. Zagreb, Harary and hyper-Wiener indices of graphs with given matching number. Appl. Math. Lett., 2010, 23(8): 943-948.
[5] Lihua FENG, A. ILIĆ, Guihai YU. The hyper-Wiener index of unicyclic graphs. Util. Math., 2010, 82: 215-225.
[6] Lihua FENG, Weijun LIU, Kexiang XU. The hyper-Wiener index of bicyclic graphs. Util. Math., 2011, 84: 97-104.
[7] Lihua FENG, Weijun LIU, Guihai YU, et al. The hyper-Wiener index of graphs with given bipartition. Util. Math., 2014, 96: 99-108
[8] Kexiang XU, N. TRINAJSTIĆ. Hyper-Wiener and Harary indices of graphs with cut edges. Util. Math., 2011, 84: 153-163.
[9] Muhuo LIU, Bolian LIU. Trees with the seven smallest and fifteen greatest hyper-Wiener indices. MATCH Commun. Math. Comput. Chem., 2010, 63(1): 151-170.
[10] Guihai YU, Lihua FENG, A. ILIĆ. The hyper-Wiener index of trees with given parameters. Ars Combin., 2010, 96: 395-404.
[11] I. GUTMAN. Relation between hyper-Wiener and Wiener index. Chem. Phys. Lett., 2002, 364(3-4): 352356.
[12] Gaixiang CAI, Guidong YU, Jinde CAO, et al. The hyper-Wiener index of trees of order n with diameter d Discrete Dyn. Nat. Soc., 2016, Art. ID 7241349, 5 pp.
[13] Huiqing LIU, Mei LU, Feng TIAN. On the spectral radius of unicyclic graphs with fixed diameter. Linear Algebra Appl., 2007, 420(2-3): 449-457.
[14] Bo CHENG, Bolian LIU, Jianxi LIU. On the spectral moments of unicyclic graphs with fixed diameter. Linear Algebra Appl., 2012, 437(4): 1123-1131.
[15] Feng LI, Bo ZHOU. Minimal energy of unicyclic graphs of a given diameter. J. Math. Chem., 2008, 43(2) 476-484.
[16] Mingqing ZHAI, Ruifang LIU, Jinlong SHU. Minimizing the least eigenvalue of unicyclic graphs with fixed diameter. Discret. Math., 2010, 310(4): 947-955.
17] Kexiang XU. The smallest Hosoya index of unicyclic graphs with given diameter. Math. Commun., 2012, 17(1): 221-239.
18] Shangwang TAN. The minimum Wiener index of unicyclic graphs with a fixed diameter. J. Appl. Math Comput., 2018, 56(1): 93-144.

