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Abstract This paper mainly studies the system composed of robot and its safety mechanism.

By using functional analysis method, the partial differential equation of the original system is

transformed into the abstract Cauchy problem in Banach space. The transient and steady-state

availability of the system can be obtained by algebraic theory and C0 semi-group theory, and

the system is proved to be reliable and zero-state controllable by using transformation variables.

Finally, Maple software is used to simulate the system transient reliability and steady-state

availability.
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1. Introduction

With the development of science and technology, domestic and foreign scholars pay more

and more attention to robot research [1]. In recent years, outstanding progress has been made

in the research and application of robot technology in China, including industrial robot [2, 3],

medical and rehabilitation robot [4], Mobile robot [5], android, etc. Therefore, the safety of

the robot and its associated mechanisms must be guaranteed [6, 7]. For this reason, many

researchers have studied the safety, stability [8,9], reliability [10,11] and accuracy [12] of various

robots. Dhillon and Fashandi established the system model [13] which was composed of the safety

mechanism connected to the robot. Under the assumption that the only nonnegative solution

exists and the limit of the solution also exists, the steady-state solution of the model was studied

by Laplace transformation, and the state probability of the system was finally obtained under

Laplace transform. Guo [14] and Gupur [15] proved that the system solution and the non-time-

dependent solution of this kind of model are unique by using the theory of integral equation and

the theory of strongly continuous operator semi-group. Wang et al. [16] gave the semi-discrete

model of the system by using the approximation of elementary functions. Pang et al. [17] analyzed

the distribution of operator spectral points and obtained the asymptotic stability condition of the

system. Guo and Xu [18] proved that the system had a unique non-negative dynamic dependent

Received January 7, 2020; Accepted May 24, 2020

Supported by the National Natural Science Foundation of China (Grant No. 61571150) and the Natural Science

Foundation of Heilongjiang Province (Grant Nos. LH2019F037; F2017029).

* Corresponding author

E-mail address: 13796881349@139.com (Li ZHOU); wlsaaaaaa@163.com (Liansuo WEI)



Reliability and controllability of robot and its associated safety mechanism 343

solution by using the theory of strongly continuous operator semi-groups, and asymptotically

converges to a stable solution under the condition of the corresponding space norm meaning.

On the basis of [18], this paper selects the appropriate state space in a system of safety

mechanisms connected to the robot, defines the operator and corresponding norm, and limits

the failure rate and repair rate of the system, transforms the system partial differential equation

into ordinary differential equation by using functional analysis theory, and finally reaches the

abstract Cauchy problem. Furthermore, the transient reliability and steady-state availability of

the system are obtained and the reliability and controllability of the zero state are proved.

2. Mechanism of the system

In this paper, we consider the following models described by differential integral equations

[17,18]

dp0(t)

dt
= −(λ1 + λ4 + λ5̃)p0(t) + µ1p1(t) +

5∑
i=2

∫ ∞

0

pi(x, t)µi(x)dx, (2.1)

dp1(t)

dt
= λ1p0(t)− (λ2 + λ3 + µ1)p1(t), (2.2)

dp5̃(t)

dt
= λ5̃p0(t)− λ5p5̃(t), (2.3)

∂pi(x, t)

∂x
+

∂pi(x, t)

∂t
= −µi(x)pi(x, t), i = 2, 3, 4, 5, (2.4)

p2(0, t) = λ2p1(t), p3(0, t) = λ3p1(t), (2.5)

p4(0, t) = λ4p0(t), p5(0, t) = λ5p5̃(t), (2.6)

p0(0) = 1, p1(0) = p5̃(0) = pi(x, 0) = 0, i = 2, 3, 4, 5, (2.7)

where p0(t) refers to the probability that the robot and its associated safety mechanism work

normally; p1(t) refers to the probability that the robot works with the faulty safety mechanism;

p5̃(t) refers to the probability of a crash caused by a common fault; pi(x, t) refers to the probability

of repair time x when the status remains in i at time t, i = 2, 3, 4, 5; µi(x) refers to the repair

rate of the system in the fault state i, i = 2, 3, 4, 5; λ1 refers to the failure rate of system safety

mechanisms; λ2 refers to the failure rate of occasional robot failures; λ3 refers to the failure rate

of robot safety mechanism; λ4 refers to the robot failure rate; λ5 refers to robot failure rate

due to common failures; λ5̃ refers to the crashes caused by common failures; µ1 refers to the

stationary repair rate for states 1 to 0. The state transition diagram of the system is shown in

Figure 1.

In Figure 1, state 0 indicates that the robot and its associated safety mechanism work nor-

mally; state 1 indicates that the safety mechanism fails and the robot works normally; state 2

indicates that the robot fails due to occasional failure; state 3 indicates that the robot fails due

to safety failure; state 4 indicates that the safety mechanism works normally and the robot fails;

and state 5 indicates that the robot fails due to common cause fault.
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Figure 1 System model consisting of a robot and its associated safety mechanism

3. System reliability

The reliability of the system is an important part of the repairable system model.

Definition 3.1 ( [19]) p0(t) expresses the probability that the two components are in good

condition and work normally while t = 0. The magnitude of the probability determines the

probability that the system will work normally, which affects the reliability of the system. p0(t)

is called the transient reliability of the system (2.1)–(2.7).

Definition 3.2 ([19]) If limt→∞ p0(t) = p∗0, then p∗0 is the steady-state reliability of system

(2.1)–(2.7).

Definition 3.3 ([19]) If p0(t) ≥ p∗0, then system (2.1)–(2.7) has reliability.

Theorem 3.4 System (2.1)–(2.7) has reliability when both the failure rate and repair rate are

constant.

Proof For system (2.1)–(2.7), introduce the following operators B

B = diag(−b0, −b1, λ5, − d

dx
− µi(x)), i = 2, 3, 4, 5

where

b0 = λ1 + λ4 + λ5̃, b1 = λ2 + λ3 + µ1.

To simplify system (2.1)–(2.7), we define the matrix

B̂ =

(
0 B̂1

B̂2 0

)
, B̂1 =

(
µ1, 0,

∫ ∞

0

µi(x)dx
)
(i = 2, 3, 4, 5), B̂2 = (λ1, λ5̃, 0, 0, 0, 0, )

T
.

Let us take state space as

X =
{
p = (p0, p1, p5̃, p2, . . . , p5)

T ∈ R3 × (L1[0,∞))4|∥p∥ = |p0|+ |p1|+ |p5̃|+
5∑

i=2

∥pi∥L1
[0,∞)

}
.

Obviously, X is a Banach space [18].

The domain of operator B is
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D(B) = {p = (p0, p1, p5̃, p2, . . . , p5)
T ∈ X|dpi(x)

dx ∈ L1[0,∞), pi(x) is an absolutely continuous

function, i = 2, 3, 4, 5 and p2(0) = λ2p1, p3(0) = λ3p1, p4(0) = λ4p0 , p5(0) = λ5 p5̃}.
By the above simplification, the system (2.1)–(2.7) can be described as an abstract Cauchy

problem in Banach space. {
dp(t)
dt = (B + B̂)p(t), t ≥ 0,

p(0) = (1, 0, 0, 0, 0, 0, 0).
(3.1)

According to the physical meaning of the system and the methods in [20,21], the failure rate

and repair rate of the system are limited, and the model is simplified, let

λi = λ5̃ = λ, i = 1, 2, 3, 4, 5

µ1 = µj(x) = µ, j = 2, 3, 4, 5

and ∫ ∞

0

pi(x, t)dx = pi(t), i = 2, 3, 4, 5.

According to the actual physical background of system (2.1)–(2.7), it follows that

5∑
i=0

pi(t) = 1.

Therefore, (2.1)–(2.3) can be reduced to

dp0(t)

dt
= −(3λ+ µ)p0(t) + µ, (3.2)

dp1(t)

dt
= λp0(t)− (2λ+ µ)p1(t), (3.3)

dp5̃(t)

dt
= λp0(t)− λp5̃(t). (3.4)

Here, the coefficient matrix of equations (3.2)–(3.4) is

A =

−(3λ+ µ) 0 0

λ −(2λ+ µ) 0

λ 0 −λ

 .

Thus, equations (3.2)–(3.4) can be reduced to{
dp̂(t)
dt = Ap̂(t) + µ⃗,

p̂(0) = (1, 0, 0)
T (3.5)

where

p̂(t) = (p0(t), p1(t), p5̃(t))
T
, µ⃗ = (µ, 0, 0)

T
.

Next, use the theories of differential equations and C0 semi-group [19] to find the solution of

the system (3.5).

(i) Find all the eigenvalues of the matrix A.
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For the matrix A, solve the characteristic equation

det(rE −A) =

∣∣∣∣∣∣∣
r + (3λ+ µ) 0 0

−λ r + (2λ+ µ) 0

−λ 0 r + λ

∣∣∣∣∣∣∣ = 0.

The eigenvalues are

r1 = −(3λ+ µ), r2 = −2λ− µ, r3 = −λ.

(ii) For eAt, from [22], we obtain

eAt = q1(t)Q0 + q2(t)Q1 + q3(t)Q2, (3.6)

where

Q0 = E, Q1 = A− r1E, Q2 = (A− r2E)Q1 (3.7)

and

q1(t) = er1t, q2(t) =

∫ t

0

er2(t−s)q1(s)ds, q3(t) =

∫ t

0

er3(t−s)q2(s)ds.

By substituting the eigenvalues in the integrals, we obtain

q1(t) = e−(3λ+µ)t, q2(t) =
er2t − er1t

r2 − r1
=

e−(2λ+µ)t − e−(3λ+µ)t

λ
, (3.8)

q3(t) =
er3t − er2t

(r2 − r1)(r3 − r2)
− er3t − er1t

(r2 − r1)(r3 − r1)
=

e−(2λ+µ)t

λ(λ+ µ)
+

e−(3λ+µ)t

λ(2λ+ µ)
+

e−λt

(λ+ µ)(2λ+ µ)
.

(3.9)

Substituting (3.7)–(3.9) into (3.6), it follows that

eAt =

 e−(3λ+µ)t 0 0

e−(2λ+µ)t − e−(3λ+µ)t e−(2λ+µ)t 0
λ

2λ+µ (e
−λt − e−(3λ+µ)t) 0 e−λt

 . (3.10)

(iii) From the knowledge of linear algebra, it is easy to find the inverse matrix A−1 of A

A−1 =


− 1

3λ+µ 0 0

− λ
(3λ+µ)(2λ+µ) − 1

2λ+µ 0

− 1
3λ+µ 0 − 1

λ

 . (3.11)

(iv) From [22], the solution of (3.5) is given by

p̂(t) = eAtp̂(0) +

∫ t

0

eA(t−s)µds = eAtp̂(0)−A−1(E − eAt)µ. (3.12)

It follows from (3.10)–(3.12) that

p̂(t) =


µ

3λ+µ + 3λ
3λ+µe

−(3λ+µ)t

λµ
(3λ+µ)(2λ+µ) +

2λ
(2λ+µ)e

−(2λ+µ)t − 3λ
3λ+µe

−(3λ+µ)t

µ
3λ+µ + λ−µ

2λ+µe
−λt − 3λ2

(2λ+µ)(3λ+µ)e
−(3λ+µ)t

 .

Then, the transient reliability of system (2.1)–(2.7) is

p0(t) =
µ

3λ+ µ
+

3λ

3λ+ µ
e−(3λ+µ)t. (3.13)
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Thus, from Definition 3.2, the steady-state reliability of system (2.1)–(2.7) is

p∗0 = lim
t→∞

p0(t) =
µ

3λ+ µ
. (3.14)

To sum up the above discussion, we have p0(t) ≥ p∗0. As a result, based on Definition 3.3, system

(2.1)–(2.7) has reliability. 2
4. Zero-stage controllability of the system

The controllability of a system is one of the basic characteristics of modern control system,

so the controllability of the system, especially the zero-state controllability of the system p0(t),

is an important content of research of repairable systems. When discussing the controllability

p0(t), that is, to find an element that can be transferred to a specified state at a finite moment,

where

U = {µ(x)|µ(x) = (µ2(x), µ3(x)) ∈ L∞[0,∞)× L∞[0,∞), 0 ≤ µi(x) < ∞} ,

M = sup
x∈[0,∞)

µi(x) < ∞,

∫ ∞

0

µi(x)dx = ∞, i = 2, 3

here U is the admissible control set.

Theorem 4.1 Assume that the failure rate is λi = λ5̃ = λ (i = 1, 2, 3, 4, 5), and the repair rate

is µ1 = µj(x) = µ (j = 2, 3, 4, 5), and η is the probability that the system reached at the time T

when T > 0, and meets e−2λT < η < 1, then there is a µ∗ ∈ U , such that p0(T ) = η.

Proof From (3.13), we obtain

p0(t) =
µ

3λ+ µ
+

3λ

3λ+ µ
e−(3λ+µ)t,

p0(T ) =
µ

3λ+ µ
+

3λ

3λ+ µ
e−(3λ+µ)T . (4.1)

Considering p0(T ) in (4.1) as a function of variable µ, we can get

dp0(T )

dµ
=

3λ

(3λ+ µ)
2 − 3λ

(3λ+ µ)
2 e

−(3λ+µ)T [1 + (3λ+ µ)T ].

It follows form ex > x+ 1, x > 0. That, e(3λ+µ)T > 1 + (3λ+ µ)T . Thus,

dp0(T )

dµ
≥ 3λ

(3λ+ µ)
2 − 3λ

(3λ+ µ)
2 e

−(3λ+µ)T e(3λ+µ)T = 0.

This indicates that p0(T ) is a monotonically increasing function of the variable µ, notice

lim
µ→0

p0(T ) = e−3λT , lim
µ→∞

p0(T ) = 1.

Therefore, for any η: e−3λT < η < 1, based on the intermediate value theorem with the continuous

function, there exists a µ∗ ∈ U , such that p0(T ) = η. 2
Theorem 4.1 proves that the zero state p0(t) of the system is controllable.

5. Numerical simulation
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5.1. Reliability of the system

Assume λ = 0.5 and µ = 0.75. Supported by Maple mathematical software, the transient

and steady-state reliability are presented by Figures 2 and 3.
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Figure 2 Transient availability of the system
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Figure 3 Steady-state availability of the system
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Figure 4 Transient availability p0(t) and steady-state availability p∗0 of the system
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To compare transient availability p0(t) and steady state availability p∗0 of system, put p0(t)

and p∗0 together, as shown in Figure 4 above.

Figure 4 shows that at any time t, the transient availability p0(t) is always above the state

availability p∗0 of the system.

5.2. Controllability of the system

To testify through numerical mechanism, from formula (4.1), if p0(T ) is set as the variable µ

of p0(T, µ), when λ = 0.5, T = 50, then Figure 5 shows that p0(T, µ) is supported by Maple.

0 5 10 15 20 25 30

µ

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

p
0
(T

,µ
)

Figure 5 Simulation diagram of p0(T, µ)

From Figure 5, the following conclusion can be drawn:

(1) p0(T, µ) is the monotone increasing function of µ.

(2) limµ→∞ p0(T, µ) = 1 and limµ→0 p0(T, µ) = 0.

(3) For any η : 0 < η < 1, there is a µ > 0, such that p0(T, µ) = η.

Table 1 shows the relationship between η and µ, using mathematical software Maple.

η 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

µ 0.5000 0.8077 1.2273 1.8333 2.7857 4.5000 8.5000 28.5000

Table 1 Corresponding relation of η and µ

The above numerical calculation and simulation results show that when the failure rate and

the repair rate are assumed to be constant, p0(T, µ) can be regarded as a function of µ, which

can make the state transfer to the desired state p0(t) = η at a limited time T (T > 0), so the

state p0(t) is controllable.

6. Conclusions

Through numerical experiments on the results of system reliability and controllability, sim-

ulation results in Figures 2-4 show that when the failure rate and repair rate are assumed to be

constant the transient availability of the system meets the requirements of p0(t) > p∗0. Therefore,

the system has reliability. The conclusion is consistent with Theorem 3.4. Although when µ → 0,
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we have p0(T, µ) → 0. In fact, when λ = 0.5, T = 50, then lim
µ→0

p0(T, µ) = e−75 ̸= 0. However, as

the absolute error value approaches to zero, it cannot affect the whole research. Similarly, using

the same method, p1(t)-p5(t) is also controllable and hence system (2.1)–(2.7) is controllable.
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