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Abstract The relaxation methods have served as very efficient tools for solving linear system

and have many important applications in the field of science and engineering. In this paper,

we study an efficient relaxation method based on the well-known Gauss-Seidel iteration method.

Theoretical analysis shows our method can converge to the unique solution of the linear system.

In addition, our method is applied to solve the saddle point problem and PageRank problem, and

the numerical results show our method is more powerful than the existent relaxation methods.
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1. Introduction

In many applications, one often meets linear systems

Ax =b, (1.1)

where A ∈ Cn×n is nonsingular and b ∈ Cn. Suppose the matrix A has the following splitting

A = D − L− U,

where D is the diagonal part of the matrix A, −L is the strictly lower part of the matrix A,

and −U is the strictly upper part of the matrix A. It is generally assumed the matrix D is

nonsingular, that is, the diagonal entries of A are all nonzero.

Generally speaking, the iterative method for solving linear system is a process of going from

an iterate to the next by modifying some components of an approximate solution at a time. For

example, let xk be the kth iterate. The Jacobi iteration, which is of the form

xk+1 =D−1(L+ U)xk +D−1b, (1.2)

derives all components of the next iterate simultaneously, however, the Gauss-Seidel iteration

xk+1 =(D − L)−1Uxk + (D − L)−1b, (1.3)
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is a refinement of the Jacobi iteration and updates the next iterate one by one in the order

i = 1, 2, . . . , n.

Relaxation is an important technique in the design of iterative methods for solving linear

systems. Each iterative method can be rewritten as the following form xk+1 = xk + ∆xk.

Therefore, if we introduce a relaxation factor ω ∈ R, we can get the following modification of

the above iteration xk+1 = xk + ω∆xk.

Specifically, introducing a relaxation factor to the Jacobi iterate (1.2), we can get the iterate

xk+1 = xk + ω(D−1(L+ U)xk +D−1b− xk),

which is equivalent to

Dxk+1 =(1− ω)Dxk + ωLxk + ωUxk + ωb, (1.4)

then applying the similar technique as the derivation of Gauss-Seidel iteration to the recursion

(1.4), we can obtain a new recursion

Dxk+1 = (1− ω)Dxk + ωLxk+1 + ωUxk + ωb,

which is equivalent to

xk+1 = (D − ωL)−1((1− ω)D + ωU)xk + ω(D − ωL)−1b.

This is the well-known Successive Over Relaxation (SOR) method. If we apply the relaxation

technique to the Gauss-Seidel iteration (1.3), we can obtain a new iterate

xk+1 = xk + ω
(
(D − L)−1Uxk + (D − L)−1b− xk

)
= (D − L)−1 ((1− ω)(D − L) + ωU)xk + ω(D − L)−1b.

This leads immediately to a new relaxation method, which is named GSR method and can be

described as follows

GSR Method: Given an initial point x0, the iterative sequence xk, k = 1, 2, . . ., of the GSR

method is generated by

xk =(D − L)−1 ((1− ω)(D − L) + ωU)xk−1 + ω(D − L)−1b, (1.5)

where ω is a positive number, and the matrix

I(ω) :=(D − L)−1
(
(1− ω)(D − L) + ωU

)
(1.6)

is the iteration matrix of the GSR method.

From the above derivation, we can see that the SOR method is generated by firstly applying

the relaxation technique to the Jacobi iterate and then updating the components of the new

iteration one by one. However, our method is obtained through changing the orders of those two

operations in the derivation of the SOR method.

Actually, we can find the GSR method is a special case of the accelerated over-relaxation

(AOR) method [1]

(D − γL)xk+1 = ((1− ω)D + (ω − γ)L+ ωU)xk + ωb
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when γ = 1. In this sense, this paper does not propose new algorithm. Rather, our point is

to reveal some important techniques that we do not realize in the study of the basic iterative

method for solving linear system, and call attention to the power of the AOR method.

This paper is organized as follows. The convergence and the complexity analysis are presented

in Section 2. Applications to the saddle point problem and PageRank problem are given in Section

3 to show the power of our GSR method.

2. GSR method

In this section, we study the convergence of our GSR method and consider the computational

complexity. On the convergence of the GSR method, some sufficient conditions are presented

when the coefficient matrix A is symmetric positive definite, strictly (irreducibly) diagonally

dominant.

Whether or not the sequence xk, k = 0, 1, 2, . . . , converges to the unique solution x∗ = A−1b

depends upon the spectral radius of the iteration matrix I(ω) in (1.6). Let λ be the eigenvalue

of the matrix I(ω). Then

I(ω)− λI =(D − L)−1 ((1− ω)(D − L) + ωU)− λI

=(D − L)−1 ((1− λ)(D − L)− ωA)

=(1− λ)I − ω(D − L)−1A,

therefore,
1− λ

ω
is the eigenvalue of (D − L)−1A, and

λ =1− ωσ = 1− ω(1−∆), (2.1)

where σ and ∆ are the eigenvalues of (D−L)−1A and (D−L)−1U , respectively. Furthermore, if

the spectral radius of the iteration matrix I(ω) is less than 1, then the GSR method converges.

2.1. Convergence analysis for the linear system with special coefficient matrix

Similar as the existent relaxation methods, the convergence of our GSR method is hardly

guaranteed for general coefficient matrices, however, for symmetric positive definite matrices,

strictly diagonally dominant matrices or irreducibly diagonally dominant matrices, the conver-

gence holds.

Theorem 2.1 Suppose A is a Hermitian and positive definite matrix and 0 < ω ≤ 1, then the

convergence of the GSR method holds for any initial point.

Proof Suppose λ is an eigenvalue of the iteration matrix I(ω) and the vector x is the corre-

sponding eigenvector, then we have

(D − L)−1
(
(1− ω)(D − L) + ωU

)
x = λx.

Let xH denote the conjugate transpose of the vector x. Through multiplying both sides of the
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above equation by xH(D − L), we get

xH((1− ω)(D − L) + ωU)x =λxH(D − L)x. (2.2)

Since A is Hermitian and positive definite, then U = LH , xHLx = (xHUx)H and xHDx > 0.

Denote

α := xHDx, β + γi := xHLx, β − γi :=xHUx, (2.3)

where i =
√
−1. From the equation (2.2) and the notations (2.3), we obtain

|λ|2 =
∣∣∣xH((1− ω)(D − L) + ωU)x

xH(D − L)x

∣∣∣2 =
|(1− ω)(α− β − γi) + ω(β − γi)|2

|α− β − γi|2

=
|α− ωα− β + 2ωβ − γi|2

|α− β − γi|2
=

|(α− β + 2ωβ − ωα)2 + γ2|
|(α− β)2 + γ2|

.

Since A is positive definite, we have

xHAx = xHDx− xHLx− xHLHx = α− 2β >0. (2.4)

Combining the relations 0 < ω ≤ 1 and (2.4), we can get

|(α− β + 2ωβ − ωα)2 + γ2| − |(α− β)2 + γ2|

= ω(2β − α)(2βω − αω + 2α− 2β) = ω(2β − α)(α+ (1− ω)(α− 2β)) < 0,

which implies |λ| < 1, thus the theorem holds. �
A strictly diagonally dominant or irreducible diagonally dominant matrix is nonsingular. The

following theorem shows the convergence of the GSR method for strictly diagonally dominant or

irreducibly diagonally dominant matrix A.

Theorem 2.2 Suppose A is strictly diagonally dominant or irreducibly diagonally dominant

and 0 < ω ≤ 1. Then the GSR method converges for any initial point.

Proof The proof is by contradiction. Suppose λ = a+bi is an eigenvalue of the iteration matrix

I(ω) and satisfies |λ| ≥ 1, then a2 + b2 ≥ 1 and

det(I(ω)− λI) =det((D − L)−1) det((1− ω − λ)(D − L) + ωU) = 0. (2.5)

Consider the following two cases:

(1) If a < 1, we get

|1− ω − λ|2 − ω2 = (1− ω − a)2 + b2 − ω2 ≥ 1 + a2 + b2 − 2a+ 2(a− 1)

= a2 + b2 − 1 ≥ 0.

(2) If a ≥ 1, we get

|1− ω − λ|2 − ω2 = (a− 1)2 + 2ω(a− 1) + b2 ≥ 0.

Thus the relation |1− ω − λ| ≥ |ω| holds and the matrix (1− ω − λ)(D − L) + ωU is a strictly

diagonally dominant or irreducibly diagonally dominant matrix, which indicates the matrix (1−
ω−λ)(D−L)+ωU is nonsingular and contradicts the equation (2.5). Therefore, we have |λ| < 1
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and the theorem holds. �

2.2. Computational complexity

For the SOR method, in the calculation of the (k + 1)th iterate

xk+1 = xk + ω(D − ωL)−1rk = xk + (D/ω − L)−1rk,

we need n flops to get D/ω, then n2 flops to get (D/ω−L)−1rk, and finally n flops to get xk+1,

thus the total number of flops is n2 + n+ n = n2 + 2n. To go further, we have to calculate

rk+1 = b−Axk+1 = b−A(xk + (D/ω − L)−1rk)

= ((1− ω)/ωD + U)(D/ω − L)−1rk,

this requires n2 + n+ 2 flops.

Next, we consider the number of flops required in our GSR method. In the calculation of

the (k + 1)th iterate xk+1 = xk + ω(D − L)−1rk, we need n2 flops to get (D − L)−1rk, then

n flops to get ω(D − L)−1rk, and finally n flops to get xk+1, thus the total number of flops is

n2 + n+ n = n2 + 2n. To go further, we have to calculate

rk+1 = b−Axk+1 = (1− ω)rk + ωU(D − L)−1rk = rk − ω(rk − U(D − L)−1rk),

this requires (n− 1)2 + 3n flops.

3. Applications

In this section, we compare the performance of the GSR method with some existing algo-

rithms by two practical problems: the saddle point problem and PageRank problem. All our

computations were performed in MATLAB 2014a on a Intel 2.5GHZ computer with 48GB mem-

ory running Windows 8.

3.1. Saddle point problems

The saddle point system is of the form(
A B

B⊤ 0

)(
x

y

)
=

(
b

q

)
, (3.1)

where A ∈ Rm×m is a symmetric positive definite matrix and B ∈ Rm×n (m ≥ n) is a matrix of

full column rank, b ∈ Rm and q ∈ Rn are two real vectors. A linear system of the form (3.1) is

also named as a KKT system, or an augmented system, or an equilibrium system.

The saddle point problem is common in many scientific and engineering applications [2], such

as computational fluid dynamics [3], mixed finite element method of elliptic partial differential

equations [4], least squares problems [5]. And there are many iterative methods presented to

solve these problems, for example, (preconditioned) Uzawa-type algorithms [6–8], the SOR-like

methods and its variants [9–13], and the preconditioned Krylov subspace methods [14–16], HSS

splitting method [17–19] and many references contained therein.
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The linear system in (3.1) can be rewritten as following(
A B

−B⊤ 0

)(
x

y

)
=

(
b

−q

)
. (3.2)

In this subsection, we mainly compare our method with the SOR-like method in [10], which is

constructed based on the matrix partition(
A B

−B⊤ 0

)
= DQ − LQ − UQ,

where

DQ =

(
A 0

0 Q

)
, LQ =

(
0 0

B⊤ 0

)
, UQ =

(
0 −B

0 Q

)
,

and Q is a nonsingular and symmetric matrix. Sequentially applying the relaxation technique

and Gauss-Seidel technique to the Jacobi iterate, we can get the following SOR-like iterate [10]:(
xk+1

yk+1

)
= (DQ − ωLQ)

−1
(
(1− ω)DQ + ωUQ

)( xk

yk

)
+ ω(DQ − ωLQ)

−1

(
b

q

)
.

Changing the order of applying the relaxation technique and Gauss-Seidel technique, we can get

our GSR-like iterate:(
xk+1

yk+1

)
= (DQ − LQ)

−1
(
(1− ω)(DQ − LQ) + ωUQ

)( xk

yk

)
+ ω(DQ − LQ)

−1

(
b

q

)
.

The following theorem states the convergence of the GSR-like method for some specially

chosen Q.

Theorem 3.1 For the linear system in (3.2), suppose the matrix Q ∈ Rn×n is nonsingular and

symmetric, the eigenvalues of the matrix J := Q−1B⊤A−1B are all positive, then the GSR-like

method for the saddle point problem is convergent when the relaxation factor ω satisfies

0 < ω < min
{ 2

µmax
, 2
}
,

where µmax is the maximal eigenvalue of the matrix J .

Proof Suppose λ is the eigenvalue of the iteration matrix

IQ(ω) := (DQ − LQ)
−1
(
(1− ω)(DQ − LQ) + ωUQ

)
,

then

IQ(ω) = (1− ω)I + ω(DQ − LQ)
−1UQ

= (1− ω)I + ω

(
A−1 0

Q−1B⊤A−1 Q−1

)(
0 −B

0 Q

)

= (1− ω)I + ω

(
0 −A−1B

0 −Q−1B⊤A−1B + I

)
.
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Let µ be the eigenvalue of the matrix Q−1B⊤A−1B. Then we can get the following relation

λ = (1− ω) + ω(−µ+ 1) = 1− ωµ or λ =1− ω. (3.3)

Thus, we can get

|λ| < 1 ⇐⇒ |1− ωµ| < 1, |1− ω| < 1 ⇐⇒ 0 < ω < min
{ 2

µmax
, 2
}
,

and the theorem holds. �
Next, we consider the strategies for choosing the optimal relaxation factor. To find an optimal

relaxation factor, we need to solve the following optimization problem

ω = argmin
ω∈R

max
µ∈λ(J)

{|1− ω|, |1− µω|} = argmin
ω∈R

max
µ∈{λ(J),1}

{|1− µω|}.

From the properties of Chebyshev polynomials, we can get the following optimal relaxation factor

ω and the corresponding spectral radius of the iteration matrix:

ω =
2

µ̂min + µ̂max
, ρ =

µ̂max − µ̂min

µ̂max + µ̂min
< 1.

where µ̂min := min{1, µmin}, µ̂max := max{1, µmax}, and µmin and µmax are the minimal and

maximal eigenvalues of the matrix J , respectively.

Finally, we compare our GSR-like method with the SOR-like method through an example

in [20]. Consider the linear system in (3.2), where

A =

(
Ip ⊗ T + T ⊗ Ip 0

0 Ip ⊗ T + T ⊗ Ip

)
∈ R2p2×2p2

,

B =

(
Ip ⊗ F

F ⊗ Ip

)
∈ R2p2×p2

,

T =
1

h2
Tridiag(−1, 2,−1) ∈ Rp×p, F =

1

h
Tridiag(−1, 1, 0) ∈ Rp×p,

b = (1, . . . , 1)⊤ ∈ R2p2

, q = (1, . . . , 1)⊤ ∈ Rp2

,

h = 1/(p + 1), Tridiag(a, b, c) is a matrix in which elements of main diagonal are b, elements of

the first diagonal are c, elements of the negative first diagonal are a, and ⊗ is the Kronecker

product.

Dimension Method IT CPU RES

3072
SOR-like 414 8.4108 9.795e-09

GSR-like 340 7.1384 9.639e-09

4800
SOR-like 513 18.1664 9.950e-09

GSR-like 423 15.7483 9.734e-09

Table 2 GSR-like method VS SOR-like method when Q =Tridiag(B⊤Ã−1B), Ã =Tridiag(A)

The numerical results are summarized in Tables 2 and 3. SOR-like represents the SOR-like

method with the optimal relaxation factor ω =
2
√
µmax−1

µmax
(see [10]). GSR-like represents the
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method with the optimal relaxation factor ω = 2
µ̂min+µ̂max

. All methods are started from the

initial vector x0 = (0, . . . , 0)⊤ ∈ R2p2

, y0 = (0, . . . , 0)⊤ ∈ Rp2

.

Dimension Method IT CPU RES

3072
SOR-like 390 7.9715 9.598e-09

GSR-like 247 5.4232 9.942e-09

4800
SOR-like 483 17.3768 9.911e-09

GSR-like 305 11.7825 9.960e-09

Table 3 GSR-like method VS SOR-like method when Q =Tridiag(B⊤A−1B)

From Tables 2 and 3, we can see that the GSR-like method is more efficient than the SOR-like

method with the optimal relaxation factor.

3.2. PageRank problems

The PageRank problem [21] is a well-known web ranking problem and can be formulated as

the linear system (I −αP )x = (1−α)v (see [22]), where P is a column-stochastic matrix, α < 1

is the damping parameter, and v is a given probability vector.

Many numerical methods [23–28] are proposed to solve the PageRank problem. As pointed

out in [29], basic stationary schemes, such as Jacobi iterative method, Gauss-Seidel iterative

method and SOR method, are still very competitive for solving the linear system arising in

the PageRank problem comparing with the Krylov subspace methods. The convergence and

performance of the SOR method for solving the PageRank problem is studied in [30].

In this subsection, we consider to solve the PageRank problem by our GSR method, which

is based on the splitting I − αP = D − L− U . The following theorem presents the convergence

of the GSR method if choosing the relaxation factor in an interval depending on the damping

parameter.

Theorem 3.2 If ω ∈ (0, 2
1+α ), then the GSR method for the PageRank problem is convergent

for any initial point.

Proof Suppose λ is the eigenvalue of the iteration matrix I(ω), then we have

det((D − L)−1((1− ω)(D − L) + ωU)− λI)

= det((D − L)−1) det(((1− ω)(D − L) + ωU)− λ(D − L))

= det((D − L)−1) det((1− ω − λ)(D − L) + ωU) = 0,

which implies the matrix (1− ω − λ)(D − L) + ωU is necessarily not strictly column diagonally

dominant. Therefore, there exists one column, say the ith column, we have

|1− ω − λ|(1− α(1− u− l)) ≤ |1− ω − λ|αl + ωαu

or
|1− ω − λ|

ω
≤ αu

1− α(1− u− l)− αl
=

αu

1− α(1− u)
,
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where u and l are the sum of the entries above and, respectively, below the diagonal in the ith

column of the matrix P . The function f(u) := αu
1−α(1−u) is monotonically increasing, then we

have |1−ω−λ|
ω ≤ α. Thus, the eigenvalue λ satisfies |λ| ≤ αω+ |1−ω|. Therefore, if 0 < ω < 2

1+α ,

we can get αω + |1− ω| < 1, and the convergence of the GSR method is guaranteed. �
We consider the performance of our GSR method through some test Web matrices: Ca-GrQc,

P2P-Gnutella08 and Ca-HepTh. SOR represents the SOR method with the optimal relaxation

factor in (0, 2
1+α ). GSR represents the GSRmethod with the optimal relaxation factor in (0, 2

1+α ).

All methods are started from the initial point x0 = (0, . . . , 0)⊤.

Matrix Method IT CPU RES

P2P-Gnutella08
SOR 12 0.0237 5.657e-09

GSR 14 0.0226 2.283e-09

Ca-HepTh
SOR 60 0.1037 7.792e-09

GSR 64 0.0837 8.304e-09

Ca-GrQc
SOR 59 0.0456 8.799e-09

GSR 63 0.0360 9.117e-09

Table 4 GSR method VS SOR method when α = 0.85

From Table 4, we can see that the number of iterations and the elapsed time by the GSR

method and those by the SOR method with the optimal relaxation factor are almost same.

4. Conclusion

In this paper, we present a new relaxation method for solving linear systems, prove its

convergence, and apply it to solve two important practical problems: the saddle point problem

and the PageRank problem.
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