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Abstract An L(3, 2, 1)-labeling of a graph G is a function f from the vertex set V (G) to the set

of all non-negative integers (labels) such that |f(u)− f(v)| ≥ 3 if d(u, v) = 1, |f(u)− f(v)| ≥ 2

if d(u, v) = 2 and |f(u) − f(v)| ≥ 1 if d(u, v) = 3. For a non-negative integer k, a k-L(3, 2, 1)-

labeling is an L(3, 2, 1)-labeling such that no label is greater than k. The L(3, 2, 1)-labeling

number of G, denoted by λ3,2,1(G), is the smallest number k such that G has a k-L(3, 2, 1)-

labeling. In this article, we characterize the L(3, 2, 1)-labeling numbers of trees with diameter

at most 6.
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1. Introduction

Multilevel distance labeling is a generalization of distance two labeling, which is motivated

by the channel assignment problem introduced by Hale [1]. The channel assignment problem is

the assignment of frequencies to transmitters subject to satisfying certain distance restrictions to

avoid interference between nearby transmitters. If there is a high usage of wireless communication

networks, we have to find an appropriate channel assignment solution, so that the range of

channels used is minimized.

Griggs and Yeh [2] firstly proposed the notation of distance two labeling of a graph, and they

generalized it to p-levels of interference, specifically for given positive integers k1, k2, . . . , kp, an

L(k1, k2, . . . , kp)-labeling of a graph G is a function f from the vertex set V (G) to the set of

all non-negative integers (labels), such that for all distinct vertices u, v, |f(u) − f(v)| ≥ kt if

d(u, v) = t, where d(u, v) denotes the distance between u and v. For a non-negative integer k, a

k-L(k1, k2, . . . , kp)-labeling is an L(k1, k2, . . . , kp)-labeling such that no label is greater than k.

The L(k1, k2, . . . , kp)-labeling number of G, denoted by λk1,k2,...,kp(G), is the smallest number k

such that G has a k-L(k1, k2, . . . , kp)-labeling.

The L(k1, k2, . . . , kp)-labeling problem above is interesting in both theory and practical ap-

plications. For instance, when p = 1, it becomes the ordinary vertex-coloring problem. When

p = 2, many interesting results [2–4] have been obtained for various families of finite graphs,

especially for the case (k1, k2) = (2, 1). For more details, one may refer to the surveys [5, 6].
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More recently, researchers began to investigate the L(3, 2, 1)-labeling problem. For example,

Shao [7] studied the L(3, 2, 1)-labeling of Kneser graphs, extremely irregular graphs, Halin graphs,

and gave bounds for the L(3, 2, 1)-labeling numbers of these classes of graphs. Liu and Shao [8]

studied the L(3, 2, 1)-labeling of planar graphs, and showed that λ3,2,1(G) ≤ 15(∆2−∆+1) if G

is a planar graph of maximum degree ∆. Clipperton et al. [9] determined the L(3, 2, 1)-labeling

numbers for paths, cycles, caterpillars, n-ary trees, complete graphs and complete bipartite

graphs, and showed that λ3,2,1(G) ≤ ∆3 +∆2 + 3∆ for any graph G with maximum degree ∆.

In this article, we characterize the L(3, 2, 1)-labeling numbers of trees with diameter at most 6.

2. Preliminaries

In this article, we always suppose that T is a finite tree with diameter at least 3. A vertex u

is said to be k-vertex if d(u) = k, where d(u) is the degree of u. Let N1(u) = {w ∈ N(u) : w is

∆-vertex}, N0(u) = N(u)\N1(u) and d1(u) = |N1(u)|, d0(u) = |N0(u)|. Let N [u] = N(u)∪{u}.
Sometimes it is convenient to consider one vertex of a tree as special; such a vertex is then

called the root of this tree. And we denote by Tu the tree rooted at u. For a rooted tree Tu,

define Li(u) := {w ∈ V (Tu) : d(u,w) = i} for i = 0, 1, . . . . In particular, L0(u) = {u}. Define

Ei(u) := {xy : x ∈ Li−1(u), y ∈ Li(u)} for i = 1, 2, . . . . For xy ∈ E(Tu), if x ∈ Li−1(u), y ∈ Li(u),

then we call x the parent of y, which is denoted by yp.

The diameter of T , denoted by diam(T ), is the length of the longest path of T . Note that if

diam(T ) is even, then there must exist a vertex, say u, such that every path of length diam(T )

goes through u. Thus if we treat T as a rooted tree Tu, then

V (T ) = {u} ∪ L1(u) ∪ L2(u) ∪ · · · ∪ L diam(T )
2

(u),

E(T ) = E1(u) ∪ E2(u) ∪ · · · ∪ E diam(T )
2

(u).

Such a vertex u is called the crossing vertex of T .

If diam(T ) is odd, then there must exist an edge, say uv, such that every path of length

diam(T ) goes through uv. Such an edge uv is called the crossing edge of T . Let Tu and Tv be

the two rooted trees obtained from T by deleting the edge uv, respectively. Then

V (T ) ={u, v} ∪ L1(u) ∪ L2(u) ∪ · · · ∪ L diam(T )−1
2

(u)∪

L1(v) ∪ L2(v) ∪ · · · ∪ L diam(T )−1
2

(v),

E(T ) ={uv} ∪ E1(u) ∪ E2(u) ∪ · · · ∪ E diam(T )−1
2

(u)∪

E1(v) ∪ E2(v) ∪ . . . ∪ E diam(T )−1
2

(v).

3. Some sufficient conditions for the lower and upper bounds

For integers i and j with i ≤ j, we denote [i, j] as the set {i, i + 1, . . . , j − 1, j}. Let O[i,j]

and E[i,j] be the set of all odd numbers and all even numbers in [i, j], respectively.

Lemma 3.1 ([10]) Let T be a tree with diameter at least 3. Then 2∆+1 ≤ λ3,2,1(T ) ≤ 2∆+3.
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Moreover, if λ3,2,1(T ) = 2∆+1 and f is a (2∆+1)-L(3, 2, 1)-labeling of T , then f(v) ∈ {0, 2∆+1}
for each ∆-vertex v.

Theorem 3.2 Let T be a tree with diameter at least 3. If T contains one of the following

configurations, then λ3,2,1(T ) ≥ 2∆ + 2.

(C1) There exist two ∆-vertices v1, v2 such that d(v1, v2) = 2.

(C2) ([10]) There exist three ∆-vertices v1, v2, v3 such that d(vi, vj) ≤ 3 for all 1 ≤ i, j ≤ 3.

Proof Let f be a (2∆ + 1)-L(3, 2, 1)-labeling of T .

(C1) By Lemma 3.1, we know that {f(v1), f(v2)} = {0, 2∆+1}. Without loss of generality,

let f(v1) = 0 and f(v2) = 2∆+1. Then f(N(v1)) = O[3,2∆+1]. Particularly, 2∆+1 ∈ f(N(v1)).

But this contradicts f(v2) = 2∆ + 1.

(C2) By Lemma 3.1, f(vi) ∈ {0, 2∆+1} for 1 ≤ i ≤ 3. It is a contradiction since d(vi, vj) ≤ 3

for all 1 ≤ i, j ≤ 3. �

Remark 3.3 The conditions in Theorem 3.2 are only sufficient but not necessary for λ3,2,1(T ) =

2∆+1. For example, T is a tree with ∆ = 3, shown in Figure 1. Suppose f is a 7-L(3, 2, 1)-labeling

of T . This implies f(u), f(u1), f(x), f(y) ∈ {0, 7}. Without loss of generality, let f(u) = 0. Then

f(u1) = f(x) = f(y) = 7 and {f(u2), f(u3)} = {3, 5}. Suppose f(u2) = 3. Then there is no

proper label for xp. Hence λ3,2,1(T ) ≥ 8. But T does not contain (C1)–(C2) of Theorem 3.2.

u

x y

u3
u1 u2

Figure 1 A tree T with ∆ = 3, has λ3,2,1(T ) ≥ 2∆ + 2 = 8. But T does not contain (C1)-(C2) of

Theorem 3.2, where the black dots represent ∆-vertices.

Let f be an L(3, 2, 1)-labeling of T and S ⊆ V (T ). Define f(S) = {f(v) : v ∈ S}.

Lemma 3.4 Let f be a (2∆+2)-L(3, 2, 1)-labeling of T . Then f(v) ∈ O[1,2∆+1]∪{0, 2∆+2} for

each ∆-vertex v. Moreover, if v is a ∆-vertex and f(v) ∈ O[1,2∆+1], then f(N(v)) = E[0,2∆+2] \
{f(v)± 1}.

Proof Suppose to the contrary that there exists a ∆-vertex v such that f(v) = i ∈ E[2,2∆].

Then i, i± 1, i± 2 /∈ f(N(v)). So |f(N(v))| ≤ i−2
2 + (2∆+3)−(i+3)

2 = ∆− 1, a contradiction.

Next, if f(v) = 0, then f(N(v)) ⊆ [3, 2∆ + 2]. By symmetry, f(N(v)) ⊆ [0, 2∆ − 1] if

f(v) = 2∆ + 2. In either case, we can always choose ∆ different labels such that any two labels

are at least two apart.

If f(v) = 1, then f(N(v)) = E[4,2∆+2]; if f(v) = 2∆ + 1, then f(N(v)) = E[0,2∆−2].

If f(v) = i ∈ O[3,2∆−1], then f(N(v)) = E[0,i−3] ∪ E[i+3,2∆+2] = E[0,2∆+2] \ {i± 1}. �
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Lemma 3.5 Let uv ∈ E(T ) and d(u) = d(v) = ∆. Let f be a (2∆ + 2)-L(3, 2, 1)-labeling of

T . Then f(u) ∈ {0, 2∆ + 2} or f(v) ∈ {0, 2∆ + 2}. Moreover, if there exist four ∆-vertices

v0, v1, v2, v3 such that v0v1, v0v2, v0v3 ∈ E(T ), then f(v0) ∈ {0, 2∆ + 2}.

Proof Firstly, f(u), f(v) ∈ O[1,2∆+1]∪{0, 2∆+2} by Lemma 3.4. Suppose to the contrary that

f(u) ∈ O[1,2∆+1] and f(v) ∈ O[1,2∆+1]. Then f(N(u)∪N(v)) ⊆ [0, 2∆+2] \ {f(u)± 1, f(v)± 1}.
Thus |f(N(u)∪N(v))| ≤ (2∆+3)−4 = 2∆−1, a contradiction. Now, if f(v0) ∈ O[1,2∆+1], then

f(vi) ∈ {0, 2∆ + 2} for each i ∈ {1, 2, 3}. This is impossible. Therefore, f(v0) ∈ {0, 2∆ + 2}. �

Lemma 3.6 Let u ∈ V (T ) and d1(u) ≥ 3. Let f be a (2∆ + 2)-L(3, 2, 1)-labeling of T . Then

f(u) ∈ E[0,2∆+2] and f(N(u)) ⊆ O[1,2∆+1].

Proof Since d1(u) ≥ 3, there must exist some w ∈ N1(u) such that f(w) ∈ O[1,2∆+1]. Then

f(N(w)) = E[0,2∆+2] \{f(w)±1} by Lemma 3.4. Particularly, f(u) ∈ E[0,2∆+2]. And f(N(u)) ⊆
O[1,2∆+1]. �

In view of the above results, we now give some sufficient conditions for the upper bound.

Theorem 3.7 Let uv ∈ E(T ). If min{d1(u), d1(v)} ≥ 3, then λ3,2,1(T ) = 2∆ + 3.

Proof Suppose f is a (2∆ + 2)-L(3, 2, 1)-labeling of T . By Lemma 3.6, we have f(u), f(v) ∈
E[0,2∆+2], f(N(u)) ⊆ O[1,2∆+1] and f(N(v)) ⊆ O[1,2∆+1] owing to min{d1(u), d1(v)} ≥ 3. But it

is impossible. Hence λ3,2,1(T ) = 2∆ + 3. �

Theorem 3.8 Let u ∈ V (T ). If d(u) ≥ ∆− 1, d1(u) ≥ 3 and d1(ui) = 2 for all ui ∈ N(u), then

λ3,2,1(T ) = 2∆ + 3.

Proof Suppose f is a (2∆ + 2)-L(3, 2, 1)-labeling of T . We consider the following two cases.

Case 1. d(u) = ∆.

By Lemma 3.5, we have f(u) ∈ {0, 2∆ + 2} since d1(u) ≥ 3. Without loss of generality, we

may assume that f(u) = 0. Then f(N(u)) = O[3,2∆+1]. This implies that there exists some

w ∈ N(u) such that f(w) = 2∆ + 1. But now there is no proper label for N1(w) \ {u}.

Case 2. d(u) = ∆− 1.

Note that f(N(u)) ⊆ O[1,2∆+1] by Lemma 3.6. So f(N1(w)) = {0, 2∆+2} for each w ∈ N1(u).

This implies f(u) ∈ E[2,2∆] and f(N(u)) = O[1,2∆+1] \ {f(u)± 1}. Thus, there must exist some

w ∈ N(u) such that f(w) = 1 or 2∆ + 1. But then, no proper labels can be assigned to N1(w),

also a contradiction. �

Remark 3.9 The conditions in Theorems 3.7 and 3.8 are only sufficient but not necessary

for λ3,2,1(T ) = 2∆ + 3. For example, T is a tree with ∆ = 4, shown in Figure 2. Suppose

f is a 10-L(3, 2, 1)-labeling of T . This implies f(u1), f(u2), f(v1), f(v2) ∈ {0, 3, 5, 7, 10}, since
d1(ui) = d1(vi) = 2 for each i ∈ {1, 2}. We may assume that f(u1) ∈ {3, 5, 7}, since any

two vertices in {u1, u2, v1, v2} are of distance at most three. Then f(N1(u1)) = {0, 10} and

f(u2) ∈ {3, 5, 7}. Hence {f(v1), f(v2)} = {0, 10} and f(v) ∈ {3, 5, 7}. Now there is no proper
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label for u. Hence λ3,2,1(T ) = 2∆ + 3 = 11. But T does not satisfy the conditions in Theorems

3.7 and 3.8.

2

v

v
2v

Figure 2 A tree T with ∆ = 4, has λ3,2,1(T ) = 2∆ + 3 = 11. But T does not satisfy the conditions of

Theorem 3.7-3.8, where the black dots represent ∆-vertices.

4. Results for trees with diameter at most 6

As we mentioned earlier that all the conditions in Theorems 3.2, 3.7 and 3.8 are just sufficient

but not necessary. In this section, we will show that the sufficient conditions are also necessary

for trees with diameter at most 6.

Theorem 4.1 Let T be a tree with diameter 3. Then λ3,2,1(T ) = 2∆ + 1.

Proof Let uv be the crossing edge. It is enough to consider the case when u and v are ∆-vertices,

since any subgraph of T has the L(3, 2, 1)-labeling number no more than T .

Now we define a (2∆ + 1)-L(3, 2, 1)-labeling f as follows:

(i) f(u) = 0, f(v) = 2∆ + 1;

(ii) f(N(u) \ {v}) = O[3,2∆−1], f(N(v) \ {u}) = E[2,2∆−2].

Note that all the vertices of T have different labels. Next, |f(u) − f(v)| = 2∆ + 1 > 3,

minx∈L1(u) |f(u) − f(x)| = 3 and miny∈L1(v) |f(v) − f(y)| = 2∆ + 1 − (2∆ − 2) = 3. Finally,

minx∈L1(u) |f(v) − f(x)| = 2∆ + 1 − (2∆ − 1) = 2 and miny∈L1(v) |f(u) − f(y)| = 2. So f is a

(2∆ + 1)-L(3, 2, 1)-labeling of T , which implies λ3,2,1(T ) ≤ 2∆ + 1. Now from Lemma 3.1, we

get λ3,2,1(T ) = 2∆ + 1. �

Theorem 4.2 Let T be a tree with diameter 4 and u be the crossing vertex. Then 2∆ + 1 ≤
λ3,2,1(T ) ≤ 2∆ + 2. Furthermore, λ3,2,1(T ) = 2∆ + 2 if and only if d1(u) ≥ 2.

Proof Firstly, λ3,2,1(T ) ≥ 2∆ + 1 by Lemma 3.1. To prove the upper bound, we only need to

consider the case when all vertices in N [u] are ∆-vertices. Define

(i) f(u) = 0;

(ii) f(N(u)) = O[3,2∆+1];

(iii) f(N(x) \ {u}) = E[2,2∆+2] \ {i− 1, i+ 1} if f(x) = i ∈ O[3,2∆+1] for each x ∈ L1(u).

It is clear that any pair of vertices of distance at most 3 have different labels. Secondly,

minx∈L1(u) |f(u)−f(x)| = 3 and minxy∈E2(u) |f(x)−f(y)| = 3. Finally, minx,y∈V (T ),d(x,y)=2 |f(x)−
f(y)| = 2. Therefore, f is a (2∆ + 2)-L(3, 2, 1)-labeling of T , which implies λ3,2,1(T ) ≤ 2∆ + 2.
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Next, we prove the rest. The sufficiency follows from (C1) of Theorem 3.2. We now prove

the necessity. Suppose to the contrary that d1(u) ≤ 1. It is enough to consider the case when u

is ∆-vertex and d1(u) = 1. We define a (2∆ + 1)-L(3, 2, 1)-labeling of T as follows:

(i) f(u) = 0;

(ii) f(N1(u)) = {2∆ + 1}, f(N0(u)) = O[3,2∆−1];

(iii) f(N(x) \ {u}) ⊆ E[2,2∆] \ {i− 1, i+ 1} if f(x) = i ∈ O[3,2∆+1] for each x ∈ L1(u).

Firstly, any pair of vertices of distance at most 3 have different labels. Next, minx∈L1(u) |f(u)−
f(x)| = 3, minxy∈E2(u) |f(x) − f(y)| = 3. Finally, minx,y∈V (T ),d(x,y)=2 |f(x) − f(y)| = 2. Then,

clearly, f is a (2∆ + 1)-L(3, 2, 1)-labeling of T . Thus, λ3,2,1(T ) = 2∆ + 1 by Lemma 3.1, a

contradiction. �

Theorem 4.3 Let T be a tree with diameter 5 and uv be the crossing edge of T . Then

(1) λ3,2,1(T ) = 2∆ + 1 if and only if max{d1(u), d1(v)} ≤ 1.

(2) λ3,2,1(T ) = 2∆ + 3 if and only if min{d1(u), d1(v)} ≥ 3.

Proof (1) If max{d1(u), d1(v)} ≥ 2, then there must exist two vertices v1, v2 with d(v1, v2) = 2.

So λ3,2,1(T ) ≥ 2∆ + 2 by Theorem 3.2. On the other hand, suppose d1(u) = d1(v) = 1. We will

give a (2∆+1)-L(3, 2, 1)-labeling of T . We consider three cases depending on values of d(u) and

d(v).

Case 1. d(u) = d(v) = ∆.

Consider the following labeling f :

(i) f(u) = 0, f(v) = 2∆ + 1;

(ii) f(N0(u)) = O[3,2∆−1], f(N0(v)) = E[2,2∆−2];

(iii) f(N(x)) ⊆ E[2,2∆] \ {i− 1, i+ 1} if f(x) = i ∈ O[3,2∆−1] for each x ∈ L1(u);

(iv) f(N(x)) ⊆ O[1,2∆−1] \ {i− 1, i+ 1} if f(x) = i ∈ E[2,2∆−2] for each x ∈ L1(v).

Case 2. d(u) = ∆, d(v) < ∆.

Consider the following labeling f :

(i) f(u) = 0, f(v) = 3;

(ii) f(N1(u)) = {2∆ + 1}, f(N0(u) \ {v}) = O[5,2∆−1], f(N(v) \ {u}) ⊆ E[6,2∆];

(iii) f(N(x)) ⊆ E[2,2∆] \ {i− 1, i+ 1} if f(x) = i ∈ O[5,2∆+1] for each x ∈ L1(u);

(iv) f(N(x)) ⊆ O[1,2∆+1] \ {3, i− 1, i+ 1} if f(x) = i ∈ E[6,2∆] for each x ∈ L1(v).

Case 3. d(u) < ∆, d(v) < ∆.

Consider the following labeling f :

(i) f(u) = 3, f(v) = 6;

(ii) f(N1(u)) = {0}, f(N0(u) \ {v}) ⊆ E[8,2∆], f(N1(v)) = {2∆ + 1}, f(N0(v) \ {u}) ⊆
O[9,2∆−1] ∪ {1};

(iii) f(N(x)) ⊆ O[1,2∆+1] \ {3, i− 1, i+ 1} if f(x) = i ∈ E[8,2∆] ∪ {0} for each x ∈ L1(u);

(iv) f(N(x)) ⊆ E[0,2∆] \ {6, i− 1, i+ 1} if f(x) = i ∈ O[9,2∆+1] ∪ {1} for each x ∈ L1(v).

For the above three cases, it is easy to verify that f is a (2∆ + 1)-L(3, 2, 1)-labeling of T .

Therefore, λ3,2,1(T ) = 2∆ + 1 by Lemma 3.1.
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(2) The sufficiency follows from Theorem 3.7. Now we prove the necessity. Suppose, to the

contrary, min{d1(u), d1(v)} ≤ 2. It is sufficient to consider the following two cases:

(I) d(u) = d(v) = ∆ and d1(u) = 2.

(II) d(u) = ∆, d(v) = ∆− 1 and d1(u) = 2.

Case 1. (I) holds.

Consider the following labeling f :

(i) f(u) = 3, f(v) = 0;

(ii) f(N1(u) \ {v}) = {2∆ + 2}, f(N0(u)) = E[6,2∆], f(N(v) \ {u}) = O[5,2∆+1];

(iii) f(N(x)) ⊆ O[1,2∆+1] \ {3, i− 1, i+ 1} if f(x) = i ∈ E[6,2∆+2] for each x ∈ L1(u);

(iv) f(N(x)) ⊆ E[2,2∆+2] \ {i− 1, i+ 1} if f(x) = i ∈ O[5,2∆+1] for each x ∈ L1(v).

Case 2. (II) holds.

Consider the following labeling f :

(i) f(u) = 3, f(v) = 6;

(ii) f(N1(u)) = {0, 2∆ + 2}, f(N0(u) \ {v}) = E[8,2∆], f(N(v) \ {u}) = O[9,2∆+1] ∪ {1};
(iii) f(N(x)) ⊆ O[1,2∆+1] \ {3, i− 1, i+ 1} if f(x) = i ∈ E[8,2∆+2] ∪ {0} for each x ∈ L1(u);

(iv) f(N(x)) ⊆ E[0,2∆+2] \ {6, i− 1, i+ 1} if f(x) = i ∈ O[9,2∆+1] ∪ {1} for each x ∈ L1(v).

For the above two cases, it is straightforward to check that f is a (2∆+2)-L(3, 2, 1)-labeling

of T . Thus, λ3,2,1(T ) ≤ 2∆ + 2, a contradiction. �
In the theorem below we give a complete characterization of trees with diameter 6.

Theorem 4.4 Let T be a tree with diameter 6 and u be the crossing vertex. Then

(1) λ3,2,1(T ) = 2∆ + 1 if and only if T does not contain (C1)–(C2) of Theorem 3.2.

(2) λ3,2,1(T ) = 2∆ + 3 if and only if T contains one of the following configurations:

(C1) min{d1(u), d1(ui)} ≥ 3 for some ui ∈ N(u).

(C2) d(u) ≥ ∆− 1, d1(u) ≥ 3 and d1(ui) = 2 for all ui ∈ N(u).

Proof (1) The necessity follows from Theorem 3.2. We now prove the sufficiency. If T does not

contain (C1)–(C2) of Theorem 3.2, then we only need to consider the following two cases.

Case 1. d(u) = ∆ and d1(u) = 1.

Consider the following labeling f :

(i) f(u) = 0;

(ii) f(N1(u)) = {2∆ + 1}, f(N0(u)) = O[3,2∆−1];

(iii) f(N(x)) ⊆ E[2,2∆] \ {i− 1, i+ 1} if f(x) = i ∈ O[3,2∆+1] for each x ∈ L1(u);

(iv) f(N(x)) ⊆ O[1,2∆+1] \ {f(xp), i− 1, i+ 1} if f(x) = i ∈ E[2,2∆] for each x ∈ L2(u).

Case 2. d(u) < ∆, d1(u) = 1 and d1(x) = 1 for all x ∈ L1(u).

Consider the following labeling f :

(i) f(u) = 2;

(ii) f(N1(u)) = {2∆ + 1}, f(N0(u)) ⊆ O[5,2∆−1];

(iii) f(N1(x)) = {0}, f(N0(x) \ {u}) ⊆ E[4,2∆] \ {i− 1, i+1} if f(x) = i ∈ O[5,2∆+1] for each

x ∈ L1(u);

(iv) f(N(x)) ⊆ O[1,2∆+1] \ {f(xp), i− 1, i+1} if f(x) = i ∈ E[4,2∆] ∪{0} for each x ∈ L2(u).
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For the above two cases, it is easy to verify that f is a (2∆ + 1)-L(3, 2, 1)-labeling of T .

Therefore, λ3,2,1(T ) = 2∆ + 1 by Lemma 3.1.

(2) The sufficiency follows from Theorem 3.7-3.8. We now prove the necessity. Suppose, to

the contrary, the conclusion is false. We may assume that one of the followings holds:

(I) d1(u) ≤ 2.

(II) d1(u) ≥ 3, d1(ui) ≤ 2 for all ui ∈ N(u) and there exists some w ∈ N(u) such that

d1(w) ≤ 1.

(III) d1(u) ≥ 3, d(u) ≤ ∆− 2 and d1(ui) = 2 for all ui ∈ N(u).

Case 1. (I) holds.

Consider the following labeling f :

(i) f(u) = 3;

(ii) f(N1(u)) ⊆ {0, 2∆ + 2}, f(N0(u)) ⊆ E[0,2∆+2] \ ({2, 4} ∪ f(N1(u)));

(iii) f(N(x)) ⊆ O[1,2∆+1] \ {3, i− 1, i+1} if f(x) = i ∈ E[0,2∆+2] \ {2, 4} for each x ∈ L1(u);

(iv) f(N(x)) ⊆ E[0,2∆+2]\{f(xp), i−1, i+1} if f(x) = i ∈ O[1,2∆+1]\{3} for each x ∈ L2(u).

Case 2. (II) holds.

We consider the following two subcases.

Subcase 2.1. d(u) = ∆.

Consider the following labeling f :

(i) f(u) = 0;

(ii) f(w) = 2∆ + 1, f(N(u) \ {w}) = O[3,2∆−1];

(iii) f(N(x)) ⊆ E[2,2∆+2] \ {i− 1, i+1} if f(x) = i ∈ O[3,2∆+1] for each x ∈ L1(u) and make

f(N1(x) \ {u}) = {2∆ + 2} if N1(x) \ {u} ̸= ∅;
(iv) f(N(x)) ⊆ O[1,2∆+1] \ {f(xp), i− 1, i+ 1} if f(x) = i ∈ E[2,2∆+2] for each x ∈ L2(u).

Subcase 2.2. d(u) < ∆.

Consider the following labeling f :

(i) f(u) = 2;

(ii) f(w) = 2∆ + 1, f(N(u) \ {w}) ⊆ O[5,2∆−1];

(iii) f(N(x)) ⊆ E[0,2∆+2] \ {2, i − 1, i + 1} if f(x) = i ∈ O[5,2∆+1] for each x ∈ L1(u) and

make f(N1(x)) ⊆ {0, 2∆ + 2} if N1(x) ̸= ∅;
(iv) f(N(x)) ⊆ O[1,2∆+1]\{f(xp), i−1, i+1} if f(x) = i ∈ E[0,2∆+2]\{2} for each x ∈ L2(u).

Case 3. (III) holds.

Consider the following labeling f :

(i) f(u) = 2;

(ii) f(N(u)) ⊆ O[5,2∆−1];

(iii) f(N(x)) ⊆ E[0,2∆+2] \ {2, i − 1, i + 1} if f(x) = i ∈ O[5,2∆−1] for each x ∈ L1(u) and

make f(N1(x)) = {0, 2∆ + 2};
(iv) f(N(x)) ⊆ O[1,2∆+1]\{f(xp), i−1, i+1} if f(x) = i ∈ E[0,2∆+2]\{2} for each x ∈ L2(u).

For the above three cases, we check that f is a (2∆ + 2)-L(3, 2, 1)-labeling of T . Thus,

λ3,2,1(T ) ≤ 2∆ + 2, a contradiction. �
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