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Abstract In this paper, a lower bound and an upper bound for the spectral radius of nonnegative

tensors are obtained. Our new bounds are tighter than the corresponding bounds obtained by

Li et al. (J. Inequal. Appl. 2015). A numerical example is given to show the effectiveness of

theoretical results.
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1. Introduction

A tensor A = (ai1,...,im), which is a multidimensional array with the entries

ai1,...,im ∈ R, ij ∈ N = {1, . . . , n} for j ∈ M = {1, . . . ,m},

is called an m-order n-dimensional real tensor, denoted by A ∈ R[m,n], where R is mean real

number. Moreover, a real tensor A is called nonnegative (positive) if ai1...im ≥ (>) 0, denoted

by A ≥ (>) 0. Given a tensor A = (ai1,...,im), if there exists a nonempty proper index subset

I ⊂ {1, . . . , n} such that

ai1,...,im = 0, ∀ i1 ∈ I, ∀ i2, . . . , im /∈ I,

then, we say A is reducible. Otherwise, we call A irreducible [1].

Definition 1.1 ([2, 3]) Let A = (ai1,...,im) ∈ R[m,n] and a number λ ∈ C (C denotes complex

number). If there is a non-zero vector x = (x1, x2, . . . , xn)
T ∈ Cn , such that

Axm−1 = λx[m−1],

then λ is called an eigenvalue and x an eigenvector associated with λ of A, where Axm−1 and

x[m−1] are n-dimensional vectors, whose i-th entries are

(Axm−1)i =
∑

i2,...,im∈N

aii2,...,imxi2 , . . . , xim and (x[m−1])i = xm−1
i .
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Eigenvalues of tensors have a wide range of applications [1–6], so methods how to calculate

or estimate the eigenvalues has become an important topic in numerical multilinear algebra. In

addition, the spectral radius ρ(A) of a tensor A is defined as [7]

ρ(A) = max{|λ| : λ is an eigenvalue of A}.

Chang et al. extended the Perron-Frobenius theorem for irreducible nonnegative matrices to

irreducible nonnegative tensors.

Theorem 1.2 ([1]) If A ∈ R[m,n] is irreducible nonnegative, then ρ(A) is a positive eigenvalue

of A with an entrywise positive eigenvector x, i.e., x > 0, corresponding to it.

Yang et al. generalized this theorem to nonnegative tensors and provided a lower bound and

an upper bound for the spectral radius of nonnegative tensors [8].

Theorem 1.3 ( [8]) If A ∈ R[m,n] is nonnegative, then ρ(A) is an eigenvalue of A with an

entrywise nonnegative eigenvector x, i.e., x ≥ 0, x ̸= 0, corresponding to it.

Theorem 1.4 ([8]) Let A = (ai1,...,im) ∈ R[m,n] be nonnegative. Then

Rmin ≤ ρ(A) ≤ Rmax,

where Rmin = mini∈N Ri(A), Rmax = maxi∈N Ri(A), and Ri(A) =
∑

i2,...,im∈N aii2,...,im .

Li et al. [9, 10] had given several bounds which are tighter than those in Theorem 1.4.

Theorem 1.5 ([9]) Let A = (ai1,...,im) ∈ R[m,n] be nonnegative with n ≥ 2. Then

ρ(A) ≤ Ωmax,

where

Ωmax = max
i,j∈N
j ̸=i

1

2

(
ai...i + aj...j + rji (A) +

√
(ai...i − aj...j + rji (A))2 + 4aij...jrj(A)

)
.

ri(A) =
∑

i2,...,im∈N
δii2...im

=0

aii2...im , rji (A) =
∑

δii2...im
=0

δji2...im
=0

aii2...im = ri(A)− aij...j .

Furthermore, Ωmax ≤ Rmax.

The method used in Theorem 1.5 also provides a lower bound on Ωmin of A.

Theorem 1.6 Let A = (ai1,...,im) ∈ R[m,n] be nonnegative with n ≥ 2. Then

ρ(A) ≥ Ωmin,

where

Ωmin = min
i,j∈N
j ̸=i

1

2

(
ai...i + aj...j + rji (A) +

√
(ai...i − aj...j + rji (A))2 + 4aij...jrj(A)

)
.

Furthermore, Ωmin ≤ ρ(A) ≤ Ωmax.

In order to obtain tighter bounds, let A = (ai1,...,im) ∈ R[m,n] be nonnegative with n ≥ 2.
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We denote

Θi = {(i2, i3, . . . , im) : ij = i for some j ∈ {2, . . . ,m}, where i, i2, . . . , im ∈ N},

Θi = {(i2, i3, . . . , im) : ij ̸= i for any j ∈ {2, . . . ,m}, where i, i2, . . . , im ∈ N},

rΘi
i (A) =

∑
(i2,...,im)∈Θi
δii2,...,im

=0

aii2,...,im , rΘi
i (A) =

∑
(i2,...,im)∈Θi

aii2,...,im ,

where

δi1...im =

{
1, if i1 = · · · = im,

0, otherwise.

Obviously, ri(A) = rΘi
i (A) + rΘi

i (A) and rji (A) = rΘi
i (A) + rΘi

i (A)− aij...j .

Theorem 1.7 ([10]) Let A = (ai1,...,im) ∈ R[m,n] be nonnegative with n ≥ 2. Then

∆min ≤ ρ(A) ≤ ∆max,

where

∆min = min
i,j∈N,
j ̸=i

∆i,j(A), ∆max = max
i,j∈N,
j ̸=i

∆i,j(A),

∆i,j(A) =
1

2
(ai,...,i + aj,...,j + rΘi

i (A) + Λ
1
2 ), Λ = (ai,...,i − aj,...,j + rΘi

i (A))2 + 4rΘi
i (A)rj(A).

Li et al. [10] had compared these bounds in Theorems 1.4 and 1.7.

Theorem 1.8 ([10]) Let A = (ai1,...,im) ∈ R[m,n] be nonnegative with n ≥ 2. Then

Rmin ≤ ∆min ≤ ∆max ≤ Rmax.

In this paper, we continue to focus on the bounds for the spectral radius of nonnegative

tensors and propose one new lower bound and one new upper bound. It is proved that these

new bounds are tighter than the corresponding bounds in [8–10]. At last a numerical example is

given to verify the effectiveness of theory results.

2. New bounds for the spectral radius of nonnegative tensors

Now we establish the new bounds for spectral radius of nonnegative tensors.

Theorem 2.1 Let A = (ai1,...,im) ∈ R[m,n] be a nonnegative tensor with n ≥ 2. Then

Ψmin ≤ ρ(A) ≤ Ψmax,

where

Ψmin = min
i,j∈N,
j ̸=i

Ψi,j(A), Ψmax = max
i,j∈N,
j ̸=i

Ψi,j(A),

and

Ψi,j(A) =
1

2
(ai,...,i + aj,...,j + rΘi

i (A) + rΘi
j (A) +∇ 1

2 ),

∇ = (ai,...,i − aj,...,j + rΘi
i (A)− rΘi

j (A))2 + 4rΘi
i (A)rΘi

j (A).
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Proof Let x = (x1, x2, . . . , xn)
T be an eigenvector to ρ(A) of A and satisfy

Axm−1 = ρ(A)x[m−1]. (2.1)

Without loss of generality, we suppose that

xtp ≥ xtp−1 ≥ · · · ≥ xt2 ≥ xt1 > xn−p = xn−p−1 = · · · = x1 = 0, p > 0, p ∈ N.

(i) Firstly, we prove

Ψmin = min
i,j∈N,
j ̸=i

Ψi,j(A) ≤ ρ(A).

By Eq. (2.1), we have

(ρ(A)− at1,...,t1)x
m−1
t1 =

∑
(i2,...,im)∈Θt1
δt1i2...im

=0

at1i2,...,imxi2 , . . . , xim +
∑

(i2,...,im)∈Θt1

at1i2,...,imxi2 , . . . , xim .

Hence,

(ρ(A)− at1...t1)x
m−1
t1 ≥

∑
(i2,...,im)∈Θt1
δt2i2,...,im

=0

at1i2,...,imxm−1
t1 +

∑
(i2,...,im)∈Θt1

at1i2,...,imxm−1
t2

= r
Θt1
t1 (A)xm−1

t1 + r
Θt1
t1 (A)xm−1

t2 ,

i.e.,

(ρ(A)− at1,...,t1 − r
Θt1
t1 (A))xm−1

t1 ≥ r
Θt1
t1 (A)xm−1

t2 ≥ 0. (2.2)

Similarly, from Eq. (2.1), we obtain,

(ρ(A)− at2,...,t2 − r
Θt1
t2 (A))xm−1

t2 ≥ r
Θt1
t2 (A)xm−1

t1 ≥ 0. (2.3)

Multiplying Inequality (2.2) with Inequality (2.3) yields

(ρ(A)− at1,...,t1 − r
Θt1
t1 (A))(ρ(A)− at2,...,t2 − r

Θt1
t2 (A)) ≥ r

Θt1
t1 (A)r

Θt1
t2 (A).

Then solving for ρ(A) gives

ρ(A) ≥ Ψt1,t2(A) ≥ min
i,j∈N,
i̸=j

Ψi,j(A) = Ψmin.

(ii) Similar to the argument in (i), we easily get

ρ(A) ≤ Ψtp,tp−1(A) ≤ max
i,j∈N,
i ̸=j

Ψi,j(A) = Ψmax.

The conclusion follows by combining (i) and (ii). 2
We next compare the bounds in Theorems 1.4, 1.6, 1.7 and 2.1.

Theorem 2.2 Let A ∈ R[m,n] be a nonnegative tensor with n ≥ 2. Then

Rmin ≤ Ωmin ≤ ∆min ≤ Ψmin ≤ ρ(A) ≤ Ψmax ≤ ∆max ≤ Ωmax ≤ Rmax. (2.4)

Proof Without loss of generality, we suppose that Ri(A) ≤ Rj(A), ∀ i, j ∈ N , i ̸= j, then

aii,...,i − ajj,...,j + rji (A) + aij,...,j ≤ rj(A).
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Hence,

(aii,...,i − ajj,...,j + rji (A))2 + 4aij,...,jrj(A)

≥ (aii,...,i − ajj,...,j + rji (A))2 + 4aij,...,j(aii,...,i − ajj,...,j + rji (A) + aij,...,j)

= (aii,...,i − ajj,...,j + rji (A))2 + 4aij,...,j(aii,...,i − ajj,...,j + rji (A)) + 4a2ij,...,j

= (aii,...,i − ajj,...,j + rji (A) + 2aij,...,j)
2.

When aii,...,i − ajj,...,j + rji (A) + 2aij,...,j > 0, we obtain

aii,...,i + ajj,...,j + rji (A) +

√
(aii,...,i − ajj,...,j + rji (A))2 + 4aij,...,jrj(A)

≥ aii,...,i + ajj,...,j + rji (A) + aii,...,i − ajj,...,j + rji (A) + 2aij,...,j

= 2(aii,...,i + rji (A) + aij,...,j) = 2Ri(A).

When aii,...,i − ajj,...,j + rji (A) + 2aij,...,j ≤ 0, that is, aii,...,i + rji (A) + 2aij,...,j ≤ ajj,...,j , we

obatin

aii,...,i + ajj,...,j + rji (A) +

√
(aii,...,i − ajj,...,j + rji (A))2 + 4aij,...,jrj(A)

≥ aii,...,i + ajj,...,j + rji (A) +

√
(aii,...,i − ajj,...,j + rji (A))2

= aii,...,i + ajj,...,j + rji (A)− aii,...,i + ajj,...,j − rji (A)

= 2ajj,...,j ≥ 2(aii,...,i + rji (A) + 2aij,...,j)

≥ 2(aii,...,i + rji (A) + aij,...,j) = 2Ri(A).

Therefore,

1

2

(
aii,...,i + ajj,...,j + rji (A) +

√
(aii,...,i − ajj,...,j + rji (A))2 + 4aij,...,jrj(A)

)
≥ Ri(A),

which implies

min
i,j∈N
i ̸=j

1

2

(
aii,...,i + ajj,...,j + rji (A) +

√
(aii,...,i − ajj,...,j + rji (A))2 + 4aij,...,jrj(A)

)
≥ min

i∈N
Ri(A),

i.e., Rmin ≤ Ωmin. Similarly, we can prove that the other inequalities in (2.4) also hold. The

proof is completed. 2
Example 2.3 Consider the nonnegative tensor

A = [A(:, :, 1), A(:, :, 2), A(:, :, 3)] ∈ R[3,3],

where

A(:, :, 1) =

 0.2192 0.4411 0.5232

0.7637 0.5239 0.8330

0.7993 0.3710 0.5328

 , A(:, :, 2) =

 0.4380 0.0482 0.1325

0.1803 0.6729 0.1809

0.3773 0.1079 0.8965

 ,

A(:, :, 3) =

 0.0779 0.1982 0.4691

0.5135 0.8284 0.7352

0.1135 0.1163 0.8645

 .
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We now compute the bounds for ρ(A).

By Theorem 1.4, we have 2.5474 ≤ ρ(A) ≤ 5.2318.

By Theorem 1.6, we have 2.6125 ≤ ρ(A) ≤ 5.0753.

By Theorem 1.7, we have 3.0097 ≤ ρ(A) ≤ 4.7894.

By Theorem 2.1, we have 3.2137 ≤ ρ(A) ≤ 4.6547.

It is easy to see that the bounds in Theorem 2.1 are tighter than all the others. In fact [11,12],

the spectral radius ρ(A) = 3.7883.
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