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Abstract In this paper, we mainly investigate some properties of meromorphic solutions for

several q-difference equations, which can be seen as the q-difference analogues of Painlevé equa-

tions. Some results about the existence and the estimates of growth of meromorphic solution f

for q-difference equations are obtained, especially for some estimates for the exponent of con-

vergence of poles of ∆qf(z) := f(qz) − f(z), which extends some previous results by Qi and

Yang.
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1. Introduction

About a hundred years ago, Painlevé and his colleagues [1] studied the equation

w′′(z) = F (z;w;w′),

where F is rational in w and w′ and (locally) analytic in z. They singled out a list of 50

equations, six of which could not be integrated in terms. Differential Painlevé equations have

been an important research subject in the field of the mathematics and physics since the beginning

of last century. They occur in many physical situations–plasma physics, statistical mechanics,

nonlinear waves, and so on. Therefore, Painlevé equations have attracted much interest as the

reduction of solution equations which are solvable by inverse scattering transformations, and so

on.

The discrete Painlevé equations in the 1990s have become important research problems [2,3].

For example, the following equations

yn+1 + yn−1 =
an+ b

yn
+ c, yn+1 + yn−1 =

an+ b

yn
+

c

y2n
,
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are called the special discretization of discrete PI , and the equation

yn+1 + yn−1 =
(an+ b)yn + c

1− y2n
,

is called the special discretization of the discrete PII , where a, b, c are constants, n ∈ N+.

Of late, due to those results about the difference analog of the lemma on the logarithmic

derivative given by Chiang and Feng in [4], and Halburd and Korhonen in [5] independently,

there has been an increasing interest in studying complex difference equations, a number of papers

[4,6,7] focused on complex difference equations and difference analogues of Nevanlinna’s theory.

For example, Halburd and Korhonen [5, 8, 9] around 2006s used Nevanlinna value distribution

theory to single out the difference Painlevé I and II equations from the following form

w(z + 1) + w(z − 1) = R(z, w), (1.1)

where R(z, w) is rational in w and meromorphic in z. They obtained that if (1.1) has an admis-

sible meromorphic solution of finite order, then either w satisfies a difference Riccati equation,

or (1.1) can be transformed by a linear change in w to some difference equations, which include

difference Painlevé I equations

w(z + 1) + w(z − 1) =
az + b

w(z)
+ c, (1.2)

w(z + 1) + w(z − 1) =
(az + b)

w(z)
+

c

w(z)2
, (1.3)

and difference Painlevé II equation

w(z + 1) + w(z − 1) =
(az + b)w(z) + c

1− w(z)2
. (1.4)

Recently, there were many interest results on some properties of finite order transcendental

meromorphic solutions of (1.2)–(1.4). In 2007, Barnett, Halburd, Korhonen and Morgan [10]

firstly established an analogue of the Logarithmic Derivative Lemma on q-difference operators.

In 2007 and 2010, Laine and Yang, Zhang and Korhonen, Zheng and Chen further studied some

properties on the value distribution of q-difference operator of meromorphic function. Moreover,

in the past 15 years, there were also lots of results about q-difference operators, q-difference

equations, and so on [11–21], by replacing the q-difference f(qz), q ∈ C−{0, 1} with the usual shift

f(z + c) of a meromorphic function in some expression concerning complex difference equations

and complex difference operators. To state their results, we first introduce some notations and

some assumptions as follows.

Throughout this article, a term “meromorphic” will always mean meromorphic in the complex

plane C. In what follows, we assume that the reader is familiar with the fundamental results and

the standard notations of the Nevanlinna value distribution theory of meromorphic functions

[22–24]. Further, for a meromorphic function f , let σ(f), λ(f) and λ( 1f ) be the order, the

exponent of convergence of zeros and the exponent of convergence of poles of f(z), respectively,



Solutions for Q-difference Painlevé equation 509

and let τ(f) be the exponent of convergence of fixed points of f(z), which is defined by

τ(f) = lim sup
r→+∞

logN(r, 1
f(z)−z )

log r
.

In addition, we use S(r, f) to denote any quantity satisfying S(r, f) = o(T (r, f)) for all r

outside a possible exceptional set E of finite logarithmic measure

lim
r→∞

∫
[1,r)∩E

dt

t
< ∞,

and a meromorphic function a(z) is called a small function with respect to f if T (r, a(z)) =

S(r, f), and we use S(f) to denote the field of small functions relative to f(z).

In 2010, Chen and Shon [25] considered the difference Painlevé I equation (1.2) and obtained

the following theorem.

Theorem 1.1 ([25, Theorem 4]) Let a, b, c be constants, where a, b are not both equal to zero.

Then

(i) If a ̸= 0, then (1.2) has no rational solution;

(ii) If a = 0, and b ̸= 0, then (1.2) has a nonzero constant solution w(z) = A, where A

satisfies 2A2 − cA− b = 0.

The other rational solution w(z) satisfies w(z) = P (z)
Q(z)+A, where P (z) and Q(z) are relatively

prime polynomials and satisfy degP < degQ.

In 2015, Li ang Huang [26] further investigated the properties of solutions of a certain type

of difference equation, and obtained some results which are an improvement of Theorem 1.1.

Theorem 1.2 ([26, Theorem 2.1]) Let c be a nonzero constant, and A(z) = m(z)
n(z) be an irreducible

rational function, where m(z) and n(z) are polynomials with degm(z) = m and deg n(z) = n.

(i) Suppose that m ≥ n and m− n is an even number or zero. If the difference equation

w(z + 1) + w(z − 1) =
A(z)

w(z)
+ c (1.5)

has an irreducible rational solution w(z) = P (z)
Q(z) , where P (z) and Q(z) are polynomials with

degP (z) = p and degQ(z) = q, then p− q = m−n
2 .

(ii) Suppose that m < n. If the difference equation (1.5) has an irreducible rational solution

w(z) = P (z)
Q(z) , then q − p = n−m ≥ 1 or q − p = 0.

(iii) Suppose that m > n and m − n is an odd number. Then the difference equation (1.5)

has no rational solution.

Theorem 1.3 ([26, Theorem 3.1]) Suppose that the equation

w(z + 1) + w(z − 1) =
A(z)

w(z)
+ C(z),

where A(z), C(z) ∈ S(w), admits a finite order transcendental meromorphic solution w(z). Then

(i) λ(w) = λ( 1
w ) = σ(w);

(ii) w(z) has no Borel exceptional value;
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(iii) If A(z) ̸≡ 2z2− zC(z), then the exponent of convergence of fixed points of w(z) satisfies

τ(w) = σ(w).

In the same year, Qi and Yang [27] investigated the following equation

w(qz) + w(
z

q
) =

az + b

w(z)
+ c, (1.6)

which can be seen as q-difference analogues of (1.2), and obtained the following theorem.

Theorem 1.4 ([27, Theorem 1.1]) Let f(z) be a transcendental meromorphic solution with zero

order of equation (1.6), and a, b, c be three constants such that a, b cannot vanish simultaneously.

Then,

(i) f(z) has infinitely many poles.

(ii) If a ̸= 0 and any d ∈ C, then f(z)− d has infinitely many zeros.

(iii) If a = 0 and f(z) takes a finite value A finitely often, then A is a solution of 2z2−cz−b =

0.

In 2017, Xu, Liu and Zheng [28] further investigated some properties of transcendental mero-

morphic solutions of the equations (1.6), and obtained the following theorem, which extends

Theorem 1.4.

Theorem 1.5 ([28, Theorem 1.3]) Let a, b, c be constants with |a|+ |b| ̸= 0. Suppose that w(z)

is a zero order transcendental meromorphic solution of (1.6). Then

(i) If a ̸= 0, p(z) is a polynomial of degree k ≥ 0 and |q| ̸= 1, then w(z)− p(z) has infinitely

many zeros and λ(w − p) = σ(w);

If a = 0, then Borel exceptional values of w(z) can only come from the set E = {z|2z2−cz−b =

0};
(ii) λ( 1

w ) = λ( 1
∆qw

) = σ(∆qw) = σ(w).

Inspired by the above results, we further investigate some properties of meromorphic solutions

of some types of q-difference equations which are different from (1.5) and (1.6) to some extent,

and obtain the following theorems.

Theorem 1.6 Let q ∈ C − {0} and |q| ≠ 1, c be a nonzero constant, and A(z) = m(z)
n(z) be

an irreducible rational function, where m(z) and n(z) are polynomials with degm(z) = m and

deg n(z) = n.

(i) Suppose that m ≥ n and m− n is an even number or zero. If the difference equation

f(qz) + f(z) + f(
z

q
) =

A(z)

f(z)
+ c (1.7)

has an irreducible rational solution f(z) = P (z)
R(z) , where P (z) and R(z) are polynomials with

degP (z) = p and degR(z) = r, then p− r = m−n
2 .

(ii) Suppose that m < n. If the difference equation (1.7) has an irreducible rational solution

f(z) = P (z)
R(z) , then f(z) satisfies one of the following two cases

(a) r − p = n−m ≥ 1;
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(b) r − p = 0 and f(z) = P (z)
R(z) = η + S(z)

H(z) , where η = c
3 , S(z) and H(z) are polynomials

with degS(z) = s and degH(z) = h, and s− h = m− n;

(iii) Suppose that m > n and m − n is an odd number. Then the difference equation (1.7)

has no rational solution.

Theorem 1.7 Let q ∈ C− {0, 1}. Suppose that the equation

f(qz) + f(z) + f(
z

q
) =

A(z)

f(z)
+ C(z), (1.8)

where A(z)( ̸≡ 0), C(z) ∈ S(f), admits a zero order transcendental meromorphic solution f(z).

Then

(i) f(z) has infinitely many poles and zeros, ∆qf also has infinitely many poles, and

λ(f) = λ(
1

f
) = λ(

1

∆qf
),

and further, if C(z) ̸≡ 0, we have that ∆2
qf,

∆qf
f ,

∆2
qf

f have infinitely many poles, respectively,

and

λ(
1

∆2
qf

) = λ(
1

∆qf
f

) = λ(
1

∆2
qf

f

).

(ii) If A(z) ̸≡ (q+1+ 1
q )z

2−zC(z), then f has infinitely many fixed points and the exponent

of convergence of fixed points of f satisfies τ(f) = σ(f).

2. Some lemmas

The following result can be called an analogue of q-difference Clunie lemma, recently proved

by Barnett et al. [10, Theorem 2.1]. Here a q-difference polynomial of f for q ∈ C\{0, 1}
is a polynomial in f(z) and finitely many of its q-shifts f(qz), . . . , f(qnz) with meromorphic

coefficients in the sense that their Nevanlinna characteristic functions are o(T (r, f)) on a set F

of logarithmic density 1, where the logarithmic density of a set F is defined by

lim sup
r→∞

1

log r

∫
[1,r]∩F

1

t
dt.

Lemma 2.1 ([14, Theorem 2.5]) Let f be a transcendental meromorphic solution of order zero

of a q-difference equation of the form

Uq(z, f)Pq(z, f) = Qq(z, f),

where Uq(z, f), Pq(z, f) and Qq(z, f) are q-difference polynomials such that the total degree deg

Uq(z, f) = n in f(z) and its q-shifts, whereas degQq(z, f) ≤ n. Moreover, we assume that

Uq(z, f) contains just one term of maximal total degree in f(z) and its q-shifts. Then

m(r, Pq(z, f)) = o(T (r, f)),

on a set of logarithmic density 1.

Lemma 2.2 ( [10, Theorem 2.5]) Let f be a nonconstant zero-order meromorphic solution
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of Pq(z, f) = 0, where Pq(z, f) is a q-difference polynomial in f(z). If Pq(z, a) ̸≡ 0 for slowly

moving target a(z), then

m(r,
1

f − a
) = o(T (r, f)),

on a set of logarithmic density 1.

Lemma 2.3 ([19, Theorems 1.1 and 1.3]) Let f(z) be a nonconstant zero-order meromorphic

function and q ∈ C \ {0}. Then

T (r, f(qz)) = (1 + o(1))T (r, f(z)), N(r, f(qz)) = (1 + o(1))N(r, f(z)),

on a set of lower logarithmic density 1.

Lemma 2.4 ( [29]) Let f(z) be a meromorphic function. Then for all irreducible rational

functions in f ,

R(z, f(z)) =

∑m
i=0 ai(z)f(z)

i∑n
j=0 bj(z)f(z)

j
,

with meromorphic coefficients ai(z), bj(z), the characteristic function of R(z, f(z)) satisfies that

T (r,R(z, f(z))) = dT (r, f) +O(Ψ(r)),

where d = max{m,n} and Ψ(r) = maxi,j{T (r, ai), T (r, bj)}.

Lemma 2.5 ([10, Theorem 1.1]) Let f(z) be a nonconstant zero-order meromorphic function

and q ∈ C \ {0}. Then

m(r,
f(qz)

f(z)
) = S(r, f)

on a set of logarithmic density 1.

3. The Proof of Theorem 1.6

Assume that (1.7) has a rational solution f(z) = P (z)
R(z) and has poles z1, z2, . . . , zk. Then f(z)

can be represented in the following form

f(z) =
P (z)

R(z)
=

k∑
j=1

[
cjλj

(z − zj)λj
+ · · ·+ cj1

(z − zj)
] + a0 + a1z + · · ·+ avz

v, (3.1)

where cjλj ( ̸= 0), . . . , cj1 (j = 1, 2, . . . , k), and a0, a1, . . . , av are constants, zj (j = 1, 2, . . . , k) are

poles of f(z) with multiplicity λj , respectively.

(i) Suppose that m > n and m− n is an even number. Then by (1.7) and (3.1), we deduce

P (z)

R(z)

[P (qz)

R(qz)
+

P (z)

R(z)
+

P ( zq )

R( zq )

]
− c

P (z)

R(z)
=

m(z)

n(z)
. (3.2)

If degP (z) = p < r = degR(z), then it yields

P (qz)

R(qz)
→ 0,

P (z)

R(z)
→ 0,

P ( zq )

R( zq )
→ 0,
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as z → ∞. However, m(z)
n(z) → ∞ as z → ∞, thus, a contradiction.

If p = r, then

P (qz)

R(qz)
→ α,

P (z)

R(z)
→ α,

P ( zq )

R( zq )
→ α,

as z → ∞, where α is a non-zero constant. From (3.2), we also get a contradiction. Thus, we

have p > r. Then, we can assume that av ̸= 0 (v ≥ 1). As z → ∞, it follows

f(z) = avz
v(1 + o(1)), f(qz) = avq

vzv(1 + o(1)),

f(
z

q
) = avq

−vzv(1 + o(1)),
m(z)

n(z)
= βzm−n(1 + o(1)),

where β(̸= 0) is a constant, and it follows now in view of (3.2) that

[qv + 1 + q−v]a2vz
2v − kavz

v(1 + o(1)) = βzm−n(1 + o(1)), (3.3)

as z → ∞. Since |q| ̸= 1, we have qv + 1 + q−v ̸= 0. Hence it follows from (3.3) that

p− r = v =
m− n

2
.

Now, we assume that m = n. As z → ∞, it follows

m(z)

n(z)
= β(1 + o(1)),

where β(̸= 0) is a constant. If p < r, then by using the same argument as above, we get a

contradiction. If p > r, then we can assume that av ̸= 0 (v ≥ 1). By using the same argument

as above, we conclude

[qv + 1 + q−v]a2vz
2v − kavz

v(1 + o(1)) = β(1 + o(1)), (3.4)

as z → ∞, a contradiction. Therefore, it yields p− r = 0 = m−n
2 .

(ii) Suppose that m < n. If p > r, then we can assume that av ̸= 0 (v ≥ 1). Thus by using

the same argument as above, we obtain [qv + 1 + q−v]a2vz
2v(1 + o(1)) = 0, a contradiction.

If p = r, then we can assume that a0 ̸= 0 and aj = 0, j = 1, 2, . . . , v. Thus, we have

3a0(1 + o(1)) =
o(1)

a0(1 + o(1))
+ c, (3.5)

which implies a0 = c
3 . Hence, f(z) can be represented as

f(z) = η +
S(z)

H(z)
, (3.6)

where η = c
3 , S(z) and H(z) are polynomials, and degS(z) = s < degH(z) = h. Substituting

(3.6) into (1.7) yields

η
(
n(z)S(z)H(qz)H(z)H(

z

q
) + n(z)S(qz)H2(z)H(

z

q
) + n(z)S(

z

q
)H2(z)H(qz)

)
+

n(z)S(z)S(qz)H(
z

q
)H(z) + n(z)S(z)S(

z

q
)H(qz)H(z)+

n(z)S(z)2H(qz)H(
z

q
) = m(z)H(z)2H(qz)H(

z

q
). (3.7)



514 Hongyan XU and Xiumin ZHENG

Then, we conclude

deg[n(z)S(z)H(qz)H(z)H(
z

q
) + n(z)S(qz)H2(z)H(

z

q
) + n(z)S(

z

q
)H2(z)H(qz)]

= 3h+ n+ s,

deg[n(z)S(z)S(qz)H(
z

q
)H(z) + n(z)S(z)S(

z

q
)H(qz)H(z) + n(z)S(z)2H(qz)H(

z

q
)]

= 2h+ n+ 2s,

deg[m(z)H(z)2H(qz)H(
z

q
)] = 4h+m.

Since h > s, we have 3h+ n+ s > 2h+ n+ 2s and 3h+ n+ s = 4h+m, that is, n−m = h− s.

If p < r, by f(z) = P (z)
R(z) and (1.7), we deduce

n(z)P (z)2R(qz)R(
z

q
) + n(z)P (z)P (qz)R(z)R(

z

q
)+

n(z)P (z)P (
z

q
)R(z)R(qz)− cn(z)P (z)R(z)R(qz)R(

z

q
)

= m(z)R(z)2R(qz)R(
z

q
).

So, it follows

deg[n(z)P (z)2R(qz)R(
z

q
) + n(z)P (z)P (qz)R(z)R(

z

q
) + n(z)P (z)P (

z

q
)R(z)R(qz)]

= n+ 2p+ 2r,

deg[n(z)P (z)R(z)R(qz)R(
z

q
)] = n+ p+ 3r,

deg[m(z)R(z)2R(qz)R(
z

q
)] = m+ 4r.

Since m < n and p > r, it yields n+ 2p+ 2r < n+ p+ 3r = m+ 4r, that is, 1 ≤ n−m = r− p.

(iii) Suppose that m > n and m − n is an odd number. If (1.7) has a rational solution

f(z) = P (z)
R(z) . By using the same argument as in (i), we also get p − r = m−n

2 , a contradiction.

Hence, the equation (1.7) has no rational solution.

Therefore, we complete the proof of Theorem 1.6. �

4. The Proof of Theorem 1.7

Suppose that f(z) is a zero order transcendental meromorphic solution of (1.8).

(i) From (1.8), it yields

f(z)[f(qz) + f(z) + f(
z

q
)] = C(z)f(z) +A(z). (4.1)

In view of (4.1) and Lemma 2.1, it follows

m(r, f(qz) + f(z) + f(
z

q
)) = S(r, f), (4.2)

on a set F of logarithmic density 1. Since f(z) is of zero-order, we can conclude from Lemma

2.2 that

N(r, f(qz) + f(z) + f(
z

q
)) ≤ N(r, f(qz)) +N(r, f) +N(r, f(

z

q
))



Solutions for Q-difference Painlevé equation 515

= 3(1 + o(1))N(r, f), (4.3)

on a set of lower logarithmic density 1.

Since A(z) ̸≡ 0 and A(z), C(z) ∈ S(f), applying Lemma 2.4 for (1.8) gives

T (r, f(qz) + f(z) + f(
z

q
)) = T (r, f) + S(r, f). (4.4)

Thus, it follows from (4.2)–(4.4) that

T (r, f) ≤ 3(1 + o(1))N(r, f) + S(r, f), (4.5)

on a set F of logarithmic density 1. Thus, f(z) has infinite many poles and

λ(
1

f
) ≥ σ(f). (4.6)

On the other hand, we can rewrite from (1.8) as

P1(z, f(z)) = f(z)[f(qz) + f(z) + f(
z

q
)]− C(z)f(z)−A(z) = 0. (4.7)

Since A(z) ̸≡ 0, we have P1(z, 0) = −A(z) ̸≡ 0. Thus, by Lemma 2.2, it follows m(r, 1
f ) = S(r, f),

on a set F of logarithmic density 1. Hence

N(r,
1

f
) = T (r, f) + S(r, f),

on a set F of logarithmic density 1. Therefore, f(z) has infinite many zeros and λ(f) = σ(f).

Next, we will prove that λ( 1
∆qf

) ≥ λ( 1f ). Set z = qw, then we can rewrite (1.8) as the form

f(q2w) + f(qw) + f(w) =
A(qw)

f(qw)
+ C(qw). (4.8)

Then it follows from (4.8) that

f(qw)[f(q2w) + f(qw) + f(w)] = A(qw) + C(qw)f(qw). (4.9)

Since ∆qf(w) = f(qw) − f(w), it follows f(qw) = ∆qf(w) + f(w) and f(q2w) = ∆qf(qw) +

∆qf(w) + f(w). Substituting them into (4.9) yields

[∆qf(w) + f(w)][∆qf(qw) + 2∆qf(w) + 3f(w)] = A(qw) + C(qw)[∆qf(w) + f(w)],

i.e.,

−3f(w)2 =[∆qf(qw) + 5∆qf(w)− C(qw)]f(w)−A(qw)+

[∆qf(qw) + 2∆qf(w)− C(qw)]∆qf(w). (4.10)

Since f(z) is a zero order transcendental meromorphic function and z = qw, A(z), C(z) ∈ S(f),
we can conclude that f(w),∆qf(w),∆qf(qw) are of zero order, and A(qw), C(qw) ∈ S(f). Set

∆2
qf(w) := ∆q(∆qf(w)), so it follows ∆qf(qw) = ∆2

qf(w) + ∆qf(w). Thus, by Lemma 2.3 it

yields

N(r,∆2
qf(w)) ≤ 2N(r,∆qf(w)) + S(r, f), (4.11)

on a set F of logarithmic density 1. Thus, from (4.11) we conclude

N(r,∆qf(qw)) ≤ 3N(r,∆qf(w)) + S(r, f), (4.12)
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on a set F of logarithmic density 1. Thus, from (4.11) and (4.12), it follows

2N(r, f(w)) =N(r, [∆qf(qw) + 5∆qf(w)− C(qw)]f(w)−A(qw)+

[∆qf(qw) + ∆qf(w)− C(qw)]∆qf(w)

≤N(r, f(w)) + 9N(r,∆qf(w)) + S(r, f),

on a set F of logarithmic density 1, that is,

N(r, f(w)) ≤ 9N(r,∆qf(w)) + S(r, f), (4.13)

on a set F of logarithmic density 1. Then, it follows from (4.13) that ∆qf(w) has infinite many

poles and

λ(
1

∆qf
) ≥ λ(

1

f
). (4.14)

So, we can conclude from Lemma 2.3 that T (r,∆qf) ≤ 2T (r, f)+S(r, f) on a set F of logarithmic

density 1, that is, σ(f) ≥ σ(∆qf). Thus, combining this and (4.6) yields

λ(f) = λ(
1

f
) = λ(

1

∆qf
).

Here, we will prove that

λ(
1

∆2
qf

) = λ(
1

∆qf
f

) = λ(
1

∆2
qf

f

).

At first, it can be seen that A(z)+C(z)f(z) and f(z)2 are mutually prime polynomials in f(z),

where A(z), C(z) are nonzero small functions with respect to f(z). In fact, we can take u(z, f) =

A(z)−C(z)f(z) and v(z, f) = C(z)2, it follows u(z, f)(A(z)+C(z)f(z))+v(z, f)f(z)2 = A(z)2.

Thus, from (1.7) and by Lemma 2.4, we have

2T (r, f) = T (r,
A(z) + C(z)f(z)

f(z)2
) + S(r, f)

= T (r,
f(qz) + f(z) + f( zq )

f(z)
) + S(r, f)

≤ 2T (r,
f(qz)

f(z)
) + S(r, f) = 2T (r,

∆qf

f
) + S(r, f),

that is,

T (r, f) ≤ T (r,
∆qf

f
) + S(r, f).

Hence we can conclude from Lemma 2.5 that

N(r,
∆qf

f
) = T (r,

∆qf

f
)−m(r,

∆qf

f
) ≥ T (r, f) + S(r, f), (4.15)

and by combining (4.15), it follows

N(r,
∆qf

f
) ≤ T (r,

∆qf

f
) + S(r, f) ≤ 3T (r, f) + S(r, f),

which means that
∆qf
f has infinitely many poles and λ( 1

∆qf

f

) = σ(f).
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Besides, in view of (1.8), it yields

∆2
qf(

z

q
) = ∆qf(z)−∆qf(

z

q
) =

−3f(z)2 + C(z)f(z) +A(z)

f(z)
,

then by applying Lemmas 2.3 and 2.4 for the above equality, we conclude

2T (r, f(z)) = T (r,
−3f(z)2 + C(z)f(z) +A(z)

f(z)
) + S(r, f)

= T (r,∆2f(
z

q
)) + S(r, f) = T (r,∆2

qf(z)) + S(r, f). (4.16)

Thus, by Lemma 2.3 and (4.16), it yields

3T (r, f) + S(r, f) ≥ N(r,∆2
qf) = T (r,∆2

qf)−m(r,∆2
qf)

≥ 2T (r, f)− T (r, f) + S(r, f) = T (r, f) + S(r, f),

which implies that ∆2
qf has infinitely many poles and λ( 1

∆2
qf
) = σ(f).

Finally, from the above argument, we can deduce

3T (r, f) + S(r, f) ≥ N(r,
∆2

qf

f
) = T (r,

∆2
qf

f
)−m(r,

∆2
qf

f
)

≥ T (r,∆2
qf)− T (r, f) + S(r, f) = T (r, f) + S(r, f),

which implies that
∆2

qf

f has infinitely many poles and λ( 1
∆2

qf

f

) = σ(f). Therefore, (i) is proved.

(ii) Set g(z) = f(z) − z. Then g(z) is a zero-order transcendental meromorphic function

with σ(g) = σ(f) and τ(f) = λ(g). Substituting f(z) = g(z) + z into (1.8), we can deduce

P2(z, g(z)) =(g(z) + z)[g(qz) + g(z) + g(
z

q
)] + [(q + 1 +

1

q
)z − C(z)]g(z)+

(q + 1 +
1

q
)z2 − zC(z)−A(z) = 0.

Since P2(z, 0) = (q+1+ 1
q )z

2 − zC(z)−A(z) ̸≡ 0, by Lemma 2.2, it follows m(r, 1
g ) = S(r, f) on

a set F of logarithmic density 1. By using the same argument as in the proof of Theorem 1.7 (i),

we conclude

N(r,
1

g
) = T (r, f) + S(r, f)

on a set F of logarithmic density 1, which implies τ(f) = λ(g) = σ(f).

Therefore, we complete the proof of Theorem 1.7. �
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