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Abstract In this paper, we introduce an inexact averaged projection algorithm to solve the

nonconvex multiple-set split feasibility problem, where the involved sets are semi-algebraic prox-

regular sets. By means of the well-known Kurdyka- Lojasiewicz inequality, we establish the

convergence of the proposed algorithm.
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1. Introduction

The split feasibility problem (SFP) was first presented by Censor et al. [1], it is an inverse

problem that arises in medical image reconstruction, phase retrieval, radiation therapy treatment,

signal processing. The SFP can be mathematically characterized by finding a point x∗ satisfying

x∗ ∈ C, Ax∗ ∈ Q, (1.1)

where C and Q are nonempty closed convex subsets of Rn and A is a matrix. If A = I, then

SFP (1.1) reduces to the classic feasibility problem (FP). There are various algorithms proposed

to solve the SFP (1.1), see [2–4] and the references therein. This paper considers the multiple-set

split feasibility problem (MFSP) which generalizes the SFP (1.1) and can be mathematically

characterized by finding a vector x∗ satisfying

x∗ ∈ C :=
t∩

i=1

Ci such that Ax∗ ∈ Q :=
r∩

j=1

Qj , (1.2)

where Ci ⊂ Rn, i = 1, . . . , t and Qj ⊂ Rm, j = 1, . . . , r are nonempty closed sets, A ∈ Rm×n is a

given matrix. Obviously, if t = r = 1, MSFP (1.2) reduces to SFP (1.1). For convenience, we let

SOL(MSFP) denote the solution set of MSFP (1.2). Although there are many methods proposed
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to deal with MSFP (1.2), most existing works [5–7] only focus on the convex settings, i.e., all the

involved sets are convex. This does not cover contemporary applications that involve nonconvex

constraints and the research in this direction is still in its infancy. In this paper, we consider

the MSFP (1.2) in a possibly nonconvex setting, i.e., we allow the sets Ci and Qi to be possibly

nonconvex. Recently, Attouch et al. [8] proposed the inexact averaged projection method (APM)

for solving a special nonconvex FP, where the involved sets are semi-algebraic prox-regular sets.

In this paper, our main motivation aims at extending the APM to solve the MSFP (1.2). By

means of the well-known Kurdyka- Lojasiewicz inequality, we establish the convergence of the

algorithm.

The rest of the paper is organized as follows. We introduce notations and some preliminary

results in Section 2. In Section 3, we study the convergence of the APM for solving MFSP (1.2).

2. Preliminaries

In this section, we summarize some notations and preliminaries to be used for further analysis.

Let F : Rn ⇒ Rm be a point-to-set mapping. Then its graph is defined by

GraphF := {(x, y) ∈ Rn ×Rm : y ∈ F (x)}.

For any subset S ⊂ Rn and any point x ∈ Rn, the distance and the projection of any point x

onto a set S are defined by

dS(x) := inf
y∈S

∥x− y∥ and PS(x) := arg min
y∈S

∥x− y∥,

respectively. When S := ∅, we set dS(x) := +∞ for all x.

Definition 2.1 The open ball with center c ∈ Rn and radius r > 0 is denoted by B(c, r) and

defined by

B(c, r) := {x ∈ Rn : ∥x− c∥ < r}.

Definition 2.2 Given a function f : Rn → R∪ {+∞}, the effective domain and the epigraph

of f are defined by

dom f := {x | f(x) < +∞} and epi f := {(x, α) ∈ Rn ×R : f(x) ≤ α},

respectively. We say that the function f is proper (respectively, lower semicontinuous) if dom f

(respectively, epi f) is nonempty (respectively, closed).

Let us recall definitions concerning subdifferential [9, 10].

Definition 2.3 ([10, Definition 8.3]) Let f : Rn → R∪{+∞} be a proper lower semicontinuous

function.

(i) The Fréchet subdifferential, or regular subdifferential, of f at x ∈ dom f , written ∂̂f(x),

is the set of vectors x∗ ∈ Rn that satisfy

lim inf
y ̸=x,y→x

f(y) − f(x) − ⟨x∗, y − x⟩
∥y − x∥

≥ 0.



536 Ke GUO and Chunrong ZHU

When x /∈ dom f , we set ∂̂f(x) := ∅.

(ii) The limiting-subdifferential, or simply the subdifferential, of f at x ∈ dom f , written

∂f(x), is defined as follows:

∂f(x) := {x∗ ∈ Rn : ∃xn → x, f(xn) → f(x), x∗
n ∈ ∂̂f(xn),with x∗

n → x∗}.

From Definition 2.3 we can find that

(i) The above definition implies ∂̂f(x) ⊆ ∂f(x) for each x ∈ Rn, where the first set is closed

convex while the second one is only closed.

(ii) Let {(xk, x
∗
k)} ⊂ Graph ∂f be a sequence that converges to (x, x∗). By the very definition

of ∂f(x), if f(xk) converges to f(x) as k → +∞, then (x, x∗) ∈ Graph ∂f .

(iii) A necessary condition for x ∈ Rn to be a minimizer of f is

0 ∈ ∂f(x). (2.1)

A point that satisfies (2.1) is called critical point.

Definition 2.4 (Kurdyka- Lojasiewicz inequality [11, Definition 3.1]) Let f : Rn → R∪ {+∞}
be a proper lower semicontinuous function. For −∞ < η1 < η2 ≤ +∞, set

[η1 < f < η2] := {x ∈ Rn : η1 < f(x) < η2}.

We say the function f has the KL property at x∗ ∈ dom ∂f if there exist η ∈ (0,+∞], a

neighborhood U of x∗ and a continuous concave function φ : [0, η) → R+, such that

(i) φ(0) = 0;

(ii) φ is C1 on (0, η) and continuous at 0;

(iii) φ′(s) > 0, ∀s ∈ (0, η);

(iv) For all x in U ∩ [f(x∗) < f < f(x∗) + η], the Kurdyka- Lojasiewicz inequality holds:

φ′(f(x) − f(x∗))d(0, ∂f(x)) ≥ 1.

Lemma 2.5 ([8, Lemma 2.6]) Let f : Rn → R ∪ {+∞} be a proper lower semicontinuous

function which satisfies the KL property at some x∗ ∈ Rn, a and b are fixed positive constants.

Denote by U, η and φ : [0, η) → R+ the objects appearing in the definition of the KL property at

x∗. Let δ, ρ > 0 such that B(x∗, δ) ⊂ U with ρ ∈ (0, δ). Consider a sequence {xk} which satisfies

conditions:

(H1) For each k ∈ N ,

f(xk+1) + a∥xk+1 − xk∥2 ≤ f(xk);

(H2) For each k ∈ N , there exists wk+1 ∈ ∂f(xk+1) such that

∥wk+1∥ ≤ b∥xk+1 − xk∥.

Assume moreover that

f(x∗) ≤ f(x0) < f(x∗) + η, (2.2)

∥x∗ − x0∥ + 2

√
f(x0) − f(x∗)

a
+

b

a
φ(f(x0) − f(x∗)) < ρ, (2.3)
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and

∀k ∈ N,xk ∈ B(x∗, ρ) ⇒ xk+1 ∈ B(x∗, δ), with f(xk+1) ≥ f(x∗).

Then, the sequence {xk} satisfies

xk ∈ B(x∗, ρ),
+∞∑
k=0

∥xk+1 − xk∥ < +∞, f(xk) → f(x∗), as k → ∞

and converges to a point x̄ ∈ B(x∗, δ) such that f(x̄) ≤ f(x∗). If the sequence {xk} also satisfies

condition:

(H3) There exist a subsequence {xkj} and x̄ such that

xkj → x̄ and f(xkj ) → f(x̄), as j → ∞.

Then x̄ is a critical point of f , and f(x̄) = f(x∗).

Corollary 2.6 ([8, Corollary 2.7]) Let f, x∗, ρ, δ be as in the previous Lemma 2.5. For q ≥ 1,

consider a finite family x0, . . . , xq which satisfies (H1) and (H2), conditions (2.2), (2.3) and

∀k ∈ {0, . . . , q}, (xk ∈ B(x∗, ρ)) ⇒ (xk+1 ∈ B(x∗, δ), with f(xk+1) ≥ f(x∗)).

Then xj ∈ B(x∗, ρ) for all j = 0, . . . , q.

Among real extended-valued lower semicontinuous functions, typical KL functions are semi-

algebraic functions or more generally functions definable in an o-minimal structure [12,13].

Definition 2.7 ([12, Definition 2.2]) (a) A subset S of Rn is a real semi-algebraic set if there

exists a finite number of real polynomial functions Pij , Qij : Rn → R such that

S =

p∪
j=1

q∩
i=1

{x ∈ Rn : Pij(x) = 0, Qij(x) < 0}.

(b) A function f : Rn → R ∪ {+∞} is called semi-algebraic if its graph {(x, λ) ∈ Rn+1 :

f(x) = λ} is a semi-algebraic subset of Rn+1.

Lemma 2.8 ([8, Lemma 2.3]) Let S be a nonempty semi-algebraic subset of Rm. Then the

function

x 7→ d2S(x)

is semi-algebraic.

Remark 2.9 If h(x) := 1
2d

2
Q(Ax), Q ⊂ Rm is semi-algebraic and A ∈ Rm×n is a matrix, then

h is semi-algebraic.

Definition 2.10 ([14, Theorem 1.3]) A closed set C ⊂ Rn is called prox-regular if its projection

PC is single-valued around each point in C.

Lemma 2.11 ([8, Theorem 3.4]) Let C ⊂ Rn be a closed prox-regular set and let g(x) := 1
2d

2
C(x).

Then for each x̄ ∈ C, there exists r1 > 0 such that:

(i) The projection PC is single-valued on B(x̄, r1);
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(ii) The function g is continuously differentiable on B(x̄, r1) and ∇g(x) = x− PC(x);

(iii) The gradient mapping ∇g is 1-Lipschitz continuous on B(x̄, r1).

Lemma 2.12 ([15, Theorem 1.16]) Let D1 ⊂ Rn be an open set. f : D1 → Rm, f(D1) ⊂
D2 ⊂ Rm, D2 is an open set, g : D2 → R. If f is Gâteaux differentiable at x0, g is Fréchet

differentiable at y0 = f(x0). Then h := g ◦ f : D1 → R is Gâteaux differentiable at x0, and

∇h(x0) = ∇f(x0) ◦ ∇g(y0).

Lemma 2.13 ([16, Theorem 2.1.5]) Let h : Rn → R be a continuous differentiable function

with gradient ∇h being Lipschitz continuous with the modulus L > 0. Then for any x, y ∈ Rn,

we have

|h(y) − h(x) − ⟨∇h(x), y − x⟩| ≤ L

2
∥y − x∥2.

3. Inexact averaged projection algorithm for MSFP(1.2)

A standard approach to solve (1.2) is based on a reformulation into the following optimization

problem

min
x

f(x) :=

t∑
i=1

gi(x) +

r∑
j=1

hj(x), (3.1)

where gi(x) := 1
2d

2
Ci

(x), hj(x) := 1
2d

2
Qj

(Ax). Indeed, it is easy to see that (1.2) is solved if and

only if (3.1) has an optimal solution with the optimal value being zero. Thus, in order to solve

(1.2), it suffices to solve (3.1).

Before introducing our algorithm, we first prove a key lemma.

Lemma 3.1 Let Q ⊂ Rm be a closed prox-regular set and A ∈ Rm×n be a matrix. Set

h(x) := 1
2d

2
Q(Ax), then there exist x̄ ∈ Rn and r2 > 0 such that:

(i) The projection PQ is single-valued on B(Ax̄, r2);

(ii) For any r̄2 > 0, r̄2∥A∥ ≤ r2, the function h is continuously differentiable on B(x̄, r̄2)

and the gradient mapping ∇h is ∥A∥2-Lipschitz continuous on B(x̄, r̄2).

Proof For any ȳ ∈ Q∩ran(A), by definition we know there exists x̄ ∈ Rn, such that ȳ = Ax̄ ∈ Q.

Since Q is a closed prox-regular set, by Lemma 2.11, it follows that there exists r2 > 0 such that

the projection PQ is single-valued on B(Ax̄, r2) and I−PQ is 1-Lipschitz continuous on B(Ax̄, r2).

Thus, (i) holds. Next, we show (ii) holds. Setting f(x) := Ax, g(x) := 1
2d

2
Q(x), D1 := B(x̄, r̄2),

D2 := B(Ax̄, r2), then h(x) = g(f(x)). For any x ∈ D1, it follows that

∥Ax−Ax̄∥ ≤ ∥A∥∥x− x̄∥ < r̄2∥A∥ ≤ r2.

Thus, Ax ∈ B(Ax̄, r2). Therefore, we have f(D1) ⊂ D2. Since f is Gateaux differentiable at

x ∈ D1 and g is Frechet differentiable at Ax ∈ D2, by means of Lemma 2.12, we obtain h is

Gateaux differentiable at x and

∇h(x) = ∇f(x) ◦ ∇g(Ax) = AT (Ax− PQ(Ax)).
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For any x, z ∈ B(x̄, r̄2), we know Ax and Az belong to B(Ax̄, r2). Moreover,

∥∇h(x) −∇h(z)∥ = ∥AT (Ax− PQ(Ax)) −AT (Az − PQ(Az))∥

≤ ∥AT ∥∥(Ax− PQ(Ax)) − (Az − PQ(Az))∥

≤ ∥AT ∥∥Ax−Az∥

≤ ∥A∥2∥x− z∥,

where the second inequality follows from the Lipschitz continuity of I − PQ. The proof is

completed. �
Now, we are ready to present our algorithm.

Inexact Averaged Projection Algorithm: Take θ ∈ (0, 1), α < 1
2 and M > 0 such that

1 − α

β
>

t + r∥A∥2

2
, 0 < β ≤ θ

t + r
.

Given a starting point x0 ∈ Rn, consider the following iteration

xk+1 ∈ xk − β ·
( t∑

i=1

(xk − PCi(x
k)) +

r∑
j=1

AT (Axk − PQj (Axk))
)

+ ϵk, (3.2)

where {ϵk} is a sequence of errors which satisfies

⟨ϵk, xk+1 − xk⟩ ≤ α∥xk+1 − xk∥2, (3.3)

∥ϵk∥ ≤ M∥xk+1 − xk∥.

Remark 3.2 In fact, when t = r = 1 and A = I, where I denotes the identity matrix, the

above algorithm reduces to the inexact averaged projection algorithm in [8] for solving feasibility

problems.

Now, we state our main result.

Theorem 3.3 Let Ci ⊂ Rn, i = 1, . . . , t and Qj ⊂ Rm, j = 1, . . . , r be semi-algebraic, closed

prox-regular sets such that SOL(MSFP) is nonempty. If x0 is sufficiently close to SOL(MSFP),

then the inexact averaged projection algorithm (3.2) reduces to the inexact gradient method

xk+1 = xk − β · ∇f(xk) + ϵk,

where f is given by (3.1), which therefore defines a unique sequence. Moreover, {xk} has a finite

length and converges to a point in SOL(MSFP).

Proof Let x∗ ∈ SOL(MSFP). It follows from Lemmas 2.11 and 3.1 that there exist δ1, δ2 > 0

and δ1∥A∥ ≤ δ2 such that, the projection PCi is single-valued on B(x∗, δ1), the function gi is

continuously differentiable on B(x∗, δ1) and ∇gi(x) = x − PCi(x), the gradient mapping ∇gi

is 1-Lipschitz continuous on B(x∗, δ1), the projection PQj is single-valued on B(Ax∗, δ2), the

function hj is continuously differentiable on B(x∗, δ1) and ∇hj(x) = AT (Ax − PQj (Ax)), the

gradient mapping ∇hj is ∥A∥2-Lipschitz continuous on B(x∗, δ1). By Lemma 2.8 and Remark

2.9, we know f defined in (3.1) is semi-algebraic, which means f is a KL function. Since the
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function f has the KL property around x∗, there exist φ,U, η as in Definition 2.4. Shrinking δ1

if necessary, we assume that B(x∗, δ1) ⊂ U . Take ρ ∈ (0, δ1) and shrinkage η such that

η <
1 − 2α

2s(t + r)
(δ1 − ρ)2. (3.4)

By setting a := 1−α
β − t+r∥A∥2

2 > 0, b := t + r∥A∥2 + 1+M
β , choose a starting point x0 such that

0 = f(x∗) ≤ f(x0) < η and

∥x∗ − x0∥ + 2

√
f(x0)

a
+

b

a
φ(f(x0)) < ρ.

In view of Lemma 2.5, to prove the conclusion, we only need to show the algorithm (3.2) defines

a unique sequence {xk}, which satisfies

f(xk+1) + a∥xk+1 − xk∥ ≤ f(xk),

∥∇f(xk+1)∥ ≤ b∥xk+1 − xk∥,

∀k ∈ N, xk ∈ B(x∗, ρ) ⇒ xk+1 ∈ B(x∗, δ1), with f(xk+1) ≥ f(x∗).

Let us prove by induction. Suppose k = 0. Since x0 ∈ B(x∗, ρ) and δ1∥A∥ ≤ δ2, we have

∥Ax0 − Ax∗∥ ≤ δ2, i.e., Ax0 ∈ B(Ax∗, δ2). Thus, PCi(x
0) and PQj (Ax0) are single-valued with

∇gi(x
0) = x0 − PCi(x

0) and ∇hj(x
0) = AT (Ax0 − PQj (Ax0)). Therefore, it follows that

∇f(x0) =

t∑
i=1

(x0 − PCi(x
0)) +

r∑
j=1

AT (Ax0 − PQj (Ax0)). (3.5)

Using Cauchy-Schwarz inequality, we obtain

∥∇f(x0)∥2 ≤ (t + r) ·
( t∑

i=1

∥x0 − PCi(x
0)∥2 +

r∑
j=1

∥AT (Ax0 − PQj (Ax0))∥2
)

≤ (t + r) ·
( t∑

i=1

∥x0 − PCi(x
0)∥2 + ∥A∥2

r∑
j=1

∥(Ax0 − PQj (Ax0))∥2
)

≤ 2s(t + r)f(x0), (3.6)

where s := max{1, ∥A∥2}. Next, it follows from (3.2) and (3.5) that

x1 = x0 − β · ∇f(x0) + ϵ0, (3.7)

which means x1 is uniquely defined. The above equality yields (note that θ ∈ (0, 1) and t+r ≥ 1)

∥x1 − x0∥2 − 2⟨x1 − x0, ϵ0⟩ + ∥ϵ0∥2 ≤ ∥∇f(x0)∥2,

thus, in view of (3.3), (3.4) and (3.6), the above inequality implies

∥x1 − x0∥2 ≤ 2s(t + r)

1 − 2α
· f(x0) < (δ1 − ρ)2.

Thus,

∥x1 − x∗∥ ≤ ∥x1 − x0∥ + ∥x0 − x∗∥ ≤ δ1 − ρ + ρ = δ1,

this implies that

x1 ∈ B(x∗, δ1). (3.8)
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Note that

⟨∇f(x0), x1 − x0⟩ =
1

β
· ⟨x0 − x1 + ϵ0, x1 − x0⟩

= − 1

β
· ∥x1 − x0∥2 +

1

θ
⟨ϵ0, x1 − x0⟩

≤ − 1

β
· ∥x1 − x0∥2 +

1

β
· α∥x1 − x0∥2

= −1 − α

β
· ∥x1 − x0∥2,

where the first equality follows from (3.7) and the inequality follows from (3.3). Because ∇f is

Lipschitz continuous on B(x∗, δ1) with constant t + r∥A∥2, it follows from Lemma 2.13 that

f(x1) ≤ f(x0) + ⟨∇f(x0), x1 − x0⟩ +
t + r∥A∥2

2
· ∥x1 − x0∥2

≤ f(x0) − 1 − α

β
· ∥x1 − x0∥2 +

t + r∥A∥2

2
· ∥x1 − x0∥2,

which is equivalent to

f(x1) + a∥x1 − x0∥2 ≤ f(x0). (3.9)

On the other hand, we have

∥∇f(x1)∥ ≤ ∥∇f(x1) −∇f(x0)∥ + ∥∇f(x0)∥

≤ (t + r∥A∥2) · ∥x1 − x0∥ +
1

β
· (∥x1 − x0∥ + ∥ϵ0∥),

≤ (t + r∥A∥2 +
1 + M

β
) · ∥x1 − x0∥ = b∥x1 − x0∥. (3.10)

Thus, it follows from (3.8), (3.9) and (3.10) that k = 0 holds.

Next, suppose for any k > 0, xk ∈ B(x∗, ρ) and properties (H1), (H2) hold for x0, x1, . . . , xk.

We can similarly prove xk+1 ∈ B(x∗, δ1) and (H1), (H2) hold for xk+1. For succinctness, we

omit the details. Now, applying Corollary 2.6, it follows that xk+1 ∈ B(x∗, ρ) and our induction

proof is completed. As a consequence, the algorithm defines a unique sequence that satisfies the

assumption of Lemma 2.5, hence it generates a finite length sequence which converges to a point

x̄ such that f(x̄) = 0. �
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