Journal of Mathematical Research with Applications Nov., 2020, Vol. 40, No. 6, pp. 558–576 DOI:10.3770/j.issn:2095-2651.2020.06.002 Http://jmre.dlut.edu.cn

Costar Subcategories and Cotilting Subcategories with Respect to Cotorsion Triples

Donglin HE*, Yuyan LI

Department of Mathematics, Longnan Teachers College, Gansu 742500, P. R. China

Abstract Let \mathcal{A} be an abelian category, and $(\mathcal{X}, \mathcal{Z}, \mathcal{Y})$ be a complete hereditary cotorsion triple. We introduce the definition of n- \mathcal{Y} -cotilting subcategories of \mathcal{A} , and give a characterization of n- \mathcal{Y} -cotilting subcategories, which is similar to Bazzoni characterization of n-cotilting modules. As an application, we prove that if \mathcal{GP} is n- \mathcal{GI} -cotilting over a virtually Gorenstein ring R, then R is an n-Gorenstein ring, where \mathcal{GP} denotes the subcategory of Gorenstein projective R-modules and \mathcal{GI} denotes the subcategory of Gorenstein injective R-modules. Furthermore, we investigate n-costar subcategories over arbitrary ring R, and the relationship between n- \mathcal{I} -cotilting subcategories with respect to cotorsion triple (\mathcal{P}, R -Mod, \mathcal{I}) and n-costar subcategories, where \mathcal{P} denotes the subcategory of projective left R-modules and \mathcal{I} denotes the subcategory of injective left R-modules.

Keywords cotorsion triple; n- \mathcal{Y} -cotilting subcategories; self-orthogonal- \mathcal{Y} ; n-quasi-injective; n-costar subcategories

MR(2010) Subject Classification 13D05; 13D07; 18G20

1. Introduction

Tilting theory plays an important role in the representation of Artin algebra. The classical tilting modules were first considerd in the early eighties by Brenner-Bulter [1], Bongartz [2] and Happle and Ringel [3] etc. Begining with Miyashita [4], tilting modules over arbitrary rings were investigated by many authors [5–8]. In 1999, Colpi [9] gave the definition of tilting objects in any Grothedieck category and proved some basic facts of tilting theory in it. In 2007, Colpi and Fuller [10] investigated tilting objects in arbitrary abelian category. Recently, Di et al [11] introduced the notion of n- \mathcal{X} -tilting subcategories with respect to a complete hereditary cotorsion triple ($\mathcal{X}, \mathcal{Z}, \mathcal{Y}$) in abelian category \mathcal{A} , and proved that a virtually Gorenstein ring R was n-Gorenstein if and only if \mathcal{GI} is n- \mathcal{GP} -tilting, where \mathcal{GP} denotes the subcategory of Gorenstein injective R-modules and \mathcal{GI} denotes the subcategory of Gorenstein injective R-modules. Wei [12] studied n-star modules, and proved that n-tilting modules are n-star modules n-presenting all injectives. Cotilting modules are also important part of tilting theory. In this paper, we give the definition of n- \mathcal{Y} -cotilting subcategories with respect to a complete hereditary

Received September 7, 2019; Accepted May 24, 2020

Supported by Research Project in Institutions of Higher Learning in Gansu Province (Grant No. 2019B-224) and Innovation Fund Project of Colleges and Universities in Gansu Province (Grant No. 2020A-277).

^{*} Corresponding author

E-mail address: hdl7979085@163.com (Donglin HE)

cotorsion triple $(\mathcal{X}, \mathcal{Z}, \mathcal{Y})$ in abelian category \mathcal{A} , and investigate properties and characterizations of self-orthogonal- \mathcal{Y} and *n*- \mathcal{Y} -cotilting subcategories. As an application, we obtain a sufficient condition for R to be *n*-Gorenstein ring over a virtually Gorenstein ring. Furthermore, we give a characterization of *n*- \mathcal{Y} -cotilting subcategories, which is similar to Bazzoni characterization of *n*-cotilting modules. Then we introduce *n*-costar subcategories over an arbitrary ring R, and we obtain that \mathcal{M} is an *n*- \mathcal{I} -cotilting subcategory with respect to cotorsion triple (\mathcal{P}, R -Mod, \mathcal{I}), if and only if \mathcal{M} is an *n*-costar subcategory with $\mathcal{P} \subseteq \operatorname{Copres}^{n}(\mathcal{M})$, where \mathcal{P} denotes the subcategory of projective left R-modules and \mathcal{I} denotes the subcategory of injective left R-modules.

We now state the main results of this paper.

Theorem 1.1 Let R be a virtually Gorenstein ring. If \mathcal{GP} is an n- \mathcal{GI} -cotilting subcategory, then R is an n-Gorenstein ring. Moreover, \mathcal{GI} is an n- \mathcal{GP} -tilting subcategory.

Theorem 1.2 Let \mathcal{N} be a subcategory of \mathcal{A} which is closed under summands. If every object in $\mathcal{V}^{\perp}\mathcal{N}$ admits a left \mathcal{N} -approximation, then \mathcal{N} is *n*- \mathcal{Y} -cotilting (with respect to $(\mathcal{X}, \mathcal{Z}, \mathcal{Y})$ if and only if $\operatorname{Copres}_{\mathcal{V}}^{n}(\mathcal{N}) = \mathcal{V}^{\perp}\mathcal{N}$.

Theorem 1.3 Let n be a non-negative integer and \mathcal{M} be a subcategory of R-Mod closed under direct summands and direct products. \mathcal{M} has a class of representatives. Then the following conditions are equivalent.

- (1) \mathcal{M} is an *n*- \mathcal{I} -cotilting subcategory with respect to cotorsion triple (\mathcal{P}, R -Mod, \mathcal{I});
- (2) Copresⁿ(\mathcal{M}) = $^{\perp_{1 \leq i \leq n}} \mathcal{M}$;
- (3) \mathcal{M} is an *n*-costar subcategory with $\mathcal{P} \subseteq \operatorname{Copres}^{n}(\mathcal{M})$;
- (4) $\mathcal{P} \subseteq \operatorname{Copres}^{n}(\mathcal{M}) = \operatorname{Copres}^{n+1}(\mathcal{M}) \subseteq^{\perp} \mathcal{M}.$

The contents of this paper are summarized as follows. In Section 2, we collect some known notions and results. In Section 3, we introduce self-orthogonal- \mathcal{Y} subcategories of \mathcal{A} and discuss properties of them. In Section 4, we investigate *n*- \mathcal{Y} -cotilting subcategories with respect to a complete hereditary cotorsion tirple $(\mathcal{X}, \mathcal{Z}, \mathcal{Y})$ in abelian category. Section 5 is devoted to *n*-costar subcategories and *n*- \mathcal{I} -cotilting subcategory with respect to cotorsion triple $(\mathcal{P}, R$ -Mod, $\mathcal{I})$.

2. Preliminaries

Throughout this paper, \mathcal{A} is an abelian category with enough projective objects and injective objects. Subcategories are all full additive subcategory of \mathcal{A} closed under isomorphisms. \mathcal{P} (respectively, \mathcal{I}) is the subcategory of projectives (respectively, injectives). We denote $\mathcal{X}^{\perp} =$ $\{Y \in \mathcal{A} \mid \operatorname{Ext}^{1}_{\mathcal{A}}(X,Y) = 0$ for any $X \in \mathcal{X}\}$, $^{\perp}\mathcal{Y} = \{X \in \mathcal{A} \mid \operatorname{Ext}^{1}_{\mathcal{A}}(X,Y) = 0$ for any $Y \in \mathcal{Y}\}$. A pair $(\mathcal{X}, \mathcal{Y})$ of subcategories of \mathcal{A} is said to be a cotorsion pair if $\mathcal{X}^{\perp} = \mathcal{Y}$ and $^{\perp}\mathcal{Y} = \mathcal{X}$ (see [13]). Obviously, $(\mathcal{P}, \mathcal{A})$ and $(\mathcal{A}, \mathcal{I})$ are cotorsion pairs. The cotorsion pair $(\mathcal{X}, \mathcal{Y})$ is complete if for any $N \in \mathcal{A}$ there are short exact sequences $0 \to Y \to X \to N \to 0$ and $0 \to N \to Y^{\to}X' \to 0$ with $X, X' \in \mathcal{X}$ and $Y, Y' \in \mathcal{Y}$. A subcategory \mathcal{Y} is coresolving if it contains all injective objects, and for any short exact sequence $0 \to Y' \to Y \to Y'' \to 0$ in \mathcal{A} with $Y' \in \mathcal{Y}$, we have $Y \in \mathcal{Y}$ if and only if $Y'' \in \mathcal{Y}$. And dually the notion of resolving subcategory is defined. The cotorsion pair $(\mathcal{X}, \mathcal{Y})$ is hereditary if \mathcal{Y} is coresolving, i.e., \mathcal{X} is resolving (more details see [14]).

Let $\mathcal{X}, \mathcal{Y}, \mathcal{Z}$ be subcategory of \mathcal{A} . Following [15], the triple $(\mathcal{X}, \mathcal{Z}, \mathcal{Y})$ is called a cotorsion triple provided that both $(\mathcal{X}, \mathcal{Z})$ and $(\mathcal{Z}, \mathcal{Y})$ are cotorsion pair. Moreover, if both $(\mathcal{X}, \mathcal{Z})$ and $(\mathcal{Z}, \mathcal{Y})$ are complete (hereditary) cotorsion pair, we say $(\mathcal{X}, \mathcal{Z}, \mathcal{Y})$ is a complete (hereditary) cotorsion triple. $(\mathcal{P}, R\text{-Mod}, \mathcal{I})$ is a complete hereditary cotorsion triple over a ring R. If R is a virtually Gorenstein ring, then $(\mathcal{GP}, \mathcal{GP}^{\perp} =^{\perp} \mathcal{GI}, \mathcal{GI})$ is also a complete hereditary cotorsion triple, where \mathcal{GP} denotes the subcategory of Gorenstein projective R-modules and \mathcal{GI} denotes the subcategory of Gorenstein injective R-modules [11].

Following [16], a complex $\mathbf{Y} = \cdots \to Y^{-2} \to Y^{-1} \to Y^0 \to Y^1 \to Y^2 \to \cdots$ is called a \mathcal{Y} -coresolution of N if $Y^i \in \mathcal{Y}$ for $i \ge 0$, $Y^i = 0$ for all i < 0, $H_i(\mathbf{Y}) = 0$ for i > 0, and $H_0(\mathbf{Y}) \cong N$. The exact sequence ${}^+\mathbf{Y} = 0 \to Y^0 \to Y^1 \to Y^2 \to \cdots$ is the argumented \mathcal{Y} coresolution of N. If ${}^+\mathbf{Y}$ is Hom_A $(-,\mathcal{Y})$ -exact, \mathbf{Y} is called proper \mathcal{Y} -coresolution. We denote \mathcal{Y} id $N = \inf\{\sup\{n \ge 0 \mid Y^n \ne 0\} | \mathbf{Y} \text{ is } \mathcal{Y}$ -coresolution of $N\}$. If N admits a proper \mathcal{Y} -coresolution, then such a proper coresolution is unique up to homotopy equivalence. Hence, it derived the relative $\mathcal{A}\mathcal{Y}$ cohomology group $\operatorname{Ext}^k_{\mathcal{A}\mathcal{Y}}(M, N) = H_k(M, \mathbf{Y})$ for every $k \in \mathbb{Z}$ and every object $M \in \mathbf{A}$. Dually, we can define \mathcal{X} -resolution, proper \mathcal{X} -resolution, \mathcal{X} -pdN and derived relative $\mathcal{X}\mathcal{A}$ cohomology group $\operatorname{Ext}^k_{\mathcal{X}\mathcal{A}}(M, N) = H_k(\mathbf{X}, N)$ for every $k \in \mathbb{Z}$ and every object $N \in \mathcal{A}$. Obviously, every object in \mathcal{A} admits a proper \mathcal{Y} -coresolution and a proper \mathcal{X} -resolution provided that $(\mathcal{X}, \mathcal{Y})$ is a complete hereditary cotorsion pair.

Some results are spread out as follows.

Lemma 2.1 ([16, Lemma 4.3,4.4]) Assume that the short exact sequence $\mathbf{L} = 0 \rightarrow L' \rightarrow L \rightarrow L'' \rightarrow 0$ is $\operatorname{Hom}_{\mathcal{A}}(-,\mathcal{Y})$ -exact and $N \in \mathcal{A}$.

- (1) If N admits a proper \mathcal{Y} -coresolution, then **L** induces a long exact sequence $0 \to \operatorname{Hom}_{\mathcal{A}}(L'', N) \to \operatorname{Hom}_{\mathcal{A}}(L, N) \to \operatorname{Hom}_{\mathcal{A}}(L', N) \to \operatorname{Ext}_{\mathcal{A}\mathcal{Y}}^{1}(L'', N) \to \cdots$ $\to \operatorname{Ext}_{\mathcal{A}\mathcal{Y}}^{k}(L'', N) \to \operatorname{Ext}_{\mathcal{A}\mathcal{Y}}^{k}(L, N) \to \operatorname{Ext}_{\mathcal{A}\mathcal{Y}}^{k+1}(L'', N) \to \cdots$
- (2) If both L' and L'' admit proper \mathcal{Y} -coresolution, then **L** induces a long exact sequence $0 \to \operatorname{Hom}_{\mathcal{A}}(N, L') \to \operatorname{Hom}_{\mathcal{A}}(N, L) \to \operatorname{Hom}_{\mathcal{A}}(N, L'') \to \operatorname{Ext}^{1}_{\mathcal{A}\mathcal{Y}}(N, L') \to \cdots$ $\to \operatorname{Ext}^{k}_{\mathcal{A}\mathcal{Y}}(N, L') \to \operatorname{Ext}^{k}_{\mathcal{A}\mathcal{Y}}(N, L) \to \operatorname{Ext}^{k}_{\mathcal{A}\mathcal{Y}}(N, L') \to \operatorname{Ext}^{k+1}_{\mathcal{A}\mathcal{Y}}(N, L') \to \cdots$. Moreover, if $\operatorname{Ext}^{\geq 1}_{\mathcal{A}\mathcal{Y}}(N, L) = 0$, then $\operatorname{Ext}^{k}_{\mathcal{A}\mathcal{Y}}(N, L'') \cong \operatorname{Ext}^{k+1}_{\mathcal{A}\mathcal{Y}}(N, L')$ for any $k \ge 1$.

Lemma 2.2 ([17, Lemma 4.3,4.4]) Assume that

$$\begin{array}{c|c} M \xrightarrow{f_1} N \\ g_1 \\ \downarrow & g \\ U \xrightarrow{f} V \end{array}$$

Diagram 1 The diagram such that $gf_1 = fg_1$ is a commutative diagram in \mathcal{A} and $D \in \mathcal{A}$. Then the followings hold Costar subcategories and cotilting subcategories with respect to cotorsion triples

(1) If this diagram is a pullback of f and g, and $\operatorname{Hom}_{\mathcal{A}}(D,g)$ is epic, then $\operatorname{Hom}_{\mathcal{A}}(D,g_1)$ is also epic;

(2) If this diagram is a pushout of f_1 and g_1 , and $\operatorname{Hom}_{\mathcal{A}}(g_1, D)$ is epic, then $\operatorname{Hom}_{\mathcal{A}}(g, D)$ is also epic.

Proposition 2.3 Let $N \in \mathcal{A}$ and $(\mathcal{X}, \mathcal{Y})$ be a complete hereditary cotorsion pair. Then for any non-negative integer n, the following conditions are equivalent

- (1) \mathcal{Y} - $id(N) \leq n$;
- (2) $\operatorname{Ext}_{\mathcal{AY}}^{n+k}(-,N) = 0$ for all $k \ge 1$;
- (3) $\operatorname{Ext}_{\mathcal{AV}}^{n+1}(-, N) = 0.$

Proof (1) \Rightarrow (2). Just to prove that there exists a proper \mathcal{Y} -coresolution \mathbf{Y} , such that $Y^i = 0$ for i > n. From (1) we get an exact sequence $0 \to N \to W^0 \to W^1 \to \cdots \to W^n \to 0$ in \mathcal{A} with each $W^i \in \mathcal{Y}$. Since $(\mathcal{X}, \mathcal{Y})$ is complete, we get a Hom_{\mathcal{A}} $(-, \mathcal{Y})$ -exact sequence $0 \to N \to Y^0 \to Y^1 \to \cdots \to Y^{n-1} \to C^n \to 0(*)$ in \mathcal{A} with each $Y^i \in \mathcal{Y}$. Consider the following commutative diagram (Diagram 2)

Diagram 2 The induced diagram of proper \mathcal{Y} -coresolution \mathbf{Y}

Consequently, the mapping cone $0 \to N \to Y^0 \oplus N \to Y^1 \oplus W^0 \to \cdots \to C^n \oplus W^{n-1} \to W^n \to 0$ is exact. Since $N \to Y^0 \oplus N$ is split, the sequence $0 \to Y^0 \to Y^1 \oplus W^0 \to \cdots \to C^n \oplus W^{n-1} \to W^n \to 0$ is exact. Note that $(\mathcal{X}, \mathcal{Y})$ is hereditary and \mathcal{Y} is closed under direct summand, then $C^n \in \mathcal{Y}$, which means (*) is a proper \mathcal{Y} -coresolution.

 $(2) \Rightarrow (3)$ is obvious.

 $(3) \Rightarrow (1)$. Let **Y** be a proper \mathcal{Y} -coresolution of N and $N^i = \text{Ker}(Y^i \to Y^{i+1})$ for $i \ge 1$. Consider the Hom_{\mathcal{A}} $(-, \mathcal{Y})$ -exact sequences

$$0 \to N^i \to Y^i \to N^{i+1} \to 0 \tag{(*_i)}$$

for $i \ge 1$. The case n = 0, $\operatorname{Ext}^{1}_{\mathcal{A}\mathcal{Y}}(-, N) = 0$, then $(*_i)$ is also exact under $\operatorname{Hom}_{\mathcal{A}}(-, \mathcal{N})$. Note that $N_0 \cong N$, so $(*_i)$ is split, $N \in \mathcal{Y}$ because \mathcal{Y} is closed under direct summands. Now suppose $n \ge 1$ and $\operatorname{Ext}^{n+1}_{\mathcal{A}\mathcal{Y}}(-, N) = 0$. Following Lemma 2.1 (2), we can conclude that $\operatorname{Ext}^{1}_{\mathcal{A}\mathcal{Y}}(-, N^n) \cong \operatorname{Ext}^{n+1}_{\mathcal{A}\mathcal{Y}}(-, N) = 0$, then $N^n \in \mathcal{Y}$ by the case n = 0. Therefore, \mathcal{Y} - $id(N) \le n$. \Box

The following lemmas are from [11].

Lemma 2.4 Let $(\mathcal{X}, \mathcal{Z}, \mathcal{Y})$ be a complete hereditary cotorsion triple and $M \in \mathcal{A}$. Then

- (1) M admits a proper \mathcal{X} -resolution **X** such that \mathbf{X}^+ is Hom_{\mathcal{A}} $(-,\mathcal{Y})$ -exact;
- (2) *M* admits a proper \mathcal{Y} -coresolution **Y** such that $^+$ **Y** is Hom_{\mathcal{A}}(\mathcal{X} , -)-exact.

Lemma 2.5 Let $(\mathcal{X}, \mathcal{Z}, \mathcal{Y})$ be a complete hereditary cotorsion triple in \mathcal{A} . Then for any objects

 $M, N \in \mathcal{A}$ and any $k \in \mathbb{Z}$, there is isomorphism

$$\operatorname{Ext}_{\mathcal{X}\mathcal{A}}^{k}(M,N) \cong \operatorname{Ext}_{\mathcal{A}\mathcal{Y}}^{k}(M,N).$$

The whole article assumes that $(\mathcal{X}, \mathcal{Z}, \mathcal{Y})$ is a complete hereditary cotorsion triple, and n is a non-negative integer. The term \mathcal{Y} is always part of $(\mathcal{X}, \mathcal{Z}, \mathcal{Y})$, which can ensure any object Nof \mathcal{A} admits a proper \mathcal{Y} -coresolution, and induce relative cohomology functor $\operatorname{Ext}^*_{\mathcal{A}\mathcal{Y}}(-, N)$.

3. Self-orthogonal- \mathcal{Y} subcategories

We start with the following definition.

Definition 3.1 Let \mathcal{N} be a subcategory of \mathcal{A} . \mathcal{N} is called a self-orthogonal- \mathcal{Y} subcategory, if $\operatorname{Ext}_{\mathcal{AV}}^{k \ge 1}(N, N') = 0$ for any objects $N, N' \in \mathcal{N}$.

We denote ${}_{n}\widehat{\mathcal{N}}_{\mathcal{Y}} = \{M \in \mathcal{A} | \text{ there is a } \operatorname{Hom}_{\mathcal{A}}(-,\mathcal{Y})\text{-exact sequence } 0 \to N^{n} \to \cdots \to N^{1} \to N^{0} \to M \to 0, \text{ with each } N^{i} \in \mathcal{N} \}.$ $\widehat{\mathcal{N}}_{\mathcal{Y}} = \{M \in \mathcal{A} | M \in {}_{n}\widehat{\mathcal{N}}_{\mathcal{Y}} \text{ for some } n\}. {}^{\mathcal{Y}\perp}\mathcal{N} = \{M \in \mathcal{A} | \operatorname{Ext}_{\mathcal{A}\mathcal{Y}}^{k \geq 1}(M, N) = 0 \text{ for any } N \in \mathcal{N} \}.$ And $\mathscr{Y}_{\mathcal{N}} = \{M \in \mathcal{A} | \text{ there is a } \operatorname{Hom}_{\mathcal{A}}(-,\mathcal{Y})\text{-exact sequence } 0 \to M \to N^{0} \xrightarrow{f_{0}} N^{1} \xrightarrow{f_{1}} \cdots, \text{ with each } N^{i} \in \mathcal{N} \text{ and } \operatorname{Ker} f_{i} \in {}^{\mathcal{Y}\perp}\mathcal{N} \}.$

Dually we can get symbols ${}_{n}\widetilde{\mathcal{N}}_{\mathcal{Y}}, \widetilde{\mathcal{N}}_{\mathcal{Y}}, \mathcal{N}^{\perp_{\mathcal{Y}}} \text{ and } {}_{\mathcal{N}}\mathscr{Y}$. It is clear $\mathscr{Y}_{\mathcal{N}} \subseteq {}^{\mathcal{Y}^{\perp}}\mathcal{N} \text{ and } {}_{\mathcal{N}}\mathscr{Y} \subseteq \mathcal{N}^{\perp_{\mathcal{Y}}}$. We shall discuss properties of self-orthogonal- \mathcal{Y} subcategories.

Lemma 3.2 Let \mathcal{N} be a self-orthogonal- \mathcal{Y} subcategory of \mathcal{A} . Then $\operatorname{Ext}_{\mathcal{A}\mathcal{Y}}^{k \ge 1}(M', M) = 0$ for any object $M \in \widehat{\mathcal{N}}_{\mathcal{V}}$ and $M' \in {}^{\mathcal{Y}\perp}\mathcal{N}$.

Proof For any object $M \in \widehat{\mathcal{N}}_{\mathcal{Y}}$, we have a $\operatorname{Hom}_{\mathcal{A}}(-,\mathcal{Y})$ -exact sequence $0 \to N^n \to \cdots \to N^1 \to N^0 \to M \to 0$, with each $N^i \in \mathcal{N}$. Since Lemma 2.1 (2), $\operatorname{Ext}_{\mathcal{A}\mathcal{Y}}^k(M',M) \cong \operatorname{Ext}_{\mathcal{A}\mathcal{Y}}^{k+n}(M',N^n) = 0$ for any $M' \in \mathcal{Y}^{\perp}\mathcal{N}$ and $k \ge 1$.

A subcategory \mathcal{B} of \mathcal{A} is said to be closed under $\operatorname{Hom}_{\mathcal{A}}(-,\mathcal{Y})$ -extension, if for any short $\operatorname{Hom}_{\mathcal{A}}(-,\mathcal{Y})$ -exact sequence $0 \to A \to B \to C \to 0$ with $A, C \in \mathcal{B}$, it induces that $B \in \mathcal{B}$.

Lemma 3.3 Let \mathcal{N} be a self-orthogonal- \mathcal{Y} subcategory of \mathcal{A} . Then both $_{\mathcal{N}}\mathscr{Y}$ and $\mathscr{Y}_{\mathcal{N}}$ are closed under Hom_{\mathcal{A}} $(-, \mathcal{Y})$ -extension and direct summands.

Proof For any $\operatorname{Hom}_{\mathcal{A}}(-,\mathcal{Y})$ -exact sequence $0 \to A \to B \to C \to 0$ with $A, C \in \mathscr{Y}_{\mathcal{N}}$, it is also $\operatorname{Hom}_{\mathcal{A}}(-,\mathcal{N})$ -exact by Lemma 2.1. Following [18, Lemma 1.10], we have $B \in \mathscr{Y}_{\mathcal{N}}$. Therefore, $\mathscr{Y}_{\mathcal{N}}$ is closed under $\operatorname{Hom}_{\mathcal{A}}(-,\mathcal{Y})$ -extensions.

Let $U = U_1 \oplus U_2$ in \mathscr{Y}_N . There is a Hom_{\mathcal{A}} $(-,\mathcal{Y})$ -exact sequence $0 \to U \to N^0 \to U' \to 0$ with $N^0 \in \mathcal{N}$ and $U' \in \mathscr{Y}_N$. Consider the following pushout diagram (Diagram 3)

Since the up row is split and the middle column is $\operatorname{Hom}_{\mathcal{A}}(-,\mathcal{Y})$ -exact, we obtain the middle row is $\operatorname{Hom}_{\mathcal{A}}(-,\mathcal{Y})$ -exact by Lemma 2.2. Note that $0 \to U_2 \to H \to U' \to 0$ is $\operatorname{Hom}_{\mathcal{A}}(-,\mathcal{Y})$ exact, then the exact sequence $0 \to U_2 \oplus U_1 \to H \oplus U_1 \to U' \to 0$ is also $\operatorname{Hom}_{\mathcal{A}}(-,\mathcal{Y})$ -exact. Because $U, U' \in \mathscr{Y}_{\mathcal{N}}, U = U_1 \oplus U_2$ and $\mathscr{Y}_{\mathcal{N}}$ is closed under $\operatorname{Hom}_{\mathcal{A}}(-,\mathcal{Y})$ -extension, we can see $H \oplus U_1 \in \mathscr{Y}_{\mathcal{N}}$. So U_1 is a direct summand of some object in $\mathscr{Y}_{\mathcal{N}}$, and $U \in \mathscr{Y}_{\mathcal{N}}$ deduced by recursiveness. Thus, $\mathscr{Y}_{\mathcal{N}}$ is closed under direct summands. \Box

Diagram 3 The pushout diagram of $U \to N^0$ and $U \to U_2$

Dually, we can deduce $_{\mathcal{N}}\mathscr{Y}$ is also closed under $\operatorname{Hom}_{\mathcal{A}}(-,\mathcal{Y})$ -extension and direct summands.

Let \mathcal{W}, \mathcal{H} be subcategories of \mathcal{A} . We say that \mathcal{W} is \mathcal{Y} -cogenerator of \mathcal{H} , if $\mathcal{W} \subseteq \mathcal{H}$ and for any object $H \in \mathcal{H}$, there is $\operatorname{Hom}_{\mathcal{A}}(-, \mathcal{Y})$ -exact sequence $0 \to H \to W \to H' \to 0$ with $W \in \mathcal{W}$ and $H' \in \mathcal{H}$ (see [19]).

Lemma 3.4 Suppose that \mathcal{N} and \mathcal{H} are subcategories of \mathcal{A} , \mathcal{H} is closed under $\operatorname{Hom}_{\mathcal{A}}(-,\mathcal{Y})$ -extensions, and \mathcal{N} is \mathcal{Y} -cogenerator of \mathcal{H} . If $0 \to Z \to M^1 \to M^2 \to \cdots \to M^n \to Z' \to 0$ is $\operatorname{Hom}_{\mathcal{A}}(-,\mathcal{Y})$ -exact sequence with each $M^i \in \mathcal{H}$, then there are $\operatorname{Hom}_{\mathcal{A}}(-,\mathcal{Y})$ -exact sequences $0 \to Z' \to V^n \to U^n \to 0$ with $U^n \in \mathcal{H}$, and $0 \to Z \to N^1 \to \cdots \to N^{n-1} \to N^n \to V^n \to 0$ with each $N^i \in \mathcal{N}$.

Proof We prove it by induction on n.

The case n = 1, there is a $\operatorname{Hom}_{\mathcal{A}}(-, \mathcal{Y})$ -exact sequence $0 \to Z \to M^1 \to Z' \to 0$ with $M^1 \in \mathcal{H}$. Because \mathcal{N} is \mathcal{Y} -cogenerator of \mathcal{H} , we have another $\operatorname{Hom}_{\mathcal{A}}(-, \mathcal{Y})$ -exact sequence $0 \to M^1 \to N^1 \to U^1 \to 0$ with $N^1 \in \mathcal{N}$ and $U^1 \in \mathcal{H}$. Consider pushout diagram (Diagram 4)

Diagram 4 The pushout diagram of $M^1 \to N^1$ and $M^1 \to Z'$

Following Lemma 2.2, the right column is $\operatorname{Hom}_{\mathcal{A}}(-, \mathcal{Y})$ -exact. Note that the up row is $\operatorname{Hom}_{\mathcal{A}}(-, \mathcal{Y})$ -exact, then the middle row is also $\operatorname{Hom}_{\mathcal{A}}(-, \mathcal{Y})$ -exact. The conclusion is tenable.

Suppose that the conclusion is tenable for n-1. We shall prove that the conclusion is tenable for n. Let $Z'' = \text{Ker}(M^n \to Z')$. Then by induction hypothesis we have $\text{Hom}_{\mathcal{A}}(-,\mathcal{Y})$ -exact sequences $0 \to Z'' \to \overline{V}^{n-1} \to \overline{U}^{n-1} \to 0$ and $0 \to Z \to N^1 \to \cdots \to N^{n-1} \to \overline{V}^{n-1} \to 0$, with $\overline{U}^{n-1} \in \mathcal{H}$ and each $N^i \in \mathcal{N}$. Consider the following pushout diagram (Diagram 5)

Diagram 5 The pushout diagram of $Z'' \to \overline{V}^{n-1}$ and $Z'' \to M^n$

in which the middle row and column are $\operatorname{Hom}_{\mathcal{A}}(-,\mathcal{Y})$ -exact by Lemma 2.2. Consider exact sequence $0 \to M^n \to X \to \overline{U}^{n-1} \to 0$ with $M^n, \overline{U}^{n-1} \in \mathcal{H}$, we get $X \in \mathcal{H}$ because \mathcal{H} is closed under $\operatorname{Hom}_{\mathcal{A}}(-,\mathcal{Y})$ -extensions. Since \mathcal{N} is \mathcal{Y} -cogenerator of \mathcal{H} , there is a $\operatorname{Hom}_{\mathcal{A}}(-,\mathcal{Y})$ -exact sequence $0 \to X \to N \to U^n \to 0$ with $N \in \mathcal{N}$ and $U^n \in \mathcal{H}$. Now we can construct the following pushout diagram (Diagram 6)

Diagram 6 The pushout diagram of $X \to N$ and $X \to Z^{'}$

where the right column and middle row are $\text{Hom}_{\mathcal{A}}(-, \mathcal{Y})$ -exact by Lemma 2.2. Consequently, the conclusion is tenable for n. \Box

In particular, we get the following result.

Corollary 3.5 Suppose that \mathcal{N} and \mathcal{H} are subcategories of \mathcal{A} , \mathcal{H} is closed under $\operatorname{Hom}_{\mathcal{A}}(-,\mathcal{Y})$ -extensions, and \mathcal{N} is \mathcal{Y} -cogenerator of \mathcal{H} . If $Z' \in {}_{n}\widehat{\mathcal{H}}_{\mathcal{Y}}$, then there is a $\operatorname{Hom}_{\mathcal{A}}(-,\mathcal{Y})$ -exact sequence $0 \to Z' \to V \to U \to 0$ with $U \in \mathcal{H}$ and $V \in {}_{n}\widehat{\mathcal{N}}_{\mathcal{Y}}$.

Proposition 3.6 Let the subcategory \mathcal{N} of \mathcal{A} be both self-orthogonal- \mathcal{Y} and closed under direct summands. Then the followings are equivalent for any object $M \in_{\mathcal{N}} \mathcal{Y}$

- (1) $M \in {}_n \widehat{\mathcal{N}}_{\mathcal{Y}};$
- (2) $\operatorname{Ext}_{\mathcal{A}\mathcal{Y}}^{n+1}(M, M') = 0$ for any object $M' \in \mathcal{N}^{\perp_{\mathcal{Y}}}$;
- (3) $\operatorname{Ext}_{\mathcal{AV}}^{n+1}(M, M') = 0$ for any object $M' \in {}_{\mathcal{N}}\mathcal{Y}$.

Particularly, $\widehat{\mathcal{N}}_{\mathcal{N}}$ is closed under direct summands.

Proof (1) \Rightarrow (2). Suppose that $M \in {}_n \widehat{\mathcal{N}}_{\nu}$, there is a Hom_{\mathcal{A}}(-, \mathcal{Y})-exact sequence

$$0 \to N^n \to \dots \to N^1 \to N^0 \to M \to 0$$

with each $N^i \in \mathcal{N}$. According to Lemma 2.1, $\operatorname{Ext}_{\mathcal{AY}}^{n+1}(M, M') \cong \operatorname{Ext}_{\mathcal{AY}}^1(N^n, M') = 0$ for any object $M' \in \mathcal{N}^{\perp_{\mathcal{Y}}}$.

 $(2) \Rightarrow (3)$ is clear.

(3) \Rightarrow (1). Let $M \in {}_{\mathcal{N}}\mathcal{Y}$. Then there is a Hom $_{\mathcal{A}}(-,\mathcal{Y})$ -exact sequence

$$\cdots \to N^2 \xrightarrow{f_2} N^1 \xrightarrow{f_1} N^0 \xrightarrow{f_0} M \to 0$$

with each $N^i \in \mathcal{N}$ and $\mathrm{Im} f_i \in \mathcal{N}^{\perp_{\mathcal{Y}}}$. Following Lemma 2.1, we obtain the isomorphism

$$\operatorname{Ext}^{1}_{\mathcal{A}\mathcal{Y}}(\operatorname{Ker} f_{n-1}, \operatorname{Ker} f_{n}) \cong \operatorname{Ext}^{n+1}_{\mathcal{A}\mathcal{Y}}(M, \operatorname{Ker} f_{n})$$

by applying the functor $\operatorname{Hom}_{\mathcal{A}}(-,\operatorname{Ker} f_n)$ to this sequence. Note that $\operatorname{Ker} f_n \in {}_{\mathcal{N}}\mathcal{Y}$, then $\operatorname{Ext}^1_{\mathcal{A}\mathcal{Y}}(\operatorname{Ker} f_{n-1},\operatorname{Ker} f_n) = 0$. So we have that $0 \to \operatorname{Hom}_{\mathcal{A}}(\operatorname{Ker} f_{n-1},\operatorname{Ker} f_n) \to \operatorname{Hom}_{\mathcal{A}}(N^n,\operatorname{Ker} f_n) \to \operatorname{Hom}_{\mathcal{A}}(\operatorname{Ker} f_n,\operatorname{Ker} f_n) \to 0$ is exact. Consequently, the exact sequence $0 \to \operatorname{Ker} f_n \to N^n \to \operatorname{Ker} f_{n-1} \to 0$ is split. Since $N^n \in \mathcal{N}$ and \mathcal{N} is closed under direct summands, then $\operatorname{Ker} f_n \in \mathcal{N}$, which means $M \in {}_n \widehat{\mathcal{N}_{\mathcal{V}}}$.

The final statement comes directly from Lemma 3.3 by $\widehat{\mathcal{N}}_{\mathcal{Y}} \in {}_{_{\mathcal{N}}} \mathscr{Y}$. \Box

4. *n*-*Y*-cotilting subcategories

In this section, we introduce the concept and examples of n- \mathcal{Y} -cotilting subcategories with respect to a complete hereditary cotorsion triple $(\mathcal{X}, \mathcal{Z}, \mathcal{Y})$. Finally the characterization of it is given.

Definition 4.1 Assume that the subcategory \mathcal{N} of \mathcal{A} is closed under direct summands. \mathcal{N} is said to be *n*- \mathcal{Y} -cotilting (with respect to $(\mathcal{X}, \mathcal{Z}, \mathcal{Y})$) provided

- (1) \mathcal{Y} -id $\mathcal{N} \leq n$ i.e, \mathcal{Y} -id $N \leq n$ for all $N \in \mathcal{N}$;
- (2) \mathcal{N} is a \mathcal{Y} -cogenerator of $\mathcal{Y}^{\perp}\mathcal{N}$;
- (3) $\mathcal{Y} \subseteq {}_n \widehat{\mathcal{N}}_{\mathcal{Y}}.$

For convenience, we denote $\operatorname{Copres}^n_{\mathcal{V}}(\mathcal{N}) = \{ M \in \mathcal{A} | \text{ there is a } \operatorname{Hom}_{\mathcal{A}}(-, \mathcal{Y}) \text{-exact sequence} \\ 0 \to M \to N^1 \to N^2 \to \cdots \to N^n, \text{ with each } N^i \in \mathcal{N} \}, \text{ and } \operatorname{Cogen}_{\mathcal{V}}(\mathcal{N}) = \operatorname{Copres}^1_{\mathcal{V}}(\mathcal{N}).$

Obviously $\operatorname{Cogen}_{\mathcal{V}}(\mathcal{N})$ is closed under direct summands.

Proposition 4.2 Assume that \mathcal{N} is a subcategory of \mathcal{A} . Then the following conditions are equivalent

(1) \mathcal{N} is a \mathcal{Y} -cogenerator of $\mathcal{Y}^{\perp}\mathcal{N}$;

(2) \mathcal{N} is self-orthogonal- \mathcal{Y} and $\mathcal{Y}^{\perp}\mathcal{N} = \mathcal{Y}_{\mathcal{N}}$;

(3) \mathcal{N} is self-orthogonal- \mathcal{Y} , each object of $\mathcal{V}^{\perp}\mathcal{N}$ admits a left \mathcal{N} -approximation and $\mathcal{V}^{\perp}\mathcal{N} \subseteq$ Cogen, (\mathcal{N}) .

Proof (1) \Rightarrow (2). It is easy to see that \mathcal{N} is self-orthogonal- \mathcal{Y} and $\mathcal{Y}_{\mathcal{N}} \subseteq \mathcal{Y}^{\perp}\mathcal{N}$. On the other hand, for any $M \in \mathcal{Y}^{\perp}\mathcal{N}$, since \mathcal{N} is a \mathcal{Y} -cogenerator of $\mathcal{Y}^{\perp}\mathcal{N}$, we obtain a Hom_{\mathcal{A}}($-,\mathcal{Y}$)-exact sequence $0 \to M \to N \to M' \to 0$ with $N \in \mathcal{N}$ and $M' \in \mathcal{Y}^{\perp}\mathcal{N}$. Repeating the process for N', we finally get $M \in \mathcal{Y}_{\mathcal{N}}$. Therefore, $\mathcal{Y}^{\perp}\mathcal{N} = \mathcal{Y}_{\mathcal{N}}$.

 $(2)\Rightarrow(3).$ Let $M \in {}^{\mathcal{Y}\perp}\mathcal{N} = \mathcal{Y}_{\mathcal{N}}.$ By definition we have a Hom $_{\mathcal{A}}(-,\mathcal{Y})$ -exact sequence $0 \to M \xrightarrow{f} N \to M' \to 0$ with $N \in \mathcal{N}$ and $M' \in {}^{\mathcal{Y}\perp}\mathcal{N}.$ Then this sequence is also exact under Hom $_{\mathcal{A}}(-,\mathcal{N})$ by Lemma 2.1. One can see $M \xrightarrow{f} N$ is a left \mathcal{N} -approximation of M and $M' \in \text{Cogen}_{\mathcal{V}}(\mathcal{N}).$ So the conclusion (3) holds.

 $(3) \Rightarrow (1)$. For any $M \in \mathcal{Y}^{\perp} \mathcal{N}$, by (3) we know $M' \in \operatorname{Cogen}_{\mathcal{Y}}(\mathcal{N})$, there is a $\operatorname{Hom}_{\mathcal{A}}(-, \mathcal{Y})$ exact sequence $0 \to M \xrightarrow{\alpha} N^1 \to M' \to 0$ with $N^1 \in \mathcal{N}$. On the other hand, M admits a left \mathcal{N} -approximation $\beta : M \to N$ with $N \in \mathcal{N}$, which derives a $\operatorname{Hom}_{\mathcal{A}}(-, \mathcal{N})$ -exact sequence

$$0 \to M \xrightarrow{\beta} N \to M'' \to 0 \tag{(*)}$$

we show that (*) is desired. Firstly we construct the following commutative diagram (Diagram 7)

Diagram 7 The commutative diagram induced by left \mathcal{N} -approximation of Mfor any $Y \in \mathcal{Y}$ and any morphism $f: M \to Y$, there is a morphism $g: N^1 \to Y$ such that $g\alpha = f$ since $0 \to M \xrightarrow{\alpha} N^1 \to M' \to 0$ is $\operatorname{Hom}_{\mathcal{A}}(-, \mathcal{Y})$ -exact. Let $h = g\gamma$. Then $h \in \operatorname{Hom}_{\mathcal{A}}(N, Y)$ and $h\beta = g\gamma\beta = g\alpha = f$. So (*) is $\operatorname{Hom}_{\mathcal{A}}(-, \mathcal{Y})$ -exact. We now only need to prove $M'' \in \mathcal{Y}^{\perp}\mathcal{N}$. Indeed, for any $N' \in \mathcal{N}$, there is a long exact sequence

$$\cdots \to \operatorname{Hom}_{\mathcal{A}}(N,N') \xrightarrow{\beta^*} \operatorname{Hom}_{\mathcal{A}}(M,N') \to \operatorname{Ext}^1_{\mathcal{A}\mathcal{Y}}(M'',N') \to \operatorname{Ext}^1_{\mathcal{A}\mathcal{Y}}(N,N') \to \cdots$$

by applying $\operatorname{Hom}_{\mathcal{A}}(-, N')$ to (*). Note that $\operatorname{Ext}^{1}_{\mathcal{A}\mathcal{Y}}(N, N') = 0$ because β is left \mathcal{N} -approximation. So $\operatorname{Ext}^{1}_{\mathcal{A}\mathcal{Y}}(M'', N') = 0$. Since $\operatorname{Ext}^{k+1}_{\mathcal{A}\mathcal{Y}}(M'', N') \cong \operatorname{Ext}^{1}_{\mathcal{A}\mathcal{Y}}(M, N') = 0$, we obtain $\operatorname{Ext}^{k}_{\mathcal{A}\mathcal{Y}}(M'', N') = 0$ for any $k \ge 1$, which means $M'' \in {}^{\mathcal{Y}\perp}\mathcal{N}$. \Box

Here are some examples of n- \mathcal{Y} -cotilting subcategories.

Example 4.3 (1) \mathcal{Y} is *n*- \mathcal{Y} -cotilting subcategory.

566

Costar subcategories and cotilting subcategories with respect to cotorsion triples

(2) Assume that $T \in R$ -Mod where R-Mod is the category of left R-modules. Then the two statements are in agreement

(a) T is an n-cotilting module;

(b) ProdT is an *n*- \mathcal{I} -cotilting subcategory with respect to complete hereditary cotorsion triple (\mathcal{P} ,R-Mod, \mathcal{I}), where ProdT consists of all left R-modues isomorphic to direct summands of arbitrary products of copies of T.

A commutative noetherian ring R is said to be virtually Gorenstein, if R has finite Krull dimension and $\mathcal{GP}^{\perp} =^{\perp} \mathcal{GI}$. Following [11, Theorm 4.5], a virtually Gorenstein ring R is *n*-Gorenstein if and only if \mathcal{GI} is *n*- \mathcal{GP} -tilting subcategory.

As an application of n- \mathcal{Y} -cotilting subcategory, we shall discuss the relation of n-Gorenstein ring and n- \mathcal{GI} -cotilting subcategories.

Theorem 4.4 Assume that R is a virtually Gorenstein ring. If \mathcal{GP} is an n- \mathcal{GI} -cotilting subcategory, then R is an n-Gorenstein. Moreover, \mathcal{GI} is an n- \mathcal{GP} -tilting subcategory.

Proof Following [14, Theorem 9.1.11], we only need to show that the projective dimension of all injective R-modules is at most n. For any injective R-module M, M is also Gorenstein injective. Since \mathcal{GP} is n- \mathcal{GI} -cotilting subcategory, then the Gorenstein projective dimension of M is at most n. By [20, Theorem 2.2], we obtain that the projective dimension of M is equal to its Gorenstein projective dimension. Therefore, R is n-Gorenstein.

According to [11, Theorem 4.5], \mathcal{GI} is n- \mathcal{GP} -tilting subcategory. \Box

Proposition 4.5 Assume that \mathcal{N} is *n*- \mathcal{Y} -cotilting subcategory of \mathcal{A} . Then

$$\operatorname{Copres}_{\mathcal{V}}^{n}(\mathcal{N}) = {}^{\mathcal{V}\perp}\mathcal{N}.$$

Proof Since Definition 4.1 and Proposition 4.2, we obtain ${}^{\mathcal{Y}\perp}\mathcal{N} = \mathcal{Y}_{\mathcal{N}} \subseteq \operatorname{Copres}^{n}_{\mathcal{Y}}(\mathcal{N})$. It is only to prove $\operatorname{Copres}^{n}_{\mathcal{Y}}(\mathcal{N}) \subseteq {}^{\mathcal{Y}\perp}\mathcal{N}$. For any $C \in \operatorname{Copres}^{n}_{\mathcal{Y}}(\mathcal{N})$ and $N \in \mathcal{N}$, we have a $\operatorname{Hom}_{\mathcal{A}}(-,\mathcal{Y})$ -exact sequence $0 \to C \to N^{1} \to N^{2} \to \cdots \to N^{n-1} \to N^{n} \to I \to 0$, where $I = \operatorname{Coker}(N^{n-1} \to N^{n})$ and each $N^{i} \in \mathcal{N}$. Since Lemma 2.1 and \mathcal{N} is self-orthogonal- \mathcal{Y} , we obtain $\operatorname{Ext}^{k}_{\mathcal{A}\mathcal{Y}}(C,N) \cong \operatorname{Ext}^{k+n}_{\mathcal{A}\mathcal{Y}}(I,N)$ for $k \ge 1$. Note that \mathcal{Y} -id $\mathcal{N} \le n$, then $\operatorname{Ext}^{k+n}_{\mathcal{A}\mathcal{Y}}(I,N) =$ 0 by Proposition 2.3. So $\operatorname{Ext}^{k}_{\mathcal{A}\mathcal{Y}}(C,N) = 0$, which means $\operatorname{Copres}^{n}_{\mathcal{Y}}(\mathcal{N}) \subseteq {}^{\mathcal{Y}\perp}\mathcal{N}$. Therefore, $\operatorname{Copres}^{n}_{\mathcal{Y}}(\mathcal{N}) = {}^{\mathcal{Y}\perp}\mathcal{N}$. \Box

For any subcategory \mathcal{V} of \mathcal{A} , it is obvious $\mathcal{X} \in {}^{\mathcal{Y}\perp}\mathcal{V}$ by Proposition 2.3. Then $\mathcal{V} \subseteq$ Copres^{*n*}_{\mathcal{Y}}(\mathcal{V}). \mathcal{V} is said to be closed under *n*- \mathcal{Y} -kernels provided that Copres^{*n*}_{\mathcal{Y}}(\mathcal{V}) $\subseteq \mathcal{V}$, which means Copres^{*n*}_{\mathcal{V}}(\mathcal{V}) = \mathcal{V} .

Lemma 4.6 Let \mathcal{N} be a subcategory of \mathcal{A} . Then \mathcal{Y} -id $\mathcal{N} \leq n$ if and only if $\mathcal{Y}^{\perp}\mathcal{N}$ is closed under n- \mathcal{Y} -kernels.

Proof (\Rightarrow) . For any $C \in \operatorname{Copres}_{\mathcal{V}}^{n}(\mathcal{V}^{\perp}\mathcal{N})$, there is a $\operatorname{Hom}_{\mathcal{A}}(-,\mathcal{Y})$ -exact sequence

$$0 \to C \to M^1 \to M^2 \to \dots \to M^{n-1} \to M^n \to I \to 0,$$

where $I = \operatorname{Coker}(M^{n-1} \to M^n)$ and each $M^i \in \mathcal{Y}^{\perp} \mathcal{N}$. Note that $\mathcal{Y}^{\perp} \mathcal{N}$ is self-orthogonal- \mathcal{Y} , then

 $\operatorname{Ext}_{\mathcal{A}\mathcal{Y}}^{k}(C,N) \cong \operatorname{Ext}_{\mathcal{A}\mathcal{Y}}^{k+n}(I,N) = 0$ for any $N \in \mathcal{N}$ and $k \ge 1$ by Lemma 2.1 and Proposition 2.3. We have $C \in \mathcal{Y}^{\perp}\mathcal{N}$, which means $\operatorname{Copres}_{\mathcal{Y}}^{n}(\mathcal{Y}^{\perp}\mathcal{N}) \subseteq \mathcal{Y}^{\perp}\mathcal{N}$. Thus $\mathcal{Y}^{\perp}\mathcal{N}$ is closed under $n-\mathcal{Y}$ -kernels.

(\Leftarrow). It suffices to prove $\operatorname{Ext}_{\mathcal{AY}}^{n+1}(M, N) = 0$ for any $N \in \mathcal{N}$ and $M \in \mathcal{A}$ by Proposition 2.3. Note that $(\mathcal{X}, \mathcal{Z}, \mathcal{Y})$ is a complete hereditary cotorsion triple, by lemma 2.4, we obtain a $\operatorname{Hom}_{\mathcal{A}}(-, \mathcal{Y})$ -exact sequence

$$0 \to K \to X^n \to X^{n-1} \to \dots \to X^2 \to X^1 \to M \to 0$$

where $X^i \in \mathcal{X} \subseteq \mathcal{Y}^{\perp} \mathcal{N}$. Since $\mathcal{Y}^{\perp} \mathcal{N}$ is closed under *n*- \mathcal{Y} -kernels, we have $K \in \mathcal{Y}^{\perp} \mathcal{N}$. Therefore, $\operatorname{Ext}_{\mathcal{A}\mathcal{Y}}^{n+1}(M, N) \cong \operatorname{Ext}_{\mathcal{A}\mathcal{Y}}^1(K, N) = 0$ by Lemma 2.1. \Box

Proposition 4.7 Assume that \mathcal{N} is a self-orthogonal- \mathcal{Y} subcategory of \mathcal{A} . Then $\operatorname{Copres}^n_{\mathcal{Y}}(\mathcal{N}) = \operatorname{Copres}^n_{\mathcal{Y}}(\mathcal{Y}_{\mathcal{N}}).$

Proof By assumption, we obtain $\mathcal{N} \in \mathcal{Y}_{\mathcal{N}}$, then $\operatorname{Copres}_{\mathcal{Y}}^{n}(\mathcal{N}) \subseteq \operatorname{Copres}_{\mathcal{Y}}^{n}(\mathcal{Y}_{\mathcal{N}})$. We only need to prove $\operatorname{Copres}_{\mathcal{Y}}^{n}(\mathcal{Y}_{\mathcal{N}}) \subseteq \operatorname{Copres}_{\mathcal{Y}}^{n}(\mathcal{N})$. For any $C \in \operatorname{Copres}_{\mathcal{Y}}^{n}(\mathcal{Y}_{\mathcal{N}})$, we have a $\operatorname{Hom}_{\mathcal{A}}(-,\mathcal{Y})$ -exact sequence

$$0 \to C \to M^1 \to M^2 \to \dots \to M^{n-1} \to M^n \to I \to 0,$$

where $I = \operatorname{Coker}(M^{n-1} \to M^n)$ and each $M^i \in \mathcal{Y}_N$. Since \mathcal{N} is a \mathcal{Y} -cogenerator of \mathcal{Y}_N and \mathcal{Y}_N is closed under $\operatorname{Hom}_{\mathcal{A}}(-,\mathcal{Y})$ -extensions by Lemma 3.3. Following Lemma 3.4, we have a $\operatorname{Hom}_{\mathcal{A}}(-,\mathcal{Y})$ -exact sequence

$$0 \to C \to N^1 \to N^2 \to \dots \to N^{n-1} \to N^n \to V^n \to 0$$

where each $N^i \in \mathcal{N}$. It is clear $C \in \operatorname{Copres}^n_{\mathcal{V}}(\mathcal{N})$. Then $\operatorname{Copres}^n_{\mathcal{V}}(\mathcal{Y}_{\mathcal{N}}) \subseteq \operatorname{Copres}^n_{\mathcal{V}}(\mathcal{N})$. In conclusion, $\operatorname{Copres}^n_{\mathcal{V}}(\mathcal{N}) = \operatorname{Copres}^n_{\mathcal{V}}(\mathcal{Y}_{\mathcal{N}})$.

Proposition 4.8 Assume that \mathcal{N} is a subcategory of \mathcal{A} with $\operatorname{Copres}_{\mathcal{Y}}^{n}(\mathcal{N}) = \mathcal{V}^{\perp}\mathcal{N}$, and each object in $\mathcal{V}^{\perp}\mathcal{N}$ admits a left \mathcal{N} -approximation. Then the followings hold

- (1) $\mathcal{Y}^{\perp}\mathcal{N}$ is closed under *n*- \mathcal{Y} -kernels and \mathcal{Y} -id $\mathcal{N} \leq n$;
- (2) If \mathcal{N} is closed under direct summands, then $\mathcal{Y} \subseteq {}_n \widehat{\mathcal{N}}_{\mathcal{Y}}$.

Proof (1) By Lemma 4.6, we only need to show ${}^{\mathcal{Y}\perp}\mathcal{N}$ is closed under n- \mathcal{Y} -kernels. Since $\operatorname{Copres}^n_{\mathcal{Y}}(\mathcal{N}) = {}^{\mathcal{Y}\perp}\mathcal{N}$, we obtain \mathcal{N} is self-orthogonal- \mathcal{Y} and ${}^{\mathcal{Y}\perp}\mathcal{N} \subseteq \operatorname{Cogen}_{\mathcal{Y}}(\mathcal{N})$. Note that each object in ${}^{\mathcal{Y}\perp}\mathcal{N}$ admits left \mathcal{N} -approximation, then ${}^{\mathcal{Y}\perp}\mathcal{N}=\mathcal{Y}_{\mathcal{N}}$ by Proposition 4.2. According to Proposition 4.7, we get

$$\operatorname{Copres}_{\mathcal{V}}^{n}(\mathcal{V}^{\perp}\mathcal{N}) = \operatorname{Copres}_{\mathcal{V}}^{n}(\mathcal{Y}_{\mathcal{N}}) = \operatorname{Copres}_{\mathcal{V}}^{n}(\mathcal{N}) = \mathcal{V}^{\perp}\mathcal{N}$$

which means $\mathcal{V}^{\perp}\mathcal{N}$ is closed under *n*- \mathcal{Y} -kernels.

(2) Let \mathcal{N} be closed under direct summands. For any $Y \in \mathcal{Y}$, we have a Hom_{\mathcal{A}} $(-,\mathcal{Y})$ -exact sequence

$$0 \to Z \to X^n \to X^{n-1} \to \dots \to X^2 \to X^1 \to Y \to 0$$

with $X^i \in \mathcal{X} \subseteq \mathcal{Y}^{\perp} \mathcal{N}$ by Lemma 2.4. Following (1), we get $Z \in \mathcal{Y}^{\perp} \mathcal{N}$. It is clear $\mathcal{Y}^{\perp} \mathcal{N}$ is closed under $\operatorname{Hom}_{\mathcal{A}}(-,\mathcal{Y})$ -extensions by Lemma 2.1. Note that \mathcal{N} is a \mathcal{Y} -cogenerator of $\mathcal{Y}^{\perp} \mathcal{N}$ since Proposition 4.2. According to Corollary 3.5, we have a $\operatorname{Hom}_{\mathcal{A}}(-,\mathcal{Y})$ -exact sequence $0 \to Y \to V \to U \to 0$ with $V \in {}_n \widehat{\mathcal{N}}_{\mathcal{Y}}$ and $U \in \mathcal{Y}^{\perp} \mathcal{N}$. Then $V \cong Y \oplus U$ by Lemma 3.2. Also because ${}_n \widehat{\mathcal{N}}_{\mathcal{Y}}$ is closed under direct summands by Lemma 3.6, we obtain $Y \in {}_n \widehat{\mathcal{N}}_{\mathcal{Y}}$, which means $Y \subseteq {}_n \widehat{\mathcal{N}}_{\mathcal{Y}}$. \Box

We can now state one of our main results which follows immediately by Propositions 4.5 and 4.8. It is similar to [7, Theorem 3.11].

Theorem 4.9 Assume that the subcategory \mathcal{N} of \mathcal{A} is closed under direct summands, and every object in $\mathcal{Y}^{\perp}\mathcal{N}$ admits a left \mathcal{N} -approximation. Then \mathcal{N} is *n*- \mathcal{Y} -cotilting (with respect to $(\mathcal{X}, \mathcal{Z}, \mathcal{Y})$), if and only if Copres $_{\mathcal{Y}}^{n}(\mathcal{N}) = \mathcal{Y}^{\perp}\mathcal{N}$.

5. *n*-Costar subcategories and n- \mathcal{I} -cotilting subcategories

In this section, R is an associative ring with nonzero identity. R-Mod is the subcategory of all left R-modules. We use the term "subcategory" to stand for a full additive subcategory of R-Mod closed under isomorphisms. \mathcal{P} denotes the subcategory of projective left R-modules and \mathcal{I} denotes the subcategory of injective left R-modules. If $\alpha : X \to Y$ and $\beta : Y \to Z$ are homomorphisms, we denote by $\alpha\beta$ the composition of α and β . Let \mathcal{M} be a subcategory of R-Mod, we denote

 $\perp_{1\leqslant i\leqslant n} \mathcal{M} = \{N \in R\text{-Mod} | \text{Ext}_R^i(N, M) = 0 \text{ for any } M \in \mathcal{M} \text{ and any } 1 \leqslant i \leqslant n\},\$

 $^{\perp_{i \ge 1}} \mathcal{M} = \{ N \in R \text{-Mod} | \text{Ext}_{R}^{i}(N, M) = 0 \text{ for any } M \in \mathcal{M} \text{ and any } i \ge 1 \}.$

Obviously, $(\mathcal{P}, R\text{-Mod}, \mathcal{I})$ is a complete hereditary cotorsion triple and ${}^{\mathcal{I}}\mathcal{M} = {}^{\perp_{i \ge 1}}\mathcal{M}$.

And denote by $\operatorname{Copres}^{n}(\mathcal{M})$ the subcategory of $N \in R$ -Mod such that there exists an exact sequence $0 \to N \to M_1 \to M_2 \to \cdots \to M_n$ with each $M_i \in \mathcal{M}$. It is obvious that $\operatorname{Cogen}(\mathcal{M}) = \operatorname{Copres}^{1}(\mathcal{M})$, $\operatorname{Copres}^{1}(\mathcal{M})$ is closed under direct summands, and $\operatorname{Copres}^{n+1}(\mathcal{M}) \subseteq \operatorname{Copres}^{n}(\mathcal{M})$ for any non-negative integer n. Dually we can define $\mathcal{M}^{\perp_{1 \leqslant i \leqslant n}}$, $\mathcal{M}^{\perp_{i \geqslant 1}}$ and $\operatorname{Pres}^{n}(\mathcal{M})$. If the short exact sequence $0 \to U \to V \to W \to 0$ is still exact under the functor $\operatorname{Hom}_{R}(-, \overline{M})$ for any $\overline{M} \in \mathcal{M}$, then we say this exact sequence stays exact under the functor $\operatorname{Hom}_{R}(-, \mathcal{M})$. We say \mathcal{M} is closed under n-kernels if $\operatorname{Copres}^{n}(\mathcal{M}) \subseteq \mathcal{M}$, i.e., $\operatorname{Copres}^{n}(\mathcal{M}) = \mathcal{M}$. A set $\mathcal{M}' \subseteq \mathcal{M}$ is a class of representatives (of isomorphism types) of \mathcal{M} in case each $M \in \mathcal{M}$ is isomorphic to some element of \mathcal{M}' (see [21]). Clearly, if \mathcal{M}' is a class of representatives of \mathcal{M} , then $\operatorname{Cogen}(\mathcal{M}) = \operatorname{Cogen}(\mathcal{M}')$, and $\operatorname{Gen}(\mathcal{M}) = \operatorname{Gen}(\mathcal{M}')$.

Let us start with the concept of *n*-quasi-injective subcategories.

Definition 5.1 Let $n \ge 1$ and \mathcal{M} be a subcategory of R-Mod, which is closed under direct summands. \mathcal{M} is said to be an n-quasi-injective subcategory if for any exact sequence $0 \to U \to M \to W \to 0$ with $M \in \mathcal{M}$ and $W \in \operatorname{Copres}^{n-1}(\mathcal{M})$, the induced sequence $0 \to \operatorname{Hom}_R(W, \overline{M}) \to \operatorname{Hom}_R(W, \overline{M}) \to 0$ is also exact for any $\overline{M} \in \mathcal{M}$.

It is clear that $_{R}T$ is an *n*-quasi-injective module is equivalent to $\operatorname{Prod}_{R}T$ is an *n*-quasi-

injective subcategory, where $\operatorname{Prod}_R T$ denotes the subcategory of all left *R*-modules *N* that are isomorphic to direct summand of T^{λ} for some cardinal λ . If \mathcal{M} is an *n*-quasi-injective subcategory, then \mathcal{M} is an *m*-quasi-injective subcategory for all $m \ge n$.

We now introduce a useful lemma.

Lemma 5.2 Suppose that \mathcal{M} is a subcategory of R-Mod which is closed under direct summands, $0 \to U \to M_1 \to I_1 \to 0$ and $0 \to U \to M_2 \to I_2 \to 0$ are exact sequences with $M_1, M_2 \in \mathcal{M}$. If both sequences stay exact under the functor $\operatorname{Hom}_R(-, \mathcal{M})$, then $M_1 \oplus I_2 \cong M_2 \oplus I_1$.

Proof By assumption, we have that both $0 \to U \to M_1 \to I_1 \to 0$ and $0 \to U \to M_2 \to I_2 \to 0$ stay exact under the functor $\operatorname{Hom}_R(-, \mathcal{M})$, where $M_1, M_2 \in \mathcal{M}$. Then by the decomposition lemma we can construct the following commutative diagram with row exact (Diagram 8):

Diagram 8 The commutative diagram induced by the decomposition lemma Following the dually conclusion of [12, Lemma2.2], we obtain $M_1 \oplus I_2 \cong M_2 \oplus I_1$. \Box

Below we give an equivalent characterization of n-quasi-injective subcategories.

Proposition 5.3 Suppose that $n \ge 1$ and \mathcal{M} is a subcategory of *R*-Mod, which is closed under direct summands. Then the followings are equivalent.

(1) \mathcal{M} is an *n*-quasi-injective subcategory;

(2) For any exact sequence $\delta : 0 \to U \to M \to W \to 0$ with $M \in \mathcal{M}$ and $U \in \operatorname{Copres}^{n}(\mathcal{M})$, we have that $W \in \operatorname{Copres}^{n-1}(\mathcal{M})$ if only if δ is still exact under the functor $\operatorname{Hom}_{R}(-,\mathcal{M})$.

Proof $(1) \Rightarrow (2)$. For any exact sequence $\delta : 0 \to U \to M \to W \to 0$ with $M \in \mathcal{M}$ and $U \in \operatorname{Copres}^{n}(\mathcal{M})$, if $W \in \operatorname{Copres}^{n-1}(\mathcal{M})$, then it is clear that the induced sequence $0 \to \operatorname{Hom}_{R}(W, \overline{M}) \to \operatorname{Hom}_{R}(M, \overline{M}) \to \operatorname{Hom}_{R}(U, \overline{M}) \to 0$ is still exact for any $\overline{M} \in \mathcal{M}$ by (1), which means δ is still exact under the functor $\operatorname{Hom}_{R}(-, \mathcal{M})$. If δ is still exact under the functor $\operatorname{Hom}_{R}(-, \mathcal{M})$, by $U \in \operatorname{Copres}^{n}(\mathcal{M})$ we can get an exact sequence $0 \to U \to M' \to W' \to 0$ with $M' \in \mathcal{M}$ and $U' \in \operatorname{Copres}^{n-1}(\mathcal{M})$, which is also exact under the functor $\operatorname{Hom}_{R}(-, \mathcal{M})$ according to Definition 5.1. So we obtain that $W' \oplus M \cong W \oplus M'$ by applying Lemma 5.2. Therefore, $W \in \operatorname{Copres}^{n-1}(\mathcal{M})$.

 $(2) \Rightarrow (1)$ is obvious. \Box

We introduce the concept and characterizations of n-costar subcategories as follows.

Definition 5.4 Suppose that $n \ge 1$ and \mathcal{M} is a subcategory of *R*-Mod which is closed under direct summands and direct products. \mathcal{M} is called an *n*-costar subcategory, if \mathcal{M} is an (n + 1)-

quasi-injective subcategory and $\operatorname{Copres}^{n}(\mathcal{M}) = \operatorname{Copres}^{n+1}(\mathcal{M}).$

Lemma 5.5 Suppose that \mathcal{M} is an *n*-costar subcategory and $0 \to U \xrightarrow{i} V \xrightarrow{\pi} W \to 0$ is a short exact sequence in *R*-Mod. If $V, W \in \operatorname{Copres}^{n}(\mathcal{M})$, then $U \in \operatorname{Copres}^{n}(\mathcal{M})$.

Proof If $V, W \in \text{Copres}^n(\mathcal{M})$, then there are exact sequences

$$0 \to W \xrightarrow{\beta} M_W \to W' \to 0 \text{ and } 0 \to V \xrightarrow{\alpha} M_V \to V_1 \to 0$$

with $W', V_1 \in \text{Copres}^n(\mathcal{M})$ and $M_W, M_V \in \mathcal{M}$. Since \mathcal{M} is an *n*-costar subcategory, we can get the following exact commutative diagram (Diagram 9):

Diagram 9 The diagram corresponding to U

Because the exact sequence $0 \to V \to M_V \to V_1 \to 0$ is exact under the functor $\operatorname{Hom}_R(-, \mathcal{M})$ by assumption, for any $\overline{M} \in \mathcal{M}$ and any homomorphism $f: V \to \overline{M}$, there exists a homomorphism $g: M_V \to \overline{M}$ such that $\alpha g = f$. It is easy to see that $(\alpha, \pi\beta) \begin{pmatrix} g \\ 0 \end{pmatrix} = \alpha g = f$ and $\begin{pmatrix} g \\ 0 \end{pmatrix}$: $M_V \oplus M_W \to \overline{M}$, which means the exact sequence $0 \to V \to M_V \oplus M_W \to V' \to 0$ is also exact under the functor $\operatorname{Hom}_R(-, \mathcal{M})$. Note that $V \in \operatorname{Copres}^n(\mathcal{M})$ and \mathcal{M} is (n+1)-quasiinjective subcategory, we can get $V' \in \operatorname{Copres}^n(\mathcal{M})$ by Proposition 5.3. Repeat the above process to $0 \to U' \to V' \to W' \to 0$ and continue. It is not difficult to draw the conclusion $U \in \operatorname{Copres}^n(\mathcal{M})$. \Box

Now let us talk about the closure of $\operatorname{Copres}^{n}(\mathcal{M})$ under kernels of monomorphism, cokernels of epimorphism and extensions, by assumption that \mathcal{M} is an *n*-costar subcategory.

Proposition 5.6 Suppose that \mathcal{M} is an *n*-costar subcategory and $0 \to U \xrightarrow{i} V \xrightarrow{\pi} W \to 0$ is a short exact sequence which stays exact under the functor $\operatorname{Hom}_R(-, \mathcal{M})$. Then the followings hold:

- (1) If $V, W \in \operatorname{Copres}^{n}(\mathcal{M})$, then $U \in \operatorname{Copres}^{n}(\mathcal{M})$;
- (2) If $U, W \in \operatorname{Copres}^{n}(\mathcal{M})$, then $V \in \operatorname{Copres}^{n}(\mathcal{M})$;
- (3) If $U, V \in \operatorname{Copres}^{n}(\mathcal{M})$, then $W \in \operatorname{Copres}^{n}(\mathcal{M})$.

Proof (1) It is clear by Lemma 5.5.

(2) If $U, W \in \operatorname{Copres}^{n}(\mathcal{M})$, then there are exact sequences $0 \to U \xrightarrow{\alpha} M_{U} \to U' \to 0$ and $0 \to W \xrightarrow{\gamma} M_{W} \to W' \to 0$ with $U', W' \in \operatorname{Copres}^{n}(\mathcal{M})$ and $M_{U}, M_{W} \in \mathcal{M}$, which are still exact under the functor $\operatorname{Hom}_{R}(-, \mathcal{M})$, since \mathcal{M} is an *n*-costar subcategory. Note that $0 \to U \xrightarrow{i} V \xrightarrow{\pi} W \to 0$ is also exact under the functor $\operatorname{Hom}_{R}(-, \mathcal{M})$ and $M_{W} \in \mathcal{M}$, so we can get a homomorphism $\xi : V \to M_{U}$ such that $i\xi = \alpha$. Consider the following commutative diagram (Diagram 10):

Diagram 10 The diagram corresponding to V

where $V' = \operatorname{Coker}(V \to M_U \oplus M_W)$. For any $\overline{M} \in \mathcal{M}$, applying the functor $\operatorname{Hom}_R(-, \overline{M})$ to the diagram, we can obtain the following exact commutative diagram (Diagram 11):

By the snake lemma, we get the sequence $0 \to \operatorname{Hom}_R(W', \overline{M}) \to \operatorname{Hom}_R(V', \overline{M}) \to \operatorname{Hom}_R(U', \overline{M}) \to 0$ is exact, which means $0 \to U' \to V' \to W' \to 0$ is exact under the functor $\operatorname{Hom}_R(-, \mathcal{M})$. Repeat the above process to $0 \to U' \to V' \to W' \to 0$ and continue. It is not difficult to draw the conclusion $V \in \operatorname{Copres}^n(\mathcal{M})$.

(3) If $U, V \in \operatorname{Copres}^{n}(\mathcal{M})$, then there is an exact sequence $0 \to V \xrightarrow{\beta} M_{V} \to V' \to 0$ with $V' \in \operatorname{Copres}^{n}(\mathcal{M})$ and $M_{V} \in \mathcal{M}$. Consider the following pushout diagram (Diagram 12):

572

Diagram 12 The pushout diagram of $V \to M_V$ and $V \to W$

For any $\overline{M} \in \mathcal{M}$ and any homomorphism $g: U \to \overline{M}$, there is a homomorphism $h: V \to \overline{M}$ such that ih = g by the fact that upper row stays exact under the functor $\operatorname{Hom}_R(-, \mathcal{M})$. Since the middle column is also exact under the functor $\operatorname{Hom}_R(-, \mathcal{M})$, there exists a homomorphism $f: M_V \to \overline{M}$ such that $\beta f = h$. Then $\mu f = (i\beta)f = i(\beta f) = ih = g$, which means the middle row is still exact under the functor $\operatorname{Hom}_R(-, \mathcal{M})$. Following Proposition 5.3, we can get $Y \in \operatorname{Copres}^n(\mathcal{M})$. Also because $V' \in \operatorname{Copres}^n(\mathcal{M})$, it is easy to see that $U \in \operatorname{Copres}^n(\mathcal{M})$ by Lemma 5.5. \Box

According to the proof of Proposition 5.6, we can get the following corollary.

Corollary 5.7 Suppose that \mathcal{M} is an *n*-costar subcategory and $\delta : 0 \to U \to V \to W \to 0$ is a short exact sequence with $U, V, W \in \operatorname{Copres}^{n}(\mathcal{M})$, then δ stays exact under the functor $\operatorname{Hom}_{R}(-, \mathcal{M})$.

Some characterizations of *n*-costar subcategories are given below.

Theorem 5.8 Suppose that $n \ge 1$ and \mathcal{M} is a subcategory of *R*-Mod, which is closed under direct summands and direct products. \mathcal{M} has a class of representatives. Then the followings are equivalent.

(1) \mathcal{M} is an *n*-costar subcategory;

(2) For any short exact sequence $\delta : 0 \to U \to M \to W \to 0$ with $M \in \mathcal{M}$ and $U \in Copres^n(\mathcal{M})$, then $W \in Copres^n(\mathcal{M})$ if and only if the induced sequence $0 \to Hom_R(W, \bar{M}) \to Hom_R(M, \bar{M}) \to Hom_R(U, \bar{M}) \to 0$ for any $\bar{M} \in \mathcal{M}$.

(3) For any short exact sequence $\delta : 0 \to U \to V \to W \to 0$ with $U, V \in \operatorname{Copres}^{n}(\mathcal{M})$, then $W \in \operatorname{Copres}^{n}(\mathcal{M})$ if and only if the induced sequence $0 \to \operatorname{Hom}_{R}(W, \overline{M}) \to \operatorname{Hom}_{R}(V, \overline{M}) \to \operatorname{Hom}_{R}(U, \overline{M}) \to 0$ is also exact for any $\overline{M} \in \mathcal{M}$.

Proof (1) \Rightarrow (3). Let \mathcal{M} be an *n*-costar subcategory. Then \mathcal{M} is (n + 1)-quasi-injective and Copres^{*n*}(\mathcal{M}) = Copres^{*n*+1}(\mathcal{M}). For any short exact sequence $\delta : 0 \to U \to V \to W \to 0$ with $U, V \in \text{Copres}^n(\mathcal{M})$, by Proposition 5.6 and Corollary 5.7, it is not difficult to prove that the

conclusion holds.

 $(3) \Rightarrow (2)$. It is clear by $\mathcal{M} \subseteq \operatorname{Copres}^n(\mathcal{M})$.

 $(2) \Rightarrow (1)$. By assumption (2), we can get \mathcal{M} is (n + 1)-quasi-injective subcategory. Note that $\operatorname{Copres}^{n+1}(\mathcal{M}) \subseteq \operatorname{Copres}^n(\mathcal{M})$, so we only need to prove $\operatorname{Copres}^n(\mathcal{M}) \subseteq \operatorname{Copres}^{n+1}(\mathcal{M})$. For any $U \in \operatorname{Copres}^n(\mathcal{M})$, we have $U \in \operatorname{Cogen}(\mathcal{M})$. Let \mathcal{M}' be a class of representatives of \mathcal{M} , then $U \in \operatorname{Cogen}(\mathcal{M}')$. There exists a set $(M_i)_{i \in I}$ in \mathcal{M}' and an monomorphism $U \rightarrow$ $\prod_{i \in I} M_i$. Let $H = \prod_{M' \in \mathcal{M}'} M'$, and $M_U = H^{\operatorname{Hom}_R(U,H)}$. Then there is an exact sequence $o \to U \to M_U \to U' \to 0$ which is still exact under the functor $\operatorname{Hom}_R(-,\mathcal{M})$. By assumption we get $U' \in \operatorname{Copres}^n(\mathcal{M})$, which means $U \in \operatorname{Copres}^{n+1}(\mathcal{M})$. So $\operatorname{Copres}^n(\mathcal{M}) \subseteq \operatorname{Copres}^{n+1}(\mathcal{M})$. Consequently, \mathcal{M} is an *n*-costar subcategory. \Box

Theorem 5.9 Suppose that $n \ge 1$ and \mathcal{M} is a subcategory of *R*-Mod, which is closed under direct summands and direct products. Then the followings are equivalent.

- (1) \mathcal{M} is an *n*-costar subcategory and Copres^{*n*}(\mathcal{M}) is closed under extensions;
- (2) $\operatorname{Copres}^{n}(\mathcal{M}) = \operatorname{Copres}^{n+1}(\mathcal{M}) \subseteq^{\perp} \mathcal{M}.$

Proof (1) \Rightarrow (2). Since \mathcal{M} is an *n*-costar subcategory, we have $\operatorname{Copres}^{n}(\mathcal{M}) = \operatorname{Copres}^{n+1}(\mathcal{M})$ and we only need to prove that $\operatorname{Copres}^{n}(\mathcal{M}) \subseteq^{\perp} \mathcal{M}$. For any $N \in \operatorname{Copres}^{n}(\mathcal{M})$, any $\overline{M} \in \mathcal{M}$ and any extension of N by \overline{M} : $0 \to \overline{M} \to E \to N \to 0$, because $\overline{M} \in \mathcal{M} \subseteq \operatorname{Copres}^{n}(\mathcal{M})$ and $\operatorname{Copres}^{n}(\mathcal{M})$ is closed under extensions by (1), we get $E \in \operatorname{Copres}^{n}(\mathcal{M})$. According to Corollary 5.7, we know the induced sequence $0 \to \operatorname{Hom}_{R}(N, \overline{M}) \to \operatorname{Hom}_{R}(E, \overline{M}) \to \operatorname{Hom}_{R}(\overline{M}, \overline{M}) \to 0$ is exact, which means $0 \to \overline{M} \to E \to N \to 0$ is split. Therefore, $\operatorname{Ext}^{1}_{R}(N, \overline{M}) = 0$ for any $\overline{M} \in \mathcal{M}$, then $\operatorname{Copres}^{n}(\mathcal{M}) \subseteq^{\perp} \mathcal{M}$.

 $(2) \Rightarrow (1)$. It is easy to see that \mathcal{M} is an *n*-costar subcategory by (2), so let us prove that $\operatorname{Copres}^n(\mathcal{M})$ is closed under extensions. For any extension $0 \to U \to V \to W \to 0$ with $U, W \in \operatorname{Copres}^n(\mathcal{M})$, by assumption $\operatorname{Copres}^n(\mathcal{M}) \subseteq^{\perp} \mathcal{M}$, we can get this sequence is exact under $\operatorname{Hom}_R(-, \mathcal{M})$. It is not difficult to prove $V \in \operatorname{Copres}^n(\mathcal{M})$ according to Proposition 5.6, which means $\operatorname{Copres}^n(\mathcal{M})$ is closed under extensions. \Box

The following lemma shall be used to the proof Theorem 5.13.

Proposition 5.10 Suppose that \mathcal{M} is an *n*-costar subcategory and $\operatorname{Copres}^{n}(\mathcal{M})$ is closed under extensions. Then $\operatorname{Copres}^{k}(\operatorname{Copres}^{n}(\mathcal{M})) = \operatorname{Copres}^{k}(\mathcal{M})$ for any $k \ge 1$. Especially, $\operatorname{Copres}^{n}(\mathcal{M})$ is closed under *n*-kernels.

Proof It is easy to prove the conclusion by induction on k. \Box

As well known, every left R-module has an injective envelope, so it also has a left \mathcal{I} approximation. Then we can get the following lemma by Theorem 4.9.

Lemma 5.11 Suppose that *n* is a non-negative integer and \mathcal{M} is a subcategory of *R*-Mod closed under direct summands. Then \mathcal{M} is *n*- \mathcal{I} -cotilting subcategory with respect to cotorsion triple $(\mathcal{P}, R\text{-}Mod, \mathcal{I})$ if and only if $\operatorname{Copres}^n(\mathcal{M}) = {}^{\perp_i \ge 1} \mathcal{M}$.

By Proposition 5.6 and Theorem 5.9, we can obtain the following lemma.

Lemma 5.12 Suppose that \mathcal{M} is an *n*-costar subcategory such that $\operatorname{Copres}^{n}(\mathcal{M})$ is closed under extensions, and $0 \to U \to V \to W \to 0$ is a short exact sequence with $U, V \in \operatorname{Copres}^{n}(\mathcal{M})$. Then $W \in \operatorname{Copres}^{n}(\mathcal{M})$ if and only if $W \in {}^{\perp} \mathcal{M}$.

We can now state our main result as follows.

Theorem 5.13 Let n be a non-negative integer and \mathcal{M} be a subcategory of R-Mod closed under direct summands and direct products. \mathcal{M} has a class of representatives. Then the following conditions are equivalent.

- (1) \mathcal{M} is an *n*- \mathcal{I} -cotilting subcategory;
- (2) Copresⁿ(\mathcal{M}) = $^{\perp_{1 \leq i \leq n}} \mathcal{M}$;
- (3) \mathcal{M} is an *n*-costar subcategory with $\mathcal{P} \subseteq \operatorname{Copres}^{n}(\mathcal{M})$;
- (4) $\mathcal{P} \subseteq \operatorname{Copres}^{n}(\mathcal{M}) = \operatorname{Copres}^{n+1}(\mathcal{M}) \subseteq^{\perp} \mathcal{M}.$

Proof $(1) \Rightarrow (2)$. It is clear by Lemma 5.11.

 $(2) \Rightarrow (3)$. Since $\mathcal{P} \subseteq {}^{\perp_1 \leqslant i \leqslant n} \mathcal{M} = \operatorname{Copres}^n(\mathcal{M})$ by (2). We only need to prove that \mathcal{M} is an *n*-costar subcategory. For any exact sequence $0 \to U \to M_U \to W \to 0$ with $M_U \in \mathcal{M}$ and $U \in \operatorname{Copres}^n(\mathcal{M})$. It is easy to see that $\operatorname{Copres}^n(\mathcal{M})$ is closed under extensions by (2). Then this sequence is exact under the functor $\operatorname{Hom}_R(-, \mathcal{M})$ if and only if $W \in {}^{\perp} \mathcal{M}$, if and only if $W \in {}^{\perp_1 \leqslant i \leqslant n} \mathcal{M} = \operatorname{Copres}^n(\mathcal{M})$ since $M_U, U \in \operatorname{Copres}^n(\mathcal{M}) = {}^{\perp_1 \leqslant i \leqslant n} \mathcal{M}$. According to Theorem 5.8, one can see that \mathcal{M} is *n*-costar subcategory.

 $(3) \Rightarrow (4)$. We only need to prove that $\operatorname{Copres}^{n}(\mathcal{M}) \subseteq^{\perp} \mathcal{M}$. For any $W \in \operatorname{Copres}^{n}(\mathcal{M})$, there exists exact sequence $0 \to W' \to P_{W} \to W \to 0$ with $P_{W} \in \mathcal{P}$. Note that $P_{W}, W \in \operatorname{Copres}^{n}(\mathcal{M})$, we have $W' \in \operatorname{Copres}^{n}(\mathcal{M})$ by Lemma 5.5. Consider the following long exact sequence

$$\cdots \to \operatorname{Hom}_R(P_W, \bar{M}) \to \operatorname{Hom}_R(W', \bar{M}) \to \operatorname{Ext}^1_R(W, \bar{M}) \to \operatorname{Ext}^1(P_W, \bar{M}) \to \cdots$$

Following $P_W \in \mathcal{P}$ and Corollary 5.7, we obtain that $W \in^{\perp} \mathcal{M}$.

 $(4) \Rightarrow (1)$. According to Theorem 5.9, we know \mathcal{M} is an *n*-costar subcategory and Copres^{*n*}(\mathcal{M}) is closed under extensions. By Lemma 5.11, we only need to prove that Copres^{*n*}(\mathcal{M}) = $^{\perp_{i \ge 1}} \mathcal{M}$.

Firstly, we shall prove $\operatorname{Copres}^{n}(\mathcal{M}) \subseteq^{\perp_{i \geq 1}} \mathcal{M}$. For any $U \in \operatorname{Copres}^{n}(\mathcal{M})$, there is a projective resolution $\cdots \to P_{k} \xrightarrow{f_{k}} \cdots \to P_{2} \xrightarrow{f_{2}} P_{1} \xrightarrow{f_{1}} U \to 0$. Let $U_{i} = \ker f_{i}$. Then $U_{i} \in \operatorname{Copres}^{n}(\mathcal{M})$ by Lemma 5.5 and $\mathcal{P} \subseteq \operatorname{Copres}^{n}(\mathcal{M})$, which implies that $U_{i} \in^{\perp} \mathcal{M}$ for every $i \geq 1$. Then we get $\operatorname{Ext}^{j}(U, \overline{M}) \cong \operatorname{Ext}^{1}(U_{j-1}, \overline{M}) = 0$ for any $j \geq 1$ and $\overline{M} \in \mathcal{M}$, which means $\operatorname{Copres}^{n}(\mathcal{M}) \subseteq^{\perp_{i \geq 1}} \mathcal{M}$.

And then we prove ${}^{\perp_{i\geq 1}}\mathcal{M} \subseteq \operatorname{Copres}^{n}(\mathcal{M})$. For any $V \in {}^{\perp_{i\geq 1}}\mathcal{M}$, there is a projective resolution $\cdots \to Q_{k} \xrightarrow{g_{k}} \cdots \to Q_{2} \xrightarrow{g_{2}} Q_{1} \xrightarrow{g_{1}} U \to 0$, it is easy to see that $V_{i} \in {}^{\perp_{i\geq 1}}\mathcal{M}$. By Lemma 5.10, we know $V_{n} \in \operatorname{Copres}^{n}(\mathcal{M})$. Note that $V_{n-1} \in {}^{\perp_{i\geq 1}}\mathcal{M}$ and $Q_{n} \in \mathcal{P} \subseteq \operatorname{Copres}^{n}(\mathcal{M})$, one can see that $V_{n-1} \in \operatorname{Copres}^{n}(\mathcal{M})$ by Lemma 5.11. Repeat the process and continue, it is easy to get $V \in \operatorname{Copres}^{n}(\mathcal{M})$. Thus ${}^{\perp_{i\geq 1}}\mathcal{M} \subseteq \operatorname{Copres}^{n}(\mathcal{M})$. \Box

Acknowledgements We thank the referees for their time and comments.

References

- S. BRENNER, M. C. R. BUTLER. Generalizations of the Bernstein-Gelfand-Ponomarev Reflection Functors. Springer, Berlin-New York, 1980.
- [2] K. BONGARTZ. Tilted Algebras. Springer, Berlin-New York, 1981.
- [3] D. HAPPEL, C. M. RINGEL. Tilted algebras. Trans. Amer. Math. Soc., 1982, **274**(2): 399-443.
- [4] Y. MIYASHITA. Tilting modules of finite projective dimension. Math. Z., 1986, 193(1): 113–146.
- [5] R. R. COLBY, K. R. FULLER. Tilting, cotilting, and serially tilted rings. Comm. Algebra, 1990, 18(5): 1585-1615.
- [6] R. COLPI, J. TRLIFAJ. Tilting modules and tilting torsion theories. J. Algebra, 1995, 178(2): 614–634.
- [7] S. BAZZONI. A characterization of n-cotilting and n-tilting modules. J. Algebra, 2004, 273(1): 359–372.
- [8] Jiaqun WEI, Changchang XI. A characterization of the tilting pair. J. Algebra, 2007, 317(1): 376–391.
- [9] R. COLPI. Tilting in Grothendieck categories. Forum Math., 1999, 11(6): 735-760.
- [10] R. COLPI, K. FULLER. Tilting objects in abelian categories and quasitilted rings. Trans. Amer. Math. Soc., 2007, 359(2): 741–765.
- [11] Zhenxing DI, Jiaqun WEI, Xiaoxiang ZHANG, et al. Tilting subcategories with respect to cotorsion triples in abelian categories. Proc. Roy. Soc. Edinburgh Sect. A, 2017, 147(4): 703–726.
- [12] Jiaqun WEI. n-star modules and n-tilting modules. J. Algebra, 2005, 283(2): 711-722.
- [13] L. SALCE. Cotorsion Theories for Abelian Groups. Academic Press, London-New York, 1979.
- [14] E. E. ENOCHS, O. M. G. JENDA. Relative Homological Algebra. Walter de Gruyter, Berlin, 2011.
- [15] Wei REN. Applications of cotorsion triples. Comm. Algebra, 2019, 47(7): 2727–2741.
- [16] S. SATHER-WAGSTAFF, T. SHARIF, D. WHITE. Gorenstein cohomology in abelian categories. J. Math. Kyoto Univ., 2008, 48(3): 571–596.
- [17] Zhaoyong HUANG. Proper resolutions and Gorenstein categories. J. Algebra, 2013, 393: 142–169.
- [18] S. SATHER-WAGSTAFF, T. SHARIF, D. WHITE. Comparison of relative cohomology theories with respect to semidualizing modules. Math. Z., 2010, 264(3): 571–600.
- [19] M. AUSLANDER, R. BUCHWEITZ. The homological theory of maximal Cohen-Macaulay approximations. Mém. Soc. Math. France (N.S.), 1989, 38: 5–37.
- [20] H. HOLM. Rings with finite Gorenstein injective dimension. Proc. Amer. Math. Soc., 2004, 132(5): 1279– 1283.
- [21] F. W. ANDERSON, K. R. FULLER. Rings and Categories of Modules. Springer-Verlag, New York, 1992.