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Abstract Let A be an abelian category, and (X ,Z,Y) be a complete hereditary cotorsion triple.

We introduce the definition of n-Y-cotilting subcategories of A, and give a characterization of

n-Y-cotilting subcategories, which is similar to Bazzoni characterization of n-cotilting modules.

As an application, we prove that if GP is n-GI-cotilting over a virtually Gorenstein ring R,

then R is an n-Gorenstein ring, where GP denotes the subcategory of Gorenstein projective

R-modules and GI denotes the subcategory of Gorenstein injective R-modules. Furthermore,

we investigate n-costar subcategories over arbitrary ring R, and the relationship between n-I-
cotilting subcategories with respect to cotorsion triple (P, R-Mod, I) and n-costar subcategories,

where P denotes the subcategory of projective left R-modules and I denotes the subcategory of

injective left R-modules.
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1. Introduction

Tilting theory plays an important role in the representation of Artin algebra. The classical

tilting modules were first considerd in the early eighties by Brenner-Bulter [1], Bongartz [2]

and Happle and Ringel [3] etc. Begining with Miyashita [4], tilting modules over arbitrary

rings were investigated by many authors [5–8]. In 1999, Colpi [9] gave the definition of tilting

objects in any Grothedieck category and proved some basic facts of tilting theory in it. In 2007,

Colpi and Fuller [10] investigated tilting objects in arbitrary abelian category. Recently, Di et

al [11] introduced the notion of n-X -tilting subcategories with respect to a complete hereditary

cotorsion triple (X ,Z,Y) in abelian category A, and proved that a virtually Gorenstein ring

R was n-Gorenstein if and only if GI is n-GP-tilting, where GP denotes the subcategory of

Gorenstein projective R-modules and GI denotes the subcategory of Gorenstein injective R-

modules. Wei [12] studied n-star modules, and proved that n-tilting modules are n-star modules

n-presenting all injectives. Cotilting modules are also important part of tilting theory. In this

paper, we give the definition of n-Y-cotilting subcategories with respect to a complete hereditary
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cotorsion triple (X ,Z,Y) in abelian category A, and investigate properties and characterizations

of self-orthogonal-Y and n-Y-cotilting subcategories. As an application, we obtain a sufficient

condition for R to be n-Gorenstein ring over a virtually Gorenstein ring. Furthermore, we give

a characterization of n-Y-cotilting subcategories, which is similar to Bazzoni characterization

of n-cotilting modules. Then we introduce n-costar subcategories over an arbitrary ring R,

and we obtain that M is an n-I-cotilting subcategory with respect to cotorsion triple (P, R-

Mod, I), if and only if M is an n-costar subcategory with P ⊆ Copresn(M), where P denotes

the subcategory of projective left R-modules and I denotes the subcategory of injective left

R-modules.

We now state the main results of this paper.

Theorem 1.1 Let R be a virtually Gorenstein ring. If GP is an n-GI-cotilting subcategory,

then R is an n-Gorenstein ring. Moreover, GI is an n-GP-tilting subcategory.

Theorem 1.2 Let N be a subcategory of A which is closed under summands. If every object

in Y⊥N admits a left N -approximation, then N is n-Y-cotilting (with respect to (X ,Z,Y) if and

only if Copresn
Y
(N )= Y⊥N .

Theorem 1.3 Let n be a non-negative integer and M be a subcategory of R-Mod closed under

direct summands and direct products. M has a class of representatives. Then the following

conditions are equivalent.

(1) M is an n-I-cotilting subcategory with respect to cotorsion triple (P, R-Mod, I);
(2) Copresn(M) =⊥16i6n M;

(3) M is an n-costar subcategory with P ⊆ Copresn(M);

(4) P ⊆ Copresn(M) = Copresn+1(M) ⊆⊥ M.

The contents of this paper are summarized as follows. In Section 2, we collect some known

notions and results. In Section 3, we introduce self-orthogonal-Y subcategories of A and discuss

properties of them. In Section 4, we investigate n-Y-cotilting subcategories with respect to a

complete hereditary cotorsion tirple (X ,Z,Y) in abelian category. Section 5 is devoted to n-

costar subcategories and n-I-cotilting subcategory with respect to cotorsion triple (P, R-Mod,

I).

2. Preliminaries

Throughout this paper, A is an abelian category with enough projective objects and injective

objects. Subcategories are all full additive subcategory of A closed under isomorphisms. P
(respectively, I) is the subcategory of projectives (respectively, injectives). We denote X⊥ =

{Y ∈ A | Ext1A(X,Y ) = 0 for any X ∈ X}, ⊥Y = {X ∈ A | Ext1A(X,Y ) = 0 for any Y ∈ Y}. A
pair (X ,Y) of subcategories of A is said to be a cotorsion pair if X⊥ = Y and ⊥Y = X (see [13]).

Obviously, (P,A) and (A, I) are cotorsion pairs. The cotorsion pair (X ,Y) is complete if for any

N ∈ A there are short exact sequences 0 → Y → X → N → 0 and 0 → N → Y →X ′ → 0 with

X,X ′ ∈ X and Y, Y ′ ∈ Y. A subcategory Y is coresolving if it contains all injective objects, and
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for any short exact sequence 0 → Y ′ → Y → Y ′′ → 0 in A with Y ′ ∈ Y, we have Y ∈ Y if and

only if Y ′′ ∈ Y. And dually the notion of resolving subcategory is defined. The cotorsion pair

(X ,Y) is hereditary if Y is coresolving, i.e., X is resolving (more details see [14]).

Let X ,Y,Z be subcategory of A. Following [15], the triple (X ,Z,Y) is called a cotorsion

triple provided that both (X ,Z) and (Z,Y) are cotorsion pair. Moreover, if both (X ,Z) and

(Z,Y) are complete (hereditary) cotorsion pair, we say (X ,Z,Y) is a complete (hereditary)

cotorsion triple. (P, R-Mod,I) is a complete hereditary cotorsion triple over a ring R. If R is

a virtually Gorenstein ring, then (GP,GP⊥ =⊥ GI,GI) is also a complete hereditary cotorsion

triple, where GP denotes the subcategory of Gorenstein projective R-modules and GI denotes

the subcategory of Gorenstein injective R-modules [11].

Following [16], a complex Y = · · · → Y −2 → Y −1 → Y 0 → Y 1 → Y 2 → · · · is called

a Y-coresolution of N if Y i ∈ Y for i > 0, Y i = 0 for all i < 0, Hi(Y) = 0 for i > 0, and

H0(Y) ∼= N . The exact sequence +Y = 0 → Y 0 → Y 1 → Y 2 → · · · is the argumented Y-

coresolution of N . If +Y is HomA(−,Y)-exact, Y is called proper Y-coresolution. We denote Y-

idN=inf{sup{n > 0 | Y n ̸= 0}|Y is Y-coresolution of N}. If N admits a proper Y-coresolution,
then such a proper coresolution is unique up to homotopy equivalence. Hence, it derived the

relative AY cohomology group ExtkAY(M,N) = Hk(M,Y) for every k ∈ Z and every object

M ∈ A. Dually, we can define X -resolution, proper X -resolution, X -pdN and derived relative

XA cohomology group ExtkXA(M,N) = Hk(X, N) for every k ∈ Z and every object N ∈ A.

Obviously, every object in A admits a proper Y-coresolution and a proper X -resolution provided

that (X ,Y) is a complete hereditary cotorsion pair.

Some results are spread out as follows.

Lemma 2.1 ([16, Lemma 4.3,4.4]) Assume that the short exact sequence L = 0 → L′ → L →
L′′ → 0 is HomA(−,Y)-exact and N ∈ A.

(1) If N admits a proper Y-coresolution, then L induces a long exact sequence

0 → HomA(L
′′, N) → HomA(L,N) → HomA(L

′, N) → Ext1AY(L
′′, N) → · · ·

→ ExtkAY(L
′′, N) → ExtkAY(L,N) → ExtkAY(L

′, N) → Extk+1
AY (L′′, N) → · · ·

(2) If both L′ and L′′ admit proper Y-coresolution, then L induces a long exact sequence

0 → HomA(N,L′) → HomA(N,L) → HomA(N,L′′) → Ext1AY(N,L′) → · · ·
→ ExtkAY(N,L′) → ExtkAY(N,L) → ExtkAY(N,L′′) → Extk+1

AY (N,L′) → · · · .
Moreover, if Ext>1

AY(N,L) = 0, then ExtkAY(N,L′′) ∼= Extk+1
AY (N,L′) for any k > 1.

Lemma 2.2 ([17, Lemma 4.3,4.4]) Assume that

M
f1 //

g1

��

N

g

��
U

f // V

Diagram 1 The diagram such that gf1 = fg1

is a commutative diagram in A and D ∈ A. Then the followings hold
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(1) If this diagram is a pullback of f and g, and HomA(D, g) is epic, then HomA(D, g1) is

also epic;

(2) If this diagram is a pushout of f1 and g1, and HomA(g1, D) is epic, then HomA(g,D) is

also epic.

Proposition 2.3 Let N ∈ A and (X ,Y) be a complete hereditary cotorsion pair. Then for any

non-negative integer n, the following conditions are equivalent

(1) Y-id(N) 6 n;

(2) Extn+k
AY (−, N) = 0 for all k > 1;

(3) Extn+1
AY (−, N) = 0.

Proof (1)⇒(2). Just to prove that there exists a proper Y-coresolution Y, such that Y i = 0

for i > n. From (1) we get an exact sequence 0 → N → W 0 → W 1 → · · · → Wn → 0 in A with

each W i ∈ Y. Since (X ,Y) is complete, we get a HomA(−,Y)-exact sequence 0 → N → Y 0 →
Y 1 → · · · → Y n−1 → Cn → 0(∗) in A with each Y i ∈ Y. Consider the following commutative

diagram (Diagram 2)

0 // N //

1N

��

Y 0 //

��

Y 1 //

��

· · · // Y n−1 //

��

Cn //

��

0

0 // N // W 0 // W 1 // · · · // Wn−1 // Wn // 0

Diagram 2 The induced diagram of proper Y-coresolution Y

Consequently, the mapping cone 0 → N → Y 0⊕N → Y 1⊕W 0 → · · · → Cn⊕Wn−1 → Wn → 0

is exact. Since N → Y 0 ⊕N is split, the sequence 0 → Y 0 → Y 1 ⊕W 0 → · · · → Cn ⊕Wn−1 →
Wn → 0 is exact. Note that (X ,Y) is hereditary and Y is closed under direct summand, then

Cn ∈ Y, which means (∗) is a proper Y-coresolution.

(2)⇒(3) is obvious.

(3)⇒(1). Let Y be a proper Y-coresolution of N and N i = Ker(Y i → Y i+1) for i > 1.

Consider the HomA(−,Y)-exact sequences

0 → N i → Y i → N i+1 → 0 (∗i)

for i > 1. The case n = 0, Ext1AY(−, N) = 0, then (∗i) is also exact under HomA(−,N ). Note

that N0
∼= N , so (∗i) is split, N ∈ Y because Y is closed under direct summands. Now suppose

n > 1 and Extn+1
AY (−, N) = 0. Following Lemma 2.1 (2), we can conclude that Ext1AY(−, Nn) ∼=

Extn+1
AY (−, N) = 0, then Nn ∈ Y by the case n = 0. Therefore, Y-id(N) 6 n. 2
The following lemmas are from [11].

Lemma 2.4 Let (X ,Z,Y) be a complete hereditary cotorsion triple and M ∈ A. Then

(1) M admits a proper X -resolution X such that X+ is HomA(−,Y)-exact;

(2) M admits a proper Y-coresolution Y such that +Y is HomA(X ,−)-exact.

Lemma 2.5 Let (X ,Z,Y) be a complete hereditary cotorsion triple in A. Then for any objects
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M,N ∈ A and any k ∈ Z, there is isomorphism

ExtkXA(M,N) ∼= ExtkAY(M,N).

The whole article assumes that (X ,Z,Y) is a complete hereditary cotorsion triple, and n is

a non-negative integer. The term Y is always part of (X ,Z,Y), which can ensure any object N

of A admits a proper Y-coresolution, and induce relative cohomology functor Ext∗AY(−, N).

3. Self-orthogonal-Y subcategories

We start with the following definition.

Definition 3.1 Let N be a subcategory of A. N is called a self-orthogonal-Y subcategory, if

Extk>1
AY (N,N ′) = 0 for any objects N,N ′ ∈ N .

We denote nN̂Y = {M ∈ A| there is a HomA(−,Y)-exact sequence 0 → Nn → · · · → N1 →
N0 → M → 0, with each N i ∈ N}. N̂Y = {M ∈ A|M ∈ nN̂Y for some n}. Y⊥N = {M ∈ A|
Extk>1

AY (M,N) = 0 for any N ∈ N}. And YN = {M ∈ A| there is a HomA(−,Y)-exact sequence

0 → M → N0 f0−→ N1 f1−→ · · · , with each N i ∈ N and Kerfi ∈ Y⊥N}.
Dually we can get symbols nÑY , ÑY , N⊥Y and N Y . It is clear YN ⊆ Y⊥N and N Y ⊆ N⊥Y .

We shall discuss properties of self-orthogonal-Y subcategories.

Lemma 3.2 Let N be a self-orthogonal-Y subcategory of A. Then Extk>1
AY (M

′
,M) = 0 for any

object M ∈ N̂Y and M ′ ∈ Y⊥N .

Proof For any object M ∈ N̂Y , we have a HomA(−,Y)-exact sequence 0 → Nn → · · · → N1 →
N0 → M → 0, with each N i ∈ N . Since Lemma 2.1 (2), ExtkAY(M

′,M) ∼= Extk+n
AY (M ′, Nn) = 0

for any M ′ ∈ Y⊥N and k > 1.

A subcategory B of A is said to be closed under HomA(−,Y)-extension, if for any short

HomA(−,Y)-exact sequence 0 → A → B → C → 0 with A,C ∈ B, it induces that B ∈ B.

Lemma 3.3 Let N be a self-orthogonal-Y subcategory of A. Then both N Y and YN are closed

under HomA(−,Y)-extension and direct summands.

Proof For any HomA(−,Y)-exact sequence 0 → A → B → C → 0 with A,C ∈YN , it is also

HomA(−,N )-exact by Lemma 2.1. Following [18, Lemma 1.10], we have B ∈YN . Therefore, YN

is closed under HomA(−,Y)-extensions.
Let U = U1 ⊕ U2 in YN . There is a HomA(−,Y)-exact sequence 0 → U → N0 → U ′ → 0

with N0 ∈ N and U ′ ∈YN . Consider the following pushout diagram (Diagram 3)

Since the up row is split and the middle column is HomA(−,Y)-exact, we obtain the middle

row is HomA(−,Y)-exact by Lemma 2.2. Note that 0 → U2 → H → U ′ → 0 is HomA(−,Y)-

exact, then the exact sequence 0 → U2 ⊕ U1 → H ⊕ U1 → U
′ → 0 is also HomA(−,Y)-exact.

Because U,U ′ ∈YN , U = U1 ⊕ U2 and YN is closed under HomA(−,Y)-extension, we can see

H ⊕ U1 ∈YN . So U1 is a direct summand of some object in YN , and U ∈ YN deduced by

recursiveness. Thus, YN is closed under direct summands. 2
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0 0y y
0 −−−−−→ U1 −−−−−→ U −−−−−→ U2 −−−−−→ 0∥∥∥ y y
0 −−−−−→ U1 −−−−−→ N0 −−−−−→ H −−−−−→ 0y y

U
′

U
′y y

0 0

Diagram 3 The pushout diagram of U → N0 and U → U2

Dually, we can deduce N Y is also closed under HomA(−,Y)-extension and direct summands.

Let W,H be subcategories of A. We say that W is Y-cogenerator of H, if W ⊆ H and for

any object H ∈ H, there is HomA(−,Y)-exact sequence 0 → H → W → H ′ → 0 with W ∈ W
and H ′ ∈ H (see [19]).

Lemma 3.4 Suppose that N and H are subcategories of A, H is closed under HomA(−,Y)-

extensions, and N is Y-cogenerator of H. If 0 → Z → M1 → M2 → · · · → Mn → Z ′ → 0

is HomA(−,Y)-exact sequence with each M i ∈ H, then there are HomA(−,Y)-exact sequences

0 → Z ′ → V n → Un → 0 with Un ∈ H, and 0 → Z → N1 → · · · → Nn−1 → Nn → V n → 0

with each N i ∈ N .

Proof We prove it by induction on n.

The case n = 1, there is a HomA(−,Y)-exact sequence 0 → Z → M1 → Z ′ → 0 with

M1 ∈ H. Because N is Y-cogenerator of H, we have another HomA(−,Y)-exact sequence

0 → M1 → N1 → U1 → 0 with N1 ∈ N and U1 ∈ H. Consider pushout diagram (Diagram 4)

0 0y y
0 −−−−−→ Z −−−−−→ M1 −−−−−→ Z

′
−−−−−→ 0∥∥∥ y y

0 −−−−−→ Z −−−−−→ N1 −−−−−→ V 1 −−−−−→ 0y y
U1 U1y y
0 0

Diagram 4 The pushout diagram of M1 → N1 and M1 → Z
′
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Following Lemma 2.2, the right column is HomA(−,Y)-exact. Note that the up row is HomA(−,Y)-

exact, then the middle row is also HomA(−,Y)-exact. The conclusion is tenable.

Suppose that the conclusion is tenable for n− 1. We shall prove that the conclusion is ten-

able for n. Let Z ′′ = Ker(Mn → Z ′). Then by induction hypothesis we have HomA(−,Y)-exact

sequences 0 → Z ′′ → V̄ n−1 → Ūn−1 → 0 and 0 → Z → N1 → · · · → Nn−1 → V̄ n−1 → 0, with

Ūn−1 ∈ H and each N i ∈ N . Consider the following pushout diagram (Diagram 5)

0 0y y
0 −−−−−→ Z

′′
−−−−−→ Mn −−−−−→ Z

′
−−−−−→ 0y y ∥∥∥

0 −−−−−→ V̄ n−1 −−−−−→ X −−−−−→ Z
′
−−−−−→ 0y y

Ūn−1 Ūn−1y y
0 0

Diagram 5 The pushout diagram of Z
′′
→ V̄ n−1 and Z

′′
→ Mn

in which the middle row and column are HomA(−,Y)-exact by Lemma 2.2. Consider exact

sequence 0 → Mn → X → Ūn−1 → 0 with Mn, Ūn−1 ∈ H, we get X ∈ H because H is closed

under HomA(−,Y)-extensions. Since N is Y-cogenerator of H, there is a HomA(−,Y)-exact

sequence 0 → X → N → Un → 0 with N ∈ N and Un ∈ H. Now we can construct the following

pushout diagram (Diagram 6)

0 0y y
0 −−−−−→ V̄ n−1 −−−−−→ X −−−−−→ Z

′
−−−−−→ 0∥∥∥ y y

0 −−−−−→ V̄ n−1 −−−−−→ N −−−−−→ V n −−−−−→ 0y y
Un Uny y
0 0

Diagram 6 The pushout diagram of X → N and X → Z
′

where the right column and middle row are HomA(−,Y)-exact by Lemma 2.2. Consequently,

the conclusion is tenable for n. 2
In particular, we get the following result.
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Corollary 3.5 Suppose that N and H are subcategories of A, H is closed under HomA(−,Y)-

extensions, and N is Y-cogenerator of H. If Z ′ ∈ nĤY , then there is a HomA(−,Y)-exact

sequence 0 → Z ′ → V → U → 0 with U ∈ H and V ∈ nN̂Y .

Proposition 3.6 Let the subcategory N of A be both self-orthogonal-Y and closed under direct

summands. Then the followings are equivalent for any object M ∈NY
(1) M ∈ nN̂Y ;

(2) Extn+1
AY (M,M ′) = 0 for any object M ′ ∈ N⊥Y ;

(3) Extn+1
AY (M,M ′) = 0 for any object M ′ ∈ NY.

Particularly, N̂Y is closed under direct summands.

Proof (1)⇒(2). Suppose that M ∈ nN̂Y , there is a HomA(−,Y)-exact sequence

0 → Nn → · · · → N1 → N0 → M → 0

with each N i ∈ N . According to Lemma 2.1, Extn+1
AY (M,M ′) ∼= Ext1AY(N

n,M ′) = 0 for any

object M ′ ∈ N⊥Y .

(2)⇒(3) is clear.

(3)⇒(1). Let M ∈ NY. Then there is a HomA(−,Y)-exact sequence

· · · → N2 f2−→ N1 f1−→ N0 f0−→ M → 0

with each N i ∈ N and Imfi ∈ N⊥Y . Following Lemma 2.1, we obtain the isomorphism

Ext1AY(Kerfn−1,Kerfn) ∼= Extn+1
AY (M,Kerfn)

by applying the functor HomA(−,Kerfn) to this sequence. Note that Kerfn ∈ NY, then

Ext1AY(Kerfn−1,Kerfn) = 0. So we have that 0 → HomA(Kerfn−1,Kerfn) → HomA(N
n,Kerfn) →

HomA(Kerfn,Kerfn) → 0 is exact. Consequently, the exact sequence 0 → Kerfn → Nn →
Kerfn−1 → 0 is split. Since Nn ∈ N and N is closed under direct summands, then Kerfn ∈ N ,

which means M ∈ nN̂Y .

The final statement comes directly from Lemma 3.3 by N̂Y ∈ N Y . 2
4. n-Y-cotilting subcategories

In this section, we introduce the concept and examples of n-Y-cotilting subcategories with

respect to a complete hereditary cotorsion triple (X ,Z,Y). Finally the characterization of it is

given.

Definition 4.1 Assume that the subcategory N of A is closed under direct summands. N is

said to be n-Y-cotilting (with respect to (X ,Z,Y)) provided

(1) Y-idN 6 n i.e, Y-idN 6 n for all N ∈ N ;

(2) N is a Y-cogenerator of Y⊥N ;

(3) Y ⊆ nN̂Y .

For convenience, we denote Copresn
Y
(N )={M ∈ A| there is a HomA(−,Y)-exact sequence

0 → M → N1 → N2 → · · · → Nn, with each N i ∈ N}, and Cogen
Y
(N ) = Copres1

Y
(N ).
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Obviously Cogen
Y
(N ) is closed under direct summands.

Proposition 4.2 Assume that N is a subcategory of A. Then the following conditions are

equivalent

(1) N is a Y-cogenerator of Y⊥N ;

(2) N is self-orthogonal-Y and Y⊥N = YN ;

(3) N is self-orthogonal-Y, each object of Y⊥N admits a left N -approximation and Y⊥N ⊆
Cogen

Y
(N ).

Proof (1)⇒(2). It is easy to see that N is self-orthogonal-Y and YN ⊆ Y⊥N . On the other

hand, for any M ∈ Y⊥N , since N is a Y-cogenerator of Y⊥N , we obtain a HomA(−,Y)-exact

sequence 0 → M → N → M ′ → 0 with N ∈ N and M ′ ∈ Y⊥N . Repeating the process for N
′
,

we finally get M ∈ YN . Therefore, Y⊥N = YN .

(2)⇒(3). Let M ∈ Y⊥N = YN . By definition we have a HomA(−,Y)-exact sequence 0 →
M

f−→ N → M ′ → 0 with N ∈ N and M ′ ∈ Y⊥N . Then this sequence is also exact under

HomA(−,N ) by Lemma 2.1. One can see M
f−→ N is a left N -approximation of M and M ′ ∈

Cogen
Y
(N ). So the conclusion (3) holds.

(3)⇒(1). For any M ∈ Y⊥N , by (3) we know M ′ ∈ Cogen
Y
(N ), there is a HomA(−,Y)-

exact sequence 0 → M
α−→ N1 → M ′ → 0 with N1 ∈ N . On the other hand, M admits a left

N -approximation β : M → N with N ∈ N , which derives a HomA(−,N )-exact sequence

0 → M
β−→ N → M ′′ → 0 (∗)

we show that (∗) is desired. Firstly we construct the following commutative diagram (Diagram

7)

0 −−−−−→ M
β−−−−−→ N −−−−−→ M

′′
−−−−−→ 0∥∥∥ γ

y y
0 −−−−−→ M

α−−−−−→ N1 −−−−−→ M
′
−−−−−→ 0

Diagram 7 The commutative diagram induced by left N -approximation of M

for any Y ∈ Y and any morphism f : M → Y , there is a morphism g : N1 → Y such that gα = f

since 0 → M
α−→ N1 → M ′ → 0 is HomA(−,Y)-exact. Let h = gγ. Then h ∈ HomA(N,Y ) and

hβ = gγβ = gα = f . So (∗) is HomA(−,Y)-exact. We now only need to prove M ′′ ∈ Y⊥N .

Indeed, for any N ′ ∈ N , there is a long exact sequence

· · · → HomA(N,N ′)
β∗

−→ HomA(M,N ′) → Ext1AY(M
′′, N ′) → Ext1AY(N,N ′) → · · ·

by applying HomA(−, N ′) to (∗). Note that Ext1AY(N,N ′) = 0 because β is leftN -approximation.

So Ext1AY(M
′′, N ′) = 0. Since Extk+1

AY (M ′′, N ′) ∼= Ext1AY(M,N ′) = 0, we obtain ExtkAY(M
′′, N ′) =

0 for any k > 1, which means M ′′ ∈ Y⊥N . 2
Here are some examples of n-Y-cotilting subcategories.

Example 4.3 (1) Y is n-Y-cotilting subcategory.
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(2) Assume that T ∈ R-Mod where R-Mod is the category of left R-modules. Then the two

statements are in agreement

(a) T is an n-cotilting module;

(b) ProdT is an n-I-cotilting subcategory with respect to complete hereditary cotorsion

triple (P,R-Mod, I), where ProdT consists of all left R-modues isomorphic to direct summands

of arbitrary products of copies of T .

A commutative noetherian ring R is said to be virtually Gorenstein, if R has finite Krull

dimension and GP⊥ =⊥ GI. Following [11, Theorm 4.5], a virtually Gorenstein ring R is n-

Gorenstein if and only if GI is n-GP-tilting subcategory.

As an application of n-Y-cotilting subcategory, we shall discuss the relation of n-Gorenstein

ring and n-GI-cotilting subcategories.

Theorem 4.4 Assume that R is a virtually Gorenstein ring. If GP is an n-GI-cotilting subcat-

egory, then R is an n-Gorenstein. Moreover, GI is an n-GP-tilting subcategory.

Proof Following [14, Theorem 9.1.11], we only need to show that the projective dimension of all

injective R-modules is at most n. For any injective R-module M , M is also Gorenstein injective.

Since GP is n-GI-cotilting subcategory, then the Gorenstein projective dimension of M is at

most n. By [20, Theorem 2.2], we obtain that the projective dimension of M is equal to its

Gorenstein projective dimension. Therefore, R is n-Gorenstein.

According to [11, Theorem 4.5], GI is n-GP-tilting subcategory. 2
Proposition 4.5 Assume that N is n-Y-cotilting subcategory of A. Then

Copresn
Y
(N ) = Y⊥N .

Proof Since Definition 4.1 and Proposition 4.2, we obtain Y⊥N = YN ⊆ Copresn
Y
(N ). It

is only to prove Copresn
Y
(N ) ⊆ Y⊥N . For any C ∈ Copresn

Y
(N ) and N ∈ N , we have a

HomA(−,Y)-exact sequence 0 → C → N1 → N2 → · · · → Nn−1 → Nn → I → 0, where

I = Coker(Nn−1 → Nn) and each N i ∈ N . Since Lemma 2.1 and N is self-orthogonal-Y, we

obtain ExtkAY(C,N) ∼= Extk+n
AY (I,N) for k > 1. Note that Y-idN 6 n, then Extk+n

AY (I,N) =

0 by Proposition 2.3. So ExtkAY(C,N) = 0, which means Copresn
Y
(N ) ⊆ Y⊥N . Therefore,

Copresn
Y
(N )= Y⊥N . 2

For any subcategory V of A, it is obvious X ∈ Y⊥V by Proposition 2.3. Then V ⊆
Copresn

Y
(V). V is said to be closed under n-Y-kernels provided that Copresn

Y
(V) ⊆ V, which

means Copresn
Y
(V) = V.

Lemma 4.6 Let N be a subcategory of A. Then Y-idN 6 n if and only if Y⊥N is closed under

n-Y-kernels.

Proof (⇒). For any C ∈ Copresn
Y
(Y⊥N ), there is a HomA(−,Y)-exact sequence

0 → C → M1 → M2 → · · · → Mn−1 → Mn → I → 0,

where I = Coker(Mn−1 → Mn) and each M i ∈ Y⊥N . Note that Y⊥N is self-orthogonal-Y, then
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ExtkAY(C,N) ∼= Extk+n
AY (I,N) = 0 for any N ∈ N and k > 1 by Lemma 2.1 and Proposition

2.3. We have C ∈ Y⊥N , which means Copresn
Y
(Y⊥N ) ⊆ Y⊥N . Thus Y⊥N is closed under

n-Y-kernels.

(⇐). It suffices to prove Extn+1
AY (M,N) = 0 for any N ∈ N and M ∈ A by Proposition

2.3. Note that (X ,Z,Y) is a complete hereditary cotorsion triple, by lemma 2.4, we obtain a

HomA(−,Y)-exact sequence

0 → K → Xn → Xn−1 → · · · → X2 → X1 → M → 0

where Xi ∈ X ⊆ Y⊥N . Since Y⊥N is closed under n-Y-kernels, we have K ∈ Y⊥N . Therefore,

Extn+1
AY (M,N) ∼= Ext1AY(K,N) = 0 by Lemma 2.1. 2

Proposition 4.7 Assume that N is a self-orthogonal-Y subcategory of A. Then Copresn
Y
(N ) =

Copresn
Y
(YN ).

Proof By assumption, we obtain N ∈ YN , then Copresn
Y
(N ) ⊆ Copresn

Y
(YN ). We only need

to prove Copresn
Y
(YN ) ⊆ Copresn

Y
(N ). For any C ∈ Copresn

Y
(YN ), we have a HomA(−,Y)-exact

sequence

0 → C → M1 → M2 → · · · → Mn−1 → Mn → I → 0,

where I = Coker(Mn−1 → Mn) and each M i ∈ YN . Since N is a Y-cogenerator of YN and

YN is closed under HomA(−,Y)-extensions by Lemma 3.3. Following Lemma 3.4, we have a

HomA(−,Y)-exact sequence

0 → C → N1 → N2 → · · · → Nn−1 → Nn → V n → 0,

where each N i ∈ N . It is clear C ∈ Copresn
Y
(N ). Then Copresn

Y
(YN ) ⊆ Copresn

Y
(N ). In

conclusion, Copresn
Y
(N ) = Copresn

Y
(YN ).

Proposition 4.8 Assume that N is a subcategory of A with Copresn
Y
(N ) =Y⊥N , and each

object in Y⊥N admits a left N -approximation. Then the followings hold

(1) Y⊥N is closed under n-Y-kernels and Y-idN 6 n;

(2) If N is closed under direct summands, then Y ⊆ nN̂Y .

Proof (1) By Lemma 4.6, we only need to show Y⊥N is closed under n-Y-kernels. Since

Copresn
Y
(N ) =Y⊥N , we obtain N is self-orthogonal-Y and Y⊥N ⊆ Cogen

Y
(N ). Note that each

object in Y⊥N admits left N -approximation, then Y⊥N=YN by Proposition 4.2. According to

Proposition 4.7, we get

Copresn
Y
(Y⊥N ) = Copresn

Y
(YN ) = Copresn

Y
(N ) = Y⊥N

which means Y⊥N is closed under n-Y-kernels.

(2) Let N be closed under direct summands. For any Y ∈ Y, we have a HomA(−,Y)-exact

sequence

0 → Z → Xn → Xn−1 → · · · → X2 → X1 → Y → 0
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with Xi ∈ X ⊆ Y⊥N by Lemma 2.4. Following (1), we get Z ∈Y⊥ N . It is clear Y⊥N
is closed under HomA(−,Y)-extensions by Lemma 2.1. Note that N is a Y-cogenerator of
Y⊥N since Proposition 4.2. According to Corollary 3.5, we have a HomA(−,Y)-exact sequence
0 → Y → V → U → 0 with V ∈ nN̂Y and U ∈ Y⊥N . Then V ∼= Y ⊕ U by Lemma 3.2. Also

because nN̂Y is closed under direct summands by Lemma 3.6, we obtain Y ∈ nN̂Y , which means

Y ⊆ nN̂Y . 2
We can now state one of our main results which follows immediately by Propositions 4.5 and

4.8. It is similar to [7, Theorem 3.11].

Theorem 4.9 Assume that the subcategory N of A is closed under direct summands, and

every object in Y⊥N admits a left N -approximation. Then N is n-Y-cotilting (with respect to

(X ,Z,Y)), if and only if Copresn
Y
(N )= Y⊥N .

5. n-Costar subcategories and n-I-cotilting subcategories

In this section, R is an associative ring with nonzero identity. R-Mod is the subcategory

of all left R-modules. We use the term “subcategory” to stand for a full additive subcategory

of R-Mod closed under isomorphisms. P denotes the subcategory of projective left R-modules

and I denotes the subcategory of injective left R-modules. If α : X → Y and β : Y → Z are

homomorphisms, we denote by αβ the composition of α and β. Let M be a subcategory of

R-Mod, we denote

⊥16i6nM = {N ∈ R-Mod|ExtiR(N,M) = 0 for any M ∈ M and any 1 6 i 6 n},
⊥i>1M = {N ∈ R-Mod|ExtiR(N,M) = 0 for any M ∈ M and any i > 1}.

Obviously, (P, R-Mod,I) is a complete hereditary cotorsion triple and I⊥M =⊥i>1M.

And denote by Copresn(M) the subcategory of N ∈ R-Mod such that there exists an exact

sequence 0 → N → M1 → M2 → · · · → Mn with each Mi ∈ M. It is obvious that Cogen(M) =

Copres1(M), Copres1(M) is closed under direct summands, and Copresn+1(M) ⊆ Copresn(M)

for any non-negative integer n. Dually we can define M⊥16i6n , M⊥i>1 and Presn(M). If the

short exact sequence 0 → U → V → W → 0 is still exact under the functor HomR(−, M̄) for any

M̄ ∈ M, then we say this exact sequence stays exact under the functor HomR(−,M). We say M
is closed under n-kernels if Copresn(M) ⊆M, i.e., Copresn(M) =M. A set M′ ⊆M is a class of

representatives (of isomorphism types) of M in case each M ∈ M is isomorphic to some element

of M′ (see [21]). Clearly, if M′ is a class of representatives of M, then Cogen(M) = Cogen(M′),

and Gen(M) = Gen(M′).

Let us start with the concept of n-quasi-injective subcategories.

Definition 5.1 Let n > 1 and M be a subcategory of R-Mod, which is closed under direct

summands. M is said to be an n-quasi-injective subcategory if for any exact sequence 0 → U →
M → W → 0 withM ∈ M andW ∈ Copresn−1(M), the induced sequence 0 → HomR(W, M̄) →
HomR(M, M̄) → HomR(U, M̄) → 0 is also exact for any M̄ ∈ M.

It is clear that RT is an n-quasi-injective module is equivalent to ProdRT is an n-quasi-
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injective subcategory, where ProdRT denotes the subcategory of all left R-modules N that are

isomorphic to direct summand of Tλ for some cardinal λ. If M is an n-quasi-injective subcate-

gory, then M is an m-quasi-injective subcategory for all m > n.

We now introduce a useful lemma.

Lemma 5.2 Suppose thatM is a subcategory of R-Mod which is closed under direct summands,

0 → U → M1 → I1 → 0 and 0 → U → M2 → I2 → 0 are exact sequences with M1,M2 ∈ M. If

both sequences stay exact under the functor HomR(−,M), then M1 ⊕ I2 ∼= M2 ⊕ I1.

Proof By assumption, we have that both 0 → U → M1 → I1 → 0 and 0 → U → M2 → I2 → 0

stay exact under the functor HomR(−,M), where M1,M2 ∈ M. Then by the decomposition

lemma we can construct the following commutative diagram with row exact (Diagram 8):

0 −−−−−→ U −−−−−→ M1 −−−−−→ I1 −−−−−→ 0∥∥∥ y y
0 −−−−−→ U −−−−−→ M2 −−−−−→ I2 −−−−−→ 0∥∥∥ y y
0 −−−−−→ U −−−−−→ M1 −−−−−→ I1 −−−−−→ 0

Diagram 8 The commutative diagram induced by the decomposition lemma

Following the dually conclusion of [12, Lemma2.2], we obtain M1 ⊕ I2 ∼= M2 ⊕ I1. 2
Below we give an equivalent characterization of n-quasi-injective subcategories.

Proposition 5.3 Suppose that n > 1 and M is a subcategory of R-Mod, which is closed under

direct summands. Then the followings are equivalent.

(1) M is an n-quasi-injective subcategory;

(2) For any exact sequence δ : 0 → U → M → W → 0 with M ∈ M and U ∈ Copresn(M),

we have that W ∈ Copresn−1(M) if only if δ is still exact under the functor HomR(−,M).

Proof (1)⇒ (2). For any exact sequence δ : 0 → U → M → W → 0 with M ∈ M and

U ∈ Copresn(M), if W ∈ Copresn−1(M), then it is clear that the induced sequence 0 →
HomR(W, M̄) → HomR(M, M̄) → HomR(U, M̄) → 0 is still exact for any M̄ ∈ M by (1),

which means δ is still exact under the functor HomR(−,M). If δ is still exact under the functor

HomR(−,M), by U ∈ Copresn(M) we can get an exact sequence 0 → U → M ′ → W ′ → 0 with

M ′ ∈ M and U ′ ∈ Copresn−1(M), which is also exact under the functor HomR(−,M) according

to Definition 5.1. So we obtain that W ′ ⊕ M ∼= W ⊕ M ′ by applying Lemma 5.2. Therefore,

W ∈ Copresn−1(M).

(2)⇒(1) is obvious. 2
We introduce the concept and characterizations of n-costar subcategories as follows.

Definition 5.4 Suppose that n > 1 and M is a subcategory of R-Mod which is closed under

direct summands and direct products. M is called an n-costar subcategory, if M is an (n+ 1)-
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quasi-injective subcategory and Copresn(M) = Copresn+1(M).

Lemma 5.5 Suppose that M is an n-costar subcategory and 0 → U
i−→ V

π−→ W → 0 is a short

exact sequence in R-Mod. If V,W ∈ Copresn(M), then U ∈ Copresn(M).

Proof If V,W ∈ Copresn(M), then there are exact sequences

0 → W
β−→ MW → W ′ → 0 and 0 → V

α−→ MV → V1 → 0

with W ′, V1 ∈ Copresn(M) and MW ,MV ∈ M. Since M is an n-costar subcategory, we can get

the following exact commutative diagram (Diagram 9):

0

��

0

��

0

��
0 // U

i //

iα

��

V
π //

(α,πβ)

��

W //

β

��

0

0 // MV

��

(1,0)// MV ⊕MW

��

( 0
1 ) // MW

��

// 0

0 // U
′ //

��

V
′ //

��

W
′ //

��

0

0 0 0

Diagram 9 The diagram corresponding to U

Because the exact sequence 0 → V → MV → V1 → 0 is exact under the functor HomR(−,M) by

assumption, for any M̄ ∈ M and any homomorphism f : V → M̄ , there exists a homomorphism

g : MV → M̄ such that αg = f . It is easy to see that (α, πβ)
(
g
0

)
= αg = f and

(
g
0

)
:

MV ⊕ MW → M̄ , which means the exact sequence 0 → V → MV ⊕ MW → V ′ → 0 is also

exact under the functor HomR(−,M). Note that V ∈ Copresn(M) and M is (n + 1)-quasi-

injective subcategory, we can get V ′ ∈ Copresn(M) by Proposition 5.3. Repeat the above

process to 0 → U ′ → V ′ → W ′ → 0 and continue. It is not difficult to draw the conclusion

U ∈ Copresn(M). 2
Now let us talk about the closure of Copresn(M) under kernels of monomorphism, cokernels

of epimorphism and extensions, by assumption that M is an n-costar subcategory.

Proposition 5.6 Suppose that M is an n-costar subcategory and 0 → U
i−→ V

π−→ W → 0 is

a short exact sequence which stays exact under the functor HomR(−,M). Then the followings

hold:

(1) If V,W ∈ Copresn(M), then U ∈ Copresn(M);

(2) If U,W ∈ Copresn(M), then V ∈ Copresn(M);

(3) If U, V ∈ Copresn(M), then W ∈ Copresn(M).

Proof (1) It is clear by Lemma 5.5.
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(2) If U,W ∈ Copresn(M), then there are exact sequences 0 → U
α−→ MU → U ′ → 0

and 0 → W
γ−→ MW → W ′ → 0 with U ′,W ′ ∈ Copresn(M) and MU ,MW ∈ M, which are

still exact under the functor HomR(−,M), since M is an n-costar subcategory. Note that

0 → U
i−→ V

π−→ W → 0 is also exact under the functor HomR(−,M) and MW ∈ M, so we

can get a homomorphism ξ : V → MU such that iξ = α. Consider the following commutative

diagram (Diagram 10):

0

��

0

��

0

��
0 // U

i //

α

��

V
π //

(ξ,πγ)

��

W //

γ

��

0

0 // MU

��

(1,0)// MU ⊕MW

��

( 0
1 ) // MW

��

// 0

0 // U ′ //

��

V ′ //

��

W ′ //

��

0

0 0 0

Diagram 10 The diagram corresponding to V

where V ′ = Coker(V → MU ⊕ MW ). For any M̄ ∈ M, applying the functor HomR(−, M̄) to

the diagram, we can obtain the following exact commutative diagram (Diagram 11):

0

��

0

��

0

��
0 // HomR(W

′, M̄) //

��

HomR(V
′, M̄) //

��

HomR(U
′, M̄)

��
0 // HomR(MW , M̄)

��

// HomR(MU ⊕MW , M̄)

��

// HomR(MU , M̄)

��

// 0

0 // HomR(W, M̄) //

��

HomR(V, M̄) // HomR(U, M̄) //

��

0

0 0

Diagram 11 The induced diagram by Diagram 7

By the snake lemma, we get the sequence 0 → HomR(W
′, M̄) → HomR(V

′, M̄) → HomR(U
′
, M̄) →

0 is exact, which means 0 → U ′ → V ′ → W ′ → 0 is exact under the functor HomR(−,M). Re-

peat the above process to 0 → U ′ → V ′ → W ′ → 0 and continue. It is not difficult to draw the

conclusion V ∈ Copresn(M).

(3) If U, V ∈ Copresn(M), then there is an exact sequence 0 → V
β−→ MV → V ′ → 0 with

V ′ ∈ Copresn(M) and MV ∈ M. Consider the following pushout diagram (Diagram 12):
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0 0y y
0 −−−−−→ U

i

−−−−−→ V
π

−−−−−→ W −−−−−→ 0∥∥∥ β

y y
0 −−−−−→ U

µ

−−−−−→ MV −−−−−→ Y −−−−−→ 0y y
V

′
V

′y y
0 0

Diagram 12 The pushout diagram of V → MV and V → W

For any M̄ ∈ M and any homomorphism g : U → M̄ , there is a homomorphism h : V → M̄

such that ih = g by the fact that upper row stays exact under the functor HomR(−,M). Since

the middle column is also exact under the functor HomR(−,M), there exists a homomorphism

f : MV → M̄ such that βf = h. Then µf = (iβ)f = i(βf) = ih = g, which means the

middle row is still exact under the functor HomR(−,M). Following Proposition 5.3, we can get

Y ∈ Copresn(M). Also because V ′ ∈ Copresn(M), it is easy to see that U ∈ Copresn(M) by

Lemma 5.5. 2
According to the proof of Proposition 5.6, we can get the following corollary.

Corollary 5.7 Suppose that M is an n-costar subcategory and δ : 0 → U → V → W → 0

is a short exact sequence with U, V,W ∈ Copresn(M), then δ stays exact under the functor

HomR(−,M).

Some characterizations of n-costar subcategories are given below.

Theorem 5.8 Suppose that n > 1 and M is a subcategory of R-Mod, which is closed under

direct summands and direct products. M has a class of representatives. Then the followings are

equivalent.

(1) M is an n-costar subcategory;

(2) For any short exact sequence δ : 0 → U → M → W → 0 with M ∈ M and U ∈
Copresn(M), then W ∈ Copresn(M) if and only if the induced sequence 0 → HomR(W, M̄) →
HomR(M, M̄) → HomR(U, M̄) → 0 for any M̄ ∈ M.

(3) For any short exact sequence δ : 0 → U → V → W → 0 with U, V ∈ Copresn(M), then

W ∈ Copresn(M) if and only if the induced sequence 0 → HomR(W, M̄) → HomR(V, M̄) →
HomR(U, M̄) → 0 is also exact for any M̄ ∈ M.

Proof (1)⇒ (3). Let M be an n-costar subcategory. Then M is (n + 1)-quasi-injective and

Copresn(M) = Copresn+1(M). For any short exact sequence δ : 0 → U → V → W → 0 with

U, V ∈ Copresn(M), by Proposition 5.6 and Corollary 5.7, it is not difficult to prove that the
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conclusion holds.

(3)⇒ (2). It is clear by M ⊆ Copresn(M).

(2)⇒ (1). By assumption (2), we can get M is (n + 1)-quasi-injective subcategory. Note

that Copresn+1(M) ⊆ Copresn(M), so we only need to prove Copresn(M) ⊆ Copresn+1(M).

For any U ∈ Copresn(M), we have U ∈ Cogen(M). Let M′ be a class of representatives of

M, then U ∈ Cogen(M′). There exists a set (Mi)i∈I in M′ and an monomorphism U →∏
i∈I Mi. Let H =

∏
M ′∈M′ M ′, and MU = HHomR(U,H). Then there is an exact sequence

o → U → MU → U ′ → 0 which is still exact under the functor HomR(−,M). By assumption

we get U ′ ∈ Copresn(M), which means U ∈ Copresn+1(M). So Copresn(M) ⊆ Copresn+1(M).

Consequently, M is an n-costar subcategory. 2
Theorem 5.9 Suppose that n > 1 and M is a subcategory of R-Mod, which is closed under

direct summands and direct products. Then the followings are equivalent.

(1) M is an n-costar subcategory and Copresn(M) is closed under extensions;

(2) Copresn(M) = Copresn+1(M) ⊆⊥ M.

Proof (1)⇒ (2). Since M is an n-costar subcategory, we have Copresn(M) = Copresn+1(M)

and we only need to prove that Copresn(M) ⊆⊥ M. For any N ∈ Copresn(M), any M̄ ∈ M
and any extension of N by M̄ : 0 → M̄ → E → N → 0, because M̄ ∈ M ⊆ Copresn(M) and

Copresn(M) is closed under extensions by (1), we get E ∈ Copresn(M). According to Corollary

5.7, we know the induced sequence 0 → HomR(N, M̄) → HomR(E, M̄) → HomR(M̄, M̄) → 0

is exact, which means 0 → M̄ → E → N → 0 is split. Therefore, Ext1R(N, M̄) = 0 for any

M̄ ∈ M, then Copresn(M) ⊆⊥ M.

(2)⇒ (1). It is easy to see that M is an n-costar subcategory by (2), so let us prove that

Copresn(M) is closed under extensions. For any extension 0 → U → V → W → 0 with

U,W ∈ Copresn(M), by assumption Copresn(M) ⊆⊥ M, we can get this sequence is exact

under HomR(−,M). It is not difficult to prove V ∈ Copresn(M) according to Proposition 5.6,

which means Copresn(M) is closed under extensions. 2
The following lemma shall be used to the proof Theorem 5.13.

Proposition 5.10 Suppose that M is an n-costar subcategory and Copresn(M) is closed under

extensions. Then Copresk(Copresn(M)) = Copresk(M) for any k > 1. Especially, Copresn(M)

is closed under n-kernels.

Proof It is easy to prove the conclusion by induction on k. 2
As well known, every left R-module has an injective envelope, so it also has a left I-

approximation. Then we can get the following lemma by Theorem 4.9.

Lemma 5.11 Suppose that n is a non-negative integer and M is a subcategory of R-Mod closed

under direct summands. Then M is n-I-cotilting subcategory with respect to cotorsion triple

(P, R-Mod, I) if and only if Copresn(M) =⊥i>1 M.

By Proposition 5.6 and Theorem 5.9, we can obtain the following lemma.
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Lemma 5.12 Suppose that M is an n-costar subcategory such that Copresn(M) is closed under

extensions, and 0 → U → V → W → 0 is a short exact sequence with U, V ∈ Copresn(M).

Then W ∈ Copresn(M) if and only if W ∈⊥ M.

We can now state our main result as follows.

Theorem 5.13 Let n be a non-negative integer and M be a subcategory of R-Mod closed under

direct summands and direct products. M has a class of representatives. Then the following

conditions are equivalent.

(1) M is an n-I-cotilting subcategory;

(2) Copresn(M) =⊥16i6n M;

(3) M is an n-costar subcategory with P ⊆ Copresn(M);

(4) P ⊆ Copresn(M) = Copresn+1(M) ⊆⊥ M.

Proof (1)⇒(2). It is clear by Lemma 5.11.

(2)⇒(3). Since P ⊆⊥16i6n M = Copresn(M) by (2). We only need to prove that M is an

n-costar subcategory. For any exact sequence 0 → U → MU → W → 0 with MU ∈ M and

U ∈ Copresn(M). It is easy to see that Copresn(M) is closed under extensions by (2). Then

this sequence is exact under the functor HomR(−,M) if and only if W ∈⊥ M, if and only if

W ∈⊥16i6n M = Copresn(M) since MU , U ∈ Copresn(M) =⊥16i6n M. According to Theorem

5.8, one can see that M is n-costar subcategory.

(3)⇒(4). We only need to prove that Copresn(M) ⊆⊥ M. For any W ∈ Copresn(M), there

exists exact sequence 0 → W ′ → PW → W → 0 with PW ∈ P. Note that PW ,W ∈ Copresn(M),

we have W ′ ∈ Copresn(M) by Lemma 5.5. Consider the following long exact sequence

· · · → HomR(PW , M̄) → HomR(W
′, M̄) → Ext1R(W, M̄) → Ext1(PW , M̄) → · · ·

Following PW ∈ P and Corollary 5.7, we obtain that W ∈⊥ M.

(4)⇒(1). According to Theorem 5.9, we knowM is an n-costar subcategory and Copresn(M)

is closed under extensions. By Lemma 5.11, we only need to prove that Copresn(M) =⊥i>1 M.

Firstly, we shall prove Copresn(M) ⊆⊥i>1 M. For any U ∈ Copresn(M), there is a projective

resolution · · · → Pk
fk−→ · · · → P2

f2−→ P1
f1−→ U → 0. Let Ui = kerfi. Then Ui ∈ Copresn(M)

by Lemma 5.5 and P ⊆ Copresn(M), which implies that Ui ∈⊥ M for every i > 1. Then we get

Extj(U, M̄) ∼= Ext1(Uj−1, M̄) = 0 for any j > 1 and M̄ ∈ M, which means Copresn(M) ⊆⊥i>1

M.

And then we prove ⊥i>1M ⊆ Copresn(M). For any V ∈⊥i>1 M, there is a projective

resolution · · · → Qk
gk−→ · · · → Q2

g2−→ Q1
g1−→ U → 0, it is easy to see that Vi ∈⊥i>1 M. By

Lemma 5.10, we know Vn ∈ Copresn(M). Note that Vn−1 ∈⊥i>1 M and Qn ∈ P ⊆ Copresn(M),

one can see that Vn−1 ∈ Copresn(M) by Lemma 5.11. Repeat the process and continue, it is

easy to get V ∈ Copresn(M). Thus ⊥i>1M ⊆ Copresn(M). 2
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