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Abstract Let A be an abelian category, and (X, Z,)) be a complete hereditary cotorsion triple.
We introduce the definition of n-)-cotilting subcategories of A, and give a characterization of
n-Y-cotilting subcategories, which is similar to Bazzoni characterization of n-cotilting modules.
As an application, we prove that if GP is n-GZ-cotilting over a virtually Gorenstein ring R,
then R is an n-Gorenstein ring, where GP denotes the subcategory of Gorenstein projective
R-modules and GZ denotes the subcategory of Gorenstein injective R-modules. Furthermore,
we investigate n-costar subcategories over arbitrary ring R, and the relationship between n-Z-
cotilting subcategories with respect to cotorsion triple (P, R-Mod, Z) and n-costar subcategories,
where P denotes the subcategory of projective left R-modules and Z denotes the subcategory of
injective left R-modules.
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1. Introduction

Tilting theory plays an important role in the representation of Artin algebra. The classical
tilting modules were first considerd in the early eighties by Brenner-Bulter [1], Bongartz [2]
and Happle and Ringel [3] etc. Begining with Miyashita [4], tilting modules over arbitrary
rings were investigated by many authors [5-8]. In 1999, Colpi [9] gave the definition of tilting
objects in any Grothedieck category and proved some basic facts of tilting theory in it. In 2007,
Colpi and Fuller [10] investigated tilting objects in arbitrary abelian category. Recently, Di et
al [11] introduced the notion of n-X-tilting subcategories with respect to a complete hereditary
cotorsion triple (X, Z,)) in abelian category A, and proved that a virtually Gorenstein ring
R was n-Gorenstein if and only if GZ is n-GP-tilting, where GP denotes the subcategory of
Gorenstein projective R-modules and GZ denotes the subcategory of Gorenstein injective R-
modules. Wei [12] studied n-star modules, and proved that n-tilting modules are n-star modules
n-presenting all injectives. Cotilting modules are also important part of tilting theory. In this

paper, we give the definition of n-)-cotilting subcategories with respect to a complete hereditary
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cotorsion triple (X, Z,)) in abelian category A, and investigate properties and characterizations
of self-orthogonal-) and n-)-cotilting subcategories. As an application, we obtain a sufficient
condition for R to be n-Gorenstein ring over a virtually Gorenstein ring. Furthermore, we give
a characterization of n-)-cotilting subcategories, which is similar to Bazzoni characterization
of m-cotilting modules. Then we introduce n-costar subcategories over an arbitrary ring R,
and we obtain that M is an n-Z-cotilting subcategory with respect to cotorsion triple (P, R-
Mod, 7), if and only if M is an n-costar subcategory with P C Copres" (M), where P denotes
the subcategory of projective left R-modules and Z denotes the subcategory of injective left
R-modules.

We now state the main results of this paper.

Theorem 1.1 Let R be a virtually Gorenstein ring. If GP is an n-GZ-cotilting subcategory,

then R is an n-Gorenstein ring. Moreover, GT is an n-GP-tilting subcategory.

Theorem 1.2 Let N be a subcategory of A which is closed under summands. If every object
in Y1 N admits a left N'-approximation, then N is n-Y-cotilting (with respect to (X, Z,Y) if and
only if Copres], (N)= ¥+ \.

Theorem 1.3 Let n be a non-negative integer and M be a subcategory of R-Mod closed under
direct summands and direct products. M has a class of representatives. Then the following
conditions are equivalent.

(1) M is an n-Z-cotilting subcategory with respect to cotorsion triple (P, R-Mod, T);

(2) Copres™(M) =11<isn M;

(3) M is an n-costar subcategory with P C Copres™ (M);

(4) P C Copres™ (M) = Copres™ (M) C+ M.

The contents of this paper are summarized as follows. In Section 2, we collect some known
notions and results. In Section 3, we introduce self-orthogonal-)) subcategories of A and discuss
properties of them. In Section 4, we investigate n-)-cotilting subcategories with respect to a
complete hereditary cotorsion tirple (X, Z,Y) in abelian category. Section 5 is devoted to n-
costar subcategories and n-Z-cotilting subcategory with respect to cotorsion triple (P, R-Mod,
7).

2. Preliminaries

Throughout this paper, A is an abelian category with enough projective objects and injective
objects. Subcategories are all full additive subcategory of A closed under isomorphisms. P
(respectively, 7) is the subcategory of projectives (respectively, injectives). We denote X'+ =
{Y € A|ExtY(X,Y)=0forany X € X}, LY = {X € A| Ext4(X,Y) =0 for any Y € V}. A
pair (X,)) of subcategories of A is said to be a cotorsion pair if ¥+ =) and +Y = X (see [13]).
Obviously, (P,.A) and (A, Z) are cotorsion pairs. The cotorsion pair (X, )) is complete if for any
N € A there are short exact sequences 0 =Y - X - N - 0and 0 - N — Y7 X’ — 0 with
X, X' e Xand Y,Y’ € Y. A subcategory ) is coresolving if it contains all injective objects, and
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for any short exact sequence 0 - Y’ —-Y —Y"” — 0in A with Y’ € ), we have Y € ) if and
only if Y € ). And dually the notion of resolving subcategory is defined. The cotorsion pair
(X,Y) is hereditary if Y is coresolving, i.e., X is resolving (more details see [14]).

Let X,), Z be subcategory of A. Following [15], the triple (X, Z,)) is called a cotorsion
triple provided that both (X, Z) and (Z,)) are cotorsion pair. Moreover, if both (X, Z) and
(Z,Y) are complete (hereditary) cotorsion pair, we say (X, Z,)) is a complete (hereditary)
cotorsion triple. (P, R-Mod,Z) is a complete hereditary cotorsion triple over a ring R. If R is
a virtually Gorenstein ring, then (GP, gpt =L g1, G7) is also a complete hereditary cotorsion
triple, where GP denotes the subcategory of Gorenstein projective R-modules and GZ denotes
the subcategory of Gorenstein injective R-modules [11].

Following [16], a complex Y = -+ - Y2 - V! - Y0 5 V! - V2 — ... is called
a Y-coresolution of N if Y® € Y fori > 0, Y’ = 0 for all i < 0, H;(Y) = 0 for i > 0, and
Ho(Y) = N. The exact sequence ¥Y =0 — Y? — Y1 — V2 — ... is the argumented Y-
coresolution of N. If 7Y is Homa (—, V)-exact, Y is called proper Y-coresolution. We denote Y-
id N=inf{sup{n > 0 | Y™ # 0}|Y is Y-coresolution of N}. If N admits a proper Y-coresolution,
then such a proper coresolution is unique up to homotopy equivalence. Hence, it derived the
relative A) cohomology group Ext’fw(M ,N) = H(M,Y) for every k € Z and every object
M € A. Dually, we can define X-resolution, proper X’-resolution, X-pdN and derived relative
XA cohomology group Ex‘c]jm\(M7 N) = Hi(X,N) for every k € Z and every object N € A.
Obviously, every object in A admits a proper Y-coresolution and a proper X-resolution provided
that (X,)) is a complete hereditary cotorsion pair.

Some results are spread out as follows.

Lemma 2.1 ([16, Lemma 4.3,4.4]) Assume that the short exact sequence L=0— L' — L —
L" — 0 is Hom4(—, Y)-exact and N € A.
(1) If N admits a proper Y-coresolution, then L induces a long exact sequence
0 — Hom4(L"”,N) — Hom4(L, N) — Hom4 (L', N) — Extlyy,(L",N) — - -
— Bxt,(L", N) = Extlyy, (L, N) — Ext,, (L', N) = Ext’ )} (L", N) = -
(2) If both L' and L" admit proper Y-coresolution, then L induces a long exact sequence
0 — Hom4(N, L') — Hom 4 (N, L) — Hom4(N, L") = Ext,(N, L') — - -
— Extlyy, (N, L') = Ext!y,(N, L) — Ext’yy, (N, L") — Ext" (N, L) — - -.
Moreover, if Ext7y,(N, L) = 0, then Ext%;,(N, L") = Ext"}} (N, L") for any k > 1.

Lemma 2.2 ([17, Lemma 4.3,4.4]) Assume that

f1

M —— N
f
U——V

Diagram 1 The diagram such that gfi = fg1
is a commutative diagram in A and D € A. Then the followings hold
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(1) If this diagram is a pullback of f and g, and Hom 4(D, g) is epic, then Hom 4(D, g1) is
also epic;
(2) If this diagram is a pushout of f; and g1, and Hom 4(g1, D) Is epic, then Hom 4(g, D) is

also epic.

Proposition 2.3 Let N € A and (X,)) be a complete hereditary cotorsion pair. Then for any
non-negative integer n, the following conditions are equivalent

(1) Y-id(N) < n;

(2) Extj'g,k(—,N) =0 forallk > 1;

(3) Ext’3}(—,N)=0.

Proof (1)=(2). Just to prove that there exists a proper Y-coresolution Y, such that Y = 0
for i > n. From (1) we get an exact sequence 0 =+ N — W% - W' — ... - W" — 0 in A with
each W% € ). Since (X,)) is complete, we get a Hom 4(—, ))-exact sequence 0 - N — Y0 —
Y!— ... 5 Y"1 - O" = 0(x) in A with each Y € ). Consider the following commutative
diagram (Diagram 2)

0 N y? y! yn-! cn 0
0 N wo wt wn-l wn 0

Diagram 2 The induced diagram of proper )-coresolution Y
Consequently, the mapping cone0 = N - YN - Y'ieWl = ... 5 CreW™ ! = W™ =0
is exact. Since N — Y° @ N is split, the sequence 0 — Y - Y1 o W? — ... s C?n o Wn—1 —
W™ — 0 is exact. Note that (X,)) is hereditary and ) is closed under direct summand, then
C™ € Y, which means (x) is a proper Y-coresolution.
(2)=-(3) is obvious.
(3)=(1). Let Y be a proper Y-coresolution of N and N = Ker(Y? — Y1) for i > 1.

Consider the Hom 4(—, Y)-exact sequences
0= N -Y" - Nt 50 (%)

for 4 > 1. The case n = 0, Extvlély(—,N) = 0, then (x;) is also exact under Hom 4(—, N'). Note
that Nog = N, so (x;) is split, N € ) because Y is closed under direct summands. Now suppose
n > 1 and Ext}?l(—, N) = 0. Following Lemma 2.1 (2), we can conclude that Ext}“y(—, N") =
Extj}l(—,N) =0, then N™ € Y by the case n = 0. Therefore, Y-id(N) < n. O

The following lemmas are from [11].

Lemma 2.4 Let (X, Z,)) be a complete hereditary cotorsion triple and M € A. Then
(1) M admits a proper X-resolution X such that X+ is Hom4(—, ))-exact;
(2) M admits a proper Y-coresolution Y such that *Y is Hom4 (X, —)-exact.

Lemma 2.5 Let (X, Z,)) be a complete hereditary cotorsion triple in A. Then for any objects



562 Donglin HE and Yuyan LI
M,N € A and any k € Z, there is isomorphism
k ~ k
Exty 4 (M, N) = Ext3y,(M, N).

The whole article assumes that (X, Z,)) is a complete hereditary cotorsion triple, and n is
a non-negative integer. The term ) is always part of (X, Z,)), which can ensure any object N

of A admits a proper Y-coresolution, and induce relative cohomology functor Ext’yy,(—, N).

3. Self-orthogonal-) subcategories
We start with the following definition.

Definition 3.1 Let N be a subcategory of A. N is called a self-orthogonal-)) subcategory, if
Extffyl(N, N') =0 for any objects N,N" € N.

We denote n/\A/y = {M € A| there is a Hom 4(—, ))-exact sequence 0 — N™ — --- — N1 —
N°® — M — 0, with each N* € N}. ./\A/'y ={M € AlM € n./\A/y for some n}. YIN = {M € A|
Ext]ffyl (M,N) =0 for any N € N'}. And %,, = {M € A| there is a Hom 4(—, JV)-exact sequence
0— M — NO Lo N1 f—1>, with each N* € A" and Kerf; € ¥*N'}.

Dually we can get symbols n./\~/'y7 ./\N/'y, N1y and % Tt is clear %, C ¥+ N and & C N1,

We shall discuss properties of self-orthogonal-) subcategories.

Lemma 3.2 Let N be a self-orthogonal-) subcategory of A. Then Extljfyl (M M ) = 0 for any
object M € /\A/y and M' € Y+ N.

Proof For any object M € /\7y, we have a Hom 4(—, Y)-exact sequence 0 — N™ — ... — N1 —
N°® — M — 0, with each N* € V. Since Lemma 2.1(2), Ext/,,(M’, M) = Ext(M',N") = 0
for any M’ € 2N and k > 1.

A subcategory B of A is said to be closed under Hom 4(—, Y)-extension, if for any short
Hom 4(—, V)-exact sequence 0 - A — B — C' — 0 with A, C € B, it induces that B € B.

Lemma 3.3 Let N be a self-orthogonal-Y subcategory of A. Then both ,,% and %,, are closed

under Hom 4(—, Y)-extension and direct summands.

Proof For any Hom 4(—,))-exact sequence 0 - A — B — C — 0 with A,C €%/, it is also
Hom 4(—, N)-exact by Lemma 2.1. Following [18, Lemma 1.10], we have B €%,,. Therefore, %,
is closed under Hom 4(—, ))-extensions.

Let U = Uy ® Uy in Z,,. There is a Hom 4(—, ))-exact sequence 0 — U — N° — U’ — 0
with N° € N and U’ €%,,. Consider the following pushout diagram (Diagram 3)

Since the up row is split and the middle column is Hom 4(—, Y)-exact, we obtain the middle
row is Hom4(—, Y)-exact by Lemma 2.2. Note that 0 - Uy - H — U’ — 0 is Homu(—, Y)-
exact, then the exact sequence 0 - U ®U; — H ®U; — U — 0 is also Hom 4(—, Y)-exact.
Because U, U’ €%,,, U = U; @ Uy and %, is closed under Hom 4(—, ))-extension, we can see
HoU €%,. So U, is a direct summand of some object in %,,, and U € %,, deduced by

recursiveness. Thus, %, is closed under direct summands. O
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0 0
| |
0 Ux U Us 0
H |

—

—

Diagram 3 The pushout diagram of U — N° and U — Uy
Dually, we can deduce ,,# is also closed under Hom 4(—, Y)-extension and direct summands.
Let W, H be subcategories of A. We say that W is Y-cogenerator of H, if W C H and for
any object H € H, there is Hom4(—, Y)-exact sequence 0 - H - W — H' — 0 with W e W
and H' € H (see [19]).

Lemma 3.4 Suppose that N and H are subcategories of A, H is closed under Hom 4(—, Y)-
extensions, and N is Y-cogenerator of H. If0 = Z — M' - M? - ... > M™» = Z' =0
is Hom 4(—, Y)-exact sequence with each M* € H, then there are Hom 4(—,))-exact sequences
02 -V 55U 50withUreH,and0 — Z - N - ... 5 N1 5 N* 5 V™ 50
with each N* € N.

Proof We prove it by induction on n.

The case n = 1, there is a Hom4(—,Y)-exact sequence 0 — Z — M!' — Z' — 0 with
M?' € H. Because N is Y-cogenerator of H, we have another Hom4(—,))-exact sequence
0— M!'— N'— U! - 0 with N! € N and U' € H. Consider pushout diagram (Diagram 4)

o

R

B
L

Diagram 4 The pushout diagram of M* — N' and M' — zZ



564 Donglin HE and Yuyan LI

Following Lemma 2.2, the right column is Hom 4(—, ))-exact. Note that the up row is Hom 4(—, ))-
exact, then the middle row is also Hom 4(—, Y)-exact. The conclusion is tenable.

Suppose that the conclusion is tenable for n — 1. We shall prove that the conclusion is ten-
able for n. Let Z"” = Ker(M™ — Z'). Then by induction hypothesis we have Hom 4(—, ))-exact
sequences 0 — Z” — V"l 5! 5 0and0 — Z - N' — ... - N1 — V=l 0, with
U"~! € H and each N € N. Consider the following pushout diagram (Diagram 5)

0 0
| |

0o— 2/ ——— M z' 0
| | H

0 —— vVt — X z 0
| |

Unfl Unfl

| |
0 0

Diagram 5 The pushout diagram of Z' sV land 2" - M™
in which the middle row and column are Hom 4(—, ))-exact by Lemma 2.2. Consider exact
sequence 0 — M"™ — X — U1 — 0 with M, U""! € H, we get X € H because H is closed
under Hom 4 (—, Y)-extensions. Since A is Y-cogenerator of H, there is a Hom4(—,))-exact
sequence 0 -+ X — N — U™ — 0 with N € N and U™ € H. Now we can construct the following
pushout diagram (Diagram 6)

0 —— Vvt

0 —— vyt

o
o

Diagram 6 The pushout diagram of X — N and X — zZ
where the right column and middle row are Hom 4(—,Y)-exact by Lemma 2.2. Consequently,
the conclusion is tenable for n. O

In particular, we get the following result.
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Corollary 3.5 Suppose that N and H are subcategories of A, H is closed under Hom 4(—,))-
extensions, and N is Y-cogenerator of H. If Z' € nﬁy, then there is a Hom4(—, ))-exact
sequence 0 = Z' -V — U — 0 with U € H and V € ,N,,.

Proposition 3.6 Let the subcategory N of A be both self-orthogonal-Y and closed under direct
summands. Then the followings are equivalent for any object M €, Y

(1) M e N,;

(2) Eth‘&l(M, M') = 0 for any object M’ € N+¥;

(3) Ext:g,l(M, M’) =0 for any object M’ € ..

Particularly, /\A/y is closed under direct summands.

Proof (1)=-(2). Suppose that M € n./\A/y, there is a Hom 4(—, Y)-exact sequence
0+N"—.- 5N N5 M—0

with each N* € N. According to Lemma 2.1, Extzg,l (M, M') = Extlyy,(N",M’) = 0 for any
object M' € N'tv.

(2)=(3) is clear.

(3)=(1). Let M € .. Then there is a Hom 4(—, Y)-exact sequence

SRRING ¢ JECNG NS RELNG NCJELNG VN
with each N* € A and Imf; € N Ly, Following Lemma 2.1, we obtain the isomorphism
Extly (Kerf,—1, Kerf,) = Ext ! (M, Kerf,)

by applying the functor Hom4(—,Kerf,) to this sequence. Note that Kerf, € , Y, then
Exti‘y(Kerfn_l, Kerf,) = 0. So we have that 0 — Hom 4 (Ker f,,_1, Kerf,,) = Hom4(N",Kerf,) —
Hom 4 (Kerf,,Kerf,) — 0 is exact. Consequently, the exact sequence 0 — Kerf, — N" —
Kerf,_1 — 0 is split. Since N € N and N is closed under direct summands, then Kerf,, € N,
which means M € n./\A/y.

The final statement comes directly from Lemma 3.3 by /\A/'y e ¥. 0O

4. n-)-cotilting subcategories

In this section, we introduce the concept and examples of n-)-cotilting subcategories with
respect to a complete hereditary cotorsion triple (X, Z,)). Finally the characterization of it is

given.

Definition 4.1 Assume that the subcategory N of A is closed under direct summands. N is
said to be n-Y-cotilting (with respect to (X, Z,Y)) provided

(1) Y-idN < nie Y-idN < n forall N e N;

(2) N is a Y-cogenerator of ¥+ N;

(3) Y C .N,.

For convenience, we denote Copres], (N)={M € A| there is a Hom4(—,Y)-exact sequence
0—+ M — N' = N? - ... - N", with each N* € N}, and Cogen(N) = Copres] (N).
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Obviously Cogen,, (N) is closed under direct summands.

Proposition 4.2 Assume that N is a subcategory of A. Then the following conditions are
equivalent

(1) N is a Y-cogenerator of ¥ N;

(2) N is self-orthogonal-Y and ¥*N = Y,;;

(3) N is self-orthogonal-Y, each object of ¥+ N admits a left N'-approximation and Y*N C
Cogen,, (V).

Proof (1)=(2). It is easy to see that N is self-orthogonal-} and Y,, C ¥LA. On the other
hand, for any M € Y1 N/, since N is a V-cogenerator of ¥~ N, we obtain a Hom 4(—,))-exact
sequence 0 — M — N — M’ — 0 with N € A" and M’ € ¥*N. Repeating the process for N,
we finally get M € Y,,. Therefore, N =),.

(2)=(3). Let M € YN =),.. By definition we have a Hom 4(—, Y)-exact sequence 0 —
ML N — M’ — 0 with N € N and M’ € ¥ N. Then this sequence is also exact under
Hom4(—, N) by Lemma 2.1. One can see M I Nis a left N-approximation of M and M’ €
Cogen_, (N). So the conclusion (3) holds.

(3)=(1). For any M € ¥+ N, by (3) we know M’ € Cogen_ (N), there is a Hom4(—,)-
exact sequence 0 — M = N' — M’ — 0 with N' € A/. On the other hand, M admits a left
N-approximation 3: M — N with N € N, which derives a Hom 4(—, \)-exact sequence

0>ME NS M -0 (+)

we show that (x) is desired. Firstly we construct the following commutative diagram (Diagram
7)

0 M- 5 N M’ 0
H d |
0 M —% 5 N? M 0

Diagram 7 The commutative diagram induced by left N-approximation of M
for any Y € Y and any morphism f : M — Y, there is a morphism g : N' — Y such that ga = f
since 0 — M = N' — M’ — 0 is Hom4(—, Y)-exact. Let h = gy. Then h € Hom4(N,Y) and
hB = gyB = ga = f. So (x) is Hom4(—,Y)-exact. We now only need to prove M" € ¥+ N\

Indeed, for any N’ € N, there is a long exact sequence
o= Hom (N, N') 25 Hom 4 (M, N') = Extlyy(M”, N') = Extlyy, (N, N') = - --

by applying Hom 4(—, N’) to (). Note that Exti‘y(N, N’) = 0 because f is left N-approximation.
So Extlyy,(M"”,N') = 0. Since Ext®{} (M", N') = Ext},,(M, N') = 0, we obtain Ext/y,,(M", N') =
0 for any k > 1, which means M” € ¥*N. O

Here are some examples of n-Y-cotilting subcategories.

Example 4.3 (1) Y is n-Y-cotilting subcategory.
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(2) Assume that T € R-Mod where R-Mod is the category of left R-modules. Then the two
statements are in agreement

(a) T is an n-cotilting module;

(b) ProdT is an n-Z-cotilting subcategory with respect to complete hereditary cotorsion
triple (P,R-Mod, ), where ProdT consists of all left R-modues isomorphic to direct summands
of arbitrary products of copies of T.

A commutative noetherian ring R is said to be virtually Gorenstein, if R has finite Krull
dimension and GP+ =+ GZ. Following [11, Theorm 4.5], a virtually Gorenstein ring R is n-
Gorenstein if and only if GZ is n-GP-tilting subcategory.

As an application of n-Y-cotilting subcategory, we shall discuss the relation of n-Gorenstein

ring and n-GZ-cotilting subcategories.

Theorem 4.4 Assume that R is a virtually Gorenstein ring. If GP is an n-GZ-cotilting subcat-

egory, then R is an n-Gorenstein. Moreover, GT is an n-GP-tilting subcategory.

Proof Following [14, Theorem 9.1.11], we only need to show that the projective dimension of all
injective R-modules is at most n. For any injective R-module M, M is also Gorenstein injective.
Since GP is n-GZ-cotilting subcategory, then the Gorenstein projective dimension of M is at
most n. By [20, Theorem 2.2], we obtain that the projective dimension of M is equal to its
Gorenstein projective dimension. Therefore, R is n-Gorenstein.

According to [11, Theorem 4.5], GZ is n-GP-tilting subcategory. O

Proposition 4.5 Assume that N is n-Y-cotilting subcategory of A. Then
Copres’, (N) = YN,

Proof Since Definition 4.1 and Proposition 4.2, we obtain yiN = Y, C Copres; N). Tt
is only to prove Copres)(N) C yIN. For any C € Copres)(N) and N € N, we have a
Hom 4(—, Y)-exact sequence 0 — C — N! — N2 — ... - N1 » N™ — | — 0, where
I = Coker(N"~! — N™) and each N* € N. Since Lemma 2.1 and N is self-orthogonal-)), we
obtain Ext,(C, N) = Ext*{"(I, N) for k > 1. Note that Y-id\V < n, then Ext}(I, N) =
0 by Proposition 2.3. So Extﬁy(c, N) = 0, which means Copres,(N) C vLN. Therefore,
Copres, (N)=»*N. O

For any subcategory V of A, it is obvious X € ¥V by Proposition 2.3. Then V C
Copres; (V). V is said to be closed under n-)-kernels provided that Copres} (V) C V, which

means Copres’) (V) = V.

Lemma 4.6 Let N be a subcategory of A. Then Y-idN" < n if and only if ¥+ N is closed under

n-Y-kernels.
Proof (=). For any C € CoplresZ(yL/\/)7 there is a Hom 4(—, Y)-exact sequence
0=-C—M M- ... 5 M ' 5 M" =10,

where I = Coker(M"~! — M") and each M* € ¥+ N. Note that ¥\ is self-orthogonal-Y, then
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Ext’;‘y(C’, N) = Extﬁ&"(I,N) =0 for any N € N and k > 1 by Lemma 2.1 and Proposition
2.3. We have C' € »* N, which means Copres!, (**N) C »*N. Thus ¥*N is closed under
n-Y-kernels.

(«<). It suffices to prove Extzg,l (M,N) =0 for any N € N and M € A by Proposition
2.3. Note that (X, Z,)) is a complete hereditary cotorsion triple, by lemma 2.4, we obtain a

Hom 4(—, Y)-exact sequence
0K X" X" 1. .. o X2 X5 M—0

where X* € X C ¥+ N. Since Y1 N is closed under n-)-kernels, we have K € ¥*N. Therefore,
EXtZlJ)rzl(M7 N) = EX’D}W(K, N) =0 by Lemma 2.1. O

Proposition 4.7 Assume that N is a self-orthogonal-Y subcategory of A. Then Copres] (N) =
Copres’ (V).

Proof By assumption, we obtain N' € Y,,, then Copres], (N) C Copres}, (V,,). We only need
to prove Copres’;(Y,,) C Copres], (N). For any C' € Copres’; (Y, ), we have a Hom 4(—, )-exact

sequence

0=-C—-M - M- ... 5> M1 5 M" =10,

where I = Coker(M™~! — M™) and each M® € Y, Since N is a Y-cogenerator of Y, and
Y, is closed under Hom 4(—, Y)-extensions by Lemma 3.3. Following Lemma 3.4, we have a

Hom 4(—, Y)-exact sequence
0-C—N N2 ... 5 N1 5 N 5 V" -0,

where each N* € N. Tt is clear C' € Copres) (N). Then Copres’ (Y,) € Copres)(N). In

conclusion, Copres (V) = Copres] (Y,,).

Proposition 4.8 Assume that N is a subcategory of A with Copres], (N) =YL N, and each
object in ¥ N admits a left N-approximation. Then the followings hold

(1) ¥+ N is closed under n-Y-kernels and Y-idN < n;

(2) If N is closed under direct summands, then )) C njvy.

Proof (1) By Lemma 4.6, we only need to show ¥LA is closed under n-)Y-kernels. Since
Copres?, (N) =¥+ N, we obtain A is self-orthogonal-Y and ¥+ C Cogen  (N). Note that each
object in ¥ A admits left A'-approximation, then ¥~ A=), by Proposition 4.2. According to

Proposition 4.7, we get
Copres, (tN) = Copres’, (Y,,) = Copres], (N) = AN

which means ¥+ A is closed under n-Y-kernels.
(2) Let NV be closed under direct summands. For any Y € Y, we have a Hom 4(—, J)-exact

sequence

0=-Z-X"sX" !5 5 X255 X 5Y =0
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with X € X C Y*N by Lemma 2.4. Following (1), we get Z ¥+ N. It is clear Y* N
is closed under Hom4(—,Y)-extensions by Lemma 2.1. Note that N is a Y-cogenerator of
v N\ since Proposition 4.2. According to Corollary 3.5, we have a Hom_4(—, ))-exact sequence
0=Y =V =U-=0withV e ,N, and U € N. Then V=Y @ U by Lemma 3.2. Also
because n/\7y is closed under direct summands by Lemma 3.6, we obtain Y € nﬁfy, which means
Y C,N,. O

We can now state one of our main results which follows immediately by Propositions 4.5 and
4.8. Tt is similar to [7, Theorem 3.11].

Theorem 4.9 Assume that the subcategory N of A is closed under direct summands, and
every object in Y+ N admits a left N'-approximation. Then N is n-Y-cotilting (with respect to
(X, Z,)), if and only if Copres’, (N)= ¥+ N.

5. n-Costar subcategories and n-Z-cotilting subcategories

In this section, R is an associative ring with nonzero identity. R-Mod is the subcategory
of all left R-modules. We use the term “subcategory” to stand for a full additive subcategory
of R-Mod closed under isomorphisms. P denotes the subcategory of projective left R-modules
and Z denotes the subcategory of injective left R-modules. If « : X — Y and §:Y — Z are
homomorphisms, we denote by af the composition of o and 5. Let M be a subcategory of
R-Mod, we denote

Licisn M = {N € R-Mod|Ext’ (N, M) = 0 for any M € M and any 1 < i < n},

Lzt M = {N € R-Mod|Ext’ (N, M) = 0 for any M € M and any i > 1}.

Obviously, (P, R-Mod,Z) is a complete hereditary cotorsion triple and - M =1i>1 M.

And denote by Copres™ (M) the subcategory of N € R-Mod such that there exists an exact
sequence 0 - N — My — My — -+ — M,, with each M; € M. It is obvious that Cogen(M) =
Copres' (M), Copres' (M) is closed under direct summands, and Copres™ (M) C Copres™ (M)
for any non-negative integer n. Dually we can define MLi<isn ML>1 and Pres”(M). If the
short exact sequence 0 — U — V — W — 0 is still exact under the functor Homp(—, M) for any
M € M, then we say this exact sequence stays exact under the functor Homp(—, M). We say M
is closed under n-kernels if Copres” (M) CM, i.e., Copres™ (M) =M. A set M’ CM is a class of
representatives (of isomorphism types) of M in case each M € M is isomorphic to some element
of M’ (see [21]). Clearly, if M’ is a class of representatives of M, then Cogen(M) = Cogen(M’),
and Gen(M) = Gen(M’).

Let us start with the concept of n-quasi-injective subcategories.

Definition 5.1 Let n > 1 and M be a subcategory of R-Mod, which is closed under direct
summands. M is said to be an n-quasi-injective subcategory if for any exact sequence 0 — U —
M — W — 0 with M € M and W € Copres" ! (M), the induced sequence 0 — Hompg (W, M) —
Hompg(M, M) — Hompg(U, M) — 0 is also exact for any M € M.

It is clear that rT is an m-quasi-injective module is equivalent to ProdrT is an n-quasi-
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injective subcategory, where ProdrT denotes the subcategory of all left R-modules N that are
isomorphic to direct summand of T for some cardinal A. If M is an n-quasi-injective subcate-
gory, then M is an m-quasi-injective subcategory for all m > n.

We now introduce a useful lemma.

Lemma 5.2 Suppose that M is a subcategory of R-Mod which is closed under direct summands,
0—-U—M -1 >0and 0 - U — My — I, — 0 are exact sequences with My, M, € M. If
both sequences stay exact under the functor Homp(—, M), then My @ Iy = M @ 1.

Proof By assumption, we have that both 0 - U - M; -1 - 0and 0 - U — My — I — 0
stay exact under the functor Hompg(—, M), where My, My € M. Then by the decomposition

lemma we can construct the following commutative diagram with row exact (Diagram 8):

0 U My I 0
H I l

0 U Mo I 0
H | l

0 U My I 0

Diagram 8 The commutative diagram induced by the decomposition lemma
Following the dually conclusion of [12, Lemma2.2], we obtain M; & Io 2 My @ I. O

Below we give an equivalent characterization of n-quasi-injective subcategories.

Proposition 5.3 Suppose that n > 1 and M is a subcategory of R-Mod, which is closed under
direct summands. Then the followings are equivalent.

(1) M is an n-quasi-injective subcategory;

(2) For any exact sequence § : 0 - U — M — W — 0 with M € M and U € Copres” (M),
we have that W € Copres™ ' (M) if only if § is still exact under the functor Homp(—, M).

Proof (1)= (2). For any exact sequence § : 0 - U — M — W — 0 with M € M and
U € Copres™(M), if W € Copres™ '(M), then it is clear that the induced sequence 0 —
Homp (W, M) — Hompg(M,M) — Hompg(U, M) — 0 is still exact for any M € M by (1),
which means § is still exact under the functor Hompg(—, M). If ¢ is still exact under the functor
Homp(—, M), by U € Copres” (M) we can get an exact sequence 0 = U — M’ — W' — 0 with
M’ € M and U’ € Copres™ '(M), which is also exact under the functor Hompg(—, M) according
to Definition 5.1. So we obtain that W’ & M = W & M’ by applying Lemma 5.2. Therefore,
W € Copres” *(M).
(2)=(1) is obvious. O

We introduce the concept and characterizations of n-costar subcategories as follows.

Definition 5.4 Suppose that n > 1 and M is a subcategory of R-Mod which is closed under

direct summands and direct products. M is called an n-costar subcategory, if M is an (n + 1)-
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quasi-injective subcategory and Copres™(M) = Copres™ ™ (M).

Lemma 5.5 Suppose that M is an n-costar subcategory and 0 — U LSV 5 W — 0 is a short
exact sequence in R-Mod. If VW € Copres" (M), then U € Copres”(M).

Proof If VW € Copres™ (M), then there are exact sequences
0= WS My > W = 0and 0=V S My > V3 =0

with W’ V; € Copres™ (M) and My, My € M. Since M is an n-costar subcategory, we can get

the following exact commutative diagram (Diagram 9):

0 0 0

Diagram 9 The diagram corresponding to U

Because the exact sequence 0 — V' — My — V; — 0 is exact under the functor Hompg(—, M) by
assumption, for any M € M and any homomorphism f : V — M, there exists a homomorphism
g : My — M such that ag = f. It is easy to see that (anrﬂ)(%) = ag = f and (g) :
My & My — M, which means the exact sequence 0 — V — My & My — V' — 0 is also
exact under the functor Hompg(—, M). Note that V' € Copres™”(M) and M is (n + 1)-quasi-
injective subcategory, we can get V' € Copres" (M) by Proposition 5.3. Repeat the above
process to 0 — U’ — V' — W’ — 0 and continue. It is not difficult to draw the conclusion
U € Copres™(M). O

Now let us talk about the closure of Copres™ (M) under kernels of monomorphism, cokernels

of epimorphism and extensions, by assumption that M is an n-costar subcategory.

Proposition 5.6 Suppose that M is an n-costar subcategory and 0 — U LV LW 0is
a short exact sequence which stays exact under the functor Hompg(—, M). Then the followings
hold:

(1) If V,W € Copres™ (M), then U € Copres™(M);

(2) IfU,W € Copres™(M), then V € Copres™(M);

(3) If U,V € Copres” (M), then W € Copres™ (M).

Proof (1) It is clear by Lemma 5.5.
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(2) If U;W € Copres™(M), then there are exact sequences 0 — U % My — U’ — 0
and 0 - W L My — W’ — 0 with U’, W’ € Copres™(M) and My, My € M, which are
still exact under the functor Hompg(—, M), since M is an n-costar subcategory. Note that
0—=U%V S W = 0is also exact under the functor Hompg(—, M) and My € M, so we
can get a homomorphism £ : V' — My such that i€ = «. Consider the following commutative

diagram (Diagram 10):

o (&m) v
(%)

0—— My —— My ® My —— Mw ——>0

0 0 0

Diagram 10 The diagram corresponding to V'
where V' = Coker(V — My @ My/). For any M € M, applying the functor Homg(—, M) to

the diagram, we can obtain the following exact commutative diagram (Diagram 11):

0—— HomR(MW,M) —_— HomR(MU D Mw,M) —_— HOH’IR(]\/[U7 M) —0

0 — Hompg (W, M) ——— Hompg(V, M) —— Hompg(U, M) — 0

0 0
Diagram 11 The induced diagram by Diagram 7

By the snake lemma, we get the sequence 0 — Hompg (W', M) — Homp(V', M) — HomR(U/, M) —
0 is exact, which means 0 — U’ — V' — W’ — 0 is exact under the functor Hompg(—, M). Re-
peat the above process to 0 — U’ — V' — W' — 0 and continue. It is not difficult to draw the
conclusion V' € Copres™(M).

(3) If U,V € Copres™ (M), then there is an exact sequence 0 — V LN My — V' — 0 with
V' € Copres" (M) and My € M. Consider the following pushout diagram (Diagram 12):



Costar subcategories and cotilting subcategories with respect to cotorsion triples 973

l

0
Diagram 12 The pushout diagram of V. — My and V — W

i
T
|

For any M € M and any homomorphism ¢ : U — M, there is a homomorphism h : V — M
such that ih = g by the fact that upper row stays exact under the functor Homp(—, M). Since
the middle column is also exact under the functor Homp(—, M), there exists a homomorphism
f : My — M such that 8f = h. Then puf = (iB)f = i(Bf) = ih = g, which means the
middle row is still exact under the functor Hompg(—, M). Following Proposition 5.3, we can get
Y € Copres™(M). Also because V' € Copres™ (M), it is easy to see that U € Copres" (M) by
Lemma 5.5. O

According to the proof of Proposition 5.6, we can get the following corollary.

Corollary 5.7 Suppose that M is an n-costar subcategory and 6 : 0 - U -V — W — 0
is a short exact sequence with U, V,W € Copres" (M), then 0 stays exact under the functor
Homp(—, M).

Some characterizations of n-costar subcategories are given below.

Theorem 5.8 Suppose that n > 1 and M is a subcategory of R-Mod, which is closed under
direct summands and direct products. M has a class of representatives. Then the followings are
equivalent.

(1) M is an n-costar subcategory;

(2) For any short exact sequence 6 : 0 - U — M — W — 0 with M € M and U €
Copres” (M), then W € Copres”(M) if and only if the induced sequence 0 — Homp (W, M) —
Hompg(M, M) — Hompg(U, M) — 0 for any M € M.

(3) For any short exact sequence § : 0 U —V — W — 0 with U,V € Copres™ (M), then
W € Copres™ (M) if and only if the induced sequence 0 — Homp (W, M) — Homg(V, M) —
Hompz(U, M) — 0 is also exact for any M € M.

Proof (1)= (3). Let M be an n-costar subcategory. Then M is (n + 1)-quasi-injective and
Copres"(M) = Copres" ™ (M). For any short exact sequence § : 0 = U — V — W — 0 with
U,V € Copres" (M), by Proposition 5.6 and Corollary 5.7, it is not difficult to prove that the



574 Donglin HE and Yuyan LI

conclusion holds.

(3)= (2). It is clear by M C Copres™(M).

(2)= (1). By assumption (2), we can get M is (n + 1)-quasi-injective subcategory. Note
that Copres™ ™ (M) C Copres™ (M), so we only need to prove Copres™(M) C Copres™ ™ (M).
For any U € Copres™ (M), we have U € Cogen(M). Let M’ be a class of representatives of
M, then U € Cogen(M’). There exists a set (M;);er in M’ and an monomorphism U —
[Lic; Mi. Let H = [[pepe M, and My = HUomr(UH) - Then there is an exact sequence
0 — U — My — U’ — 0 which is still exact under the functor Homp(—, M). By assumption
we get U’ € Copres™ (M), which means U € Copres™ ™ (M). So Copres”(M) C Copres™ ™ (M).

Consequently, M is an n-costar subcategory. O

Theorem 5.9 Suppose that n > 1 and M is a subcategory of R-Mod, which is closed under
direct summands and direct products. Then the followings are equivalent.
(1) M is an n-costar subcategory and Copres™ (M) is closed under extensions;

(2) Copres™(M) = Copres" (M) C+ M.

Proof (1)= (2). Since M is an n-costar subcategory, we have Copres™(M) = Copres™ (M)
and we only need to prove that Copres”(M) C*+ M. For any N € Copres” (M), any M € M
and any extension of N by M: 0 - M — E — N — 0, because M € M C Copres™(M) and
Copres™(M) is closed under extensions by (1), we get F € Copres™(M). According to Corollary
5.7, we know the induced sequence 0 — Hompg (N, M) — Hompg(E, M) — Homp (M, M) — 0
is exact, which means 0 — M — E — N — 0 is split. Therefore, Extk(N, M) = 0 for any
M € M, then Copres™ (M) Ct M.

(2)= (1). It is easy to see that M is an n-costar subcategory by (2), so let us prove that
Copres" (M) is closed under extensions. For any extension 0 — U — V — W — 0 with
U,W € Copres” (M), by assumption Copres™(M) Ct M, we can get this sequence is exact
under Homp(—, M). It is not difficult to prove V' € Copres™ (M) according to Proposition 5.6,
which means Copres” (M) is closed under extensions. O

The following lemma shall be used to the proof Theorem 5.13.

Proposition 5.10 Suppose that M is an n-costar subcategory and Copres™ (M) is closed under
extensions. Then Copres® (Copres™(M)) = Copres”(M) for any k > 1. Especially, Copres™(M)

is closed under n-kernels.

Proof It is easy to prove the conclusion by induction on k. O
As well known, every left R-module has an injective envelope, so it also has a left Z-

approximation. Then we can get the following lemma by Theorem 4.9.

Lemma 5.11 Suppose that n is a non-negative integer and M is a subcategory of R-Mod closed
under direct summands. Then M is n-Z-cotilting subcategory with respect to cotorsion triple
(P, R-Mod, T) if and only if Copres™(M) =11 M.

By Proposition 5.6 and Theorem 5.9, we can obtain the following lemma.
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Lemma 5.12 Suppose that M is an n-costar subcategory such that Copres™ (M) is closed under
extensions, and 0 - U — V — W — 0 is a short exact sequence with U,V € Copres™(M).
Then W € Copres™ (M) if and only if W €+ M.

We can now state our main result as follows.

Theorem 5.13 Let n be a non-negative integer and M be a subcategory of R-Mod closed under
direct summands and direct products. M has a class of representatives. Then the following
conditions are equivalent.

(1) M is an n-I-cotilting subcategory;

(2) Copres™(M) =11<isn M;

(3) M is an n-costar subcategory with P C Copres™ (M);

(4) P C Copres™ (M) = Copres™ (M) C+ M.

Proof (1)=-(2). It is clear by Lemma 5.11.

(2)=(3). Since P Cltisisn M = Copres™(M) by (2). We only need to prove that M is an
n-costar subcategory. For any exact sequence 0 — U — My — W — 0 with My € M and
U € Copres™(M). It is easy to see that Copres™ (M) is closed under extensions by (2). Then
this sequence is exact under the functor Homp(—, M) if and only if W €+ M, if and only if
W eticisn M = Copres” (M) since My, U € Copres” (M) =ti<isn M. According to Theorem
5.8, one can see that M is n-costar subcategory.

(3)=>(4). We only need to prove that Copres” (M) C+ M. For any W € Copres” (M), there
exists exact sequence 0 — W' — Py — W — 0 with Py € P. Note that Py, W € Copres™ (M),
we have W’ € Copres™ (M) by Lemma 5.5. Consider the following long exact sequence

-+ = Hompg(Pw, M) — Homp (W', M) — Extr(W, M) — Ext'(Py, M) — ---

Following Py € P and Corollary 5.7, we obtain that W €+ M.
(4)=(1). According to Theorem 5.9, we know M is an n-costar subcategory and Copres™ (M)

is closed under extensions. By Lemma 5.11, we only need to prove that Copres™(M) =+>1 M.

Firstly, we shall prove Copres” (M) C+i>1 M. For any U € Copres” (M), there is a projective
resolution - -+ — P ELNN Py EER P I 50, Let U; = kerf;. Then U; € Copres™(M)
by Lemma 5.5 and P C Copres™ (M), which implies that U; €+ M for every i > 1. Then we get
Ext/ (U, M) = Ext'(U;_1, M) = 0 for any j > 1 and M € M, which means Copres”™ (M) CLi>1
M.

And then we prove ti>1 M C Copres”(M). For any V €11 M, there is a projective
resolution - = Qr L - 5 Qs B Q1 LU — 0, it is easy to see that V; €ti>1 M. By
Lemma 5.10, we know V,, € Copres™(M). Note that V,,_; €ti>1 M and Q,, € P C Copres" (M),
one can see that V,,_; € Copres™(M) by Lemma 5.11. Repeat the process and continue, it is
easy to get V € Copres™(M). Thus +i1 M C Copres”(M). O
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