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1. Introduction

Auslander and Bridger [1] introduced the concept of Gorenstein dimension for finitely gener-

ated modules over a two-sided noetherian ring. This idea was extended by Enochs and Jenda [2]

to the concepts of Gorenstein projective, Gorenstein injective and Gorenstein flat modules over

an arbitrary ring, and developed Gorenstein homological algebra. Bennis and Mahdou [3] studied

the global Gorenstein dimension of a ring R. In the paper [4] published recently, Mahdou and

Tamekkante investigated the rings of (weak) global Gorenstein dimension at most one, which

we called Gorenstein (semi) hereditary rings. More recently, Gao and Wang [5] showed that a

ring R is Gorenstein semihereditary if and only if every finitely generated submodule of a pro-

jective module is Gorenstein projective, and pointed out that every Gorenstein hereditary ring

is coherent.

FP -injective modules are similar to injective modules. Pinzon [6] proved that if R is a

coherent ring, then every R-module has an FP -injective cover. Ding and Chen [7] introduced

the concept of n-FC rings. Gorenstein modules have nice properties when the ring in question

is an n-FC ring. Mao and Ding [8] proposed the concept of Gorenstein FP -injective modules,

and proved that a left coherent ring R is left noetherian if and only if every FP -injective left

R-module is Gorenstein FP -injective.

Formal triangular matrix rings play an important role in ring theory and the representation

theory of algebras. In the paper [9], Enochs and other authors introduced Gorenstein regular
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rings and characterized when a left module over a formal triangular matrix rings is Gorenstein

projective or Gorenstein injective.

The organization and the main results of the paper are as follows. In Section 2, we collect

preliminary notions and results on formal triangular matrix rings that will be useful throughout

the paper and we fix some notations. In Section 3, we provide necessary and sufficient conditions

for such rings to be Gorenstein (semihereditary) hereditary. In Section 4, we study the FP -

injective modules over a triangular matrix ring and investigate when a triangular matrix ring is

an n-FC ring.

2. Preliminaries

All rings are assumed to be associative and with a nonzero identity element, and modules are

assumed to be unitary. Unless otherwise stated, modules are assumed to be left modules. For

any ring R, we use R-Mod to denote the category of left R-modules, and use RM (resp., MR)

to denote a left (resp., right) R-module.

Recall that a ring is left Gorenstein regular [9] if the classes of left modules with finite

projective dimension and finite injective dimension coincide and the injective and projective

finitistic left dimensions are finite.

Recall that a left R-module M is called Gorenstein projective in [10] if there exists an exact

sequence · · · // P−1 d−1
// P 0 d0

// P 1 d1
// · · · of projective R-modules with M ∼= Imd−1

such that HomR(−, Q) leaves the sequence exact whenever Q is a projective R-module. The

Gorenstein injective modules are defined dually.

Throughout the paper, we fix a formal triangular matrix ring

T =

(
R M

0 S

)
,

where R and S are two (arbitrary but fixed) rings, and RMS is an R-S-bimodule, which is a ring

under componentwise addition and multiplication given by the rule:(
r m

0 s

)(
r′ m′

0 s′

)
=

(
rr′ rm′ +ms′

0 ss′

)
,

r, r′ ∈ R, s, s′ ∈ S and m,m′ ∈ M . We shall adopt the well-known description of T -Mod

from [11] which is afforded by the equivalence of category T -Mod with a category Ω, described

below.

Let Ω denote the category whose objects are triple (X,Y )f , or simply (X,Y ) if f is clear,

where X ∈ R-Mod, Y ∈ S-Mod and f : M ⊗S Y → X is a map in R-Mod. If (X,Y )f and

(X ′, Y ′)g are objects in Ω, the morphisms from (X,Y )f to (X ′, Y ′)g in Ω are pairs (φ1, φ2),

where φ1 : X → X ′ is a map in R-Mod, φ2 : Y → Y ′ is a map in S-Mod satisfying the condition

φ1f = g(1M ⊗φ2), where 1M denotes the identity map on M . The left T -module corresponding
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to the triple (X,Y )f is the additive group X ⊕ Y with the left T -action given by(
r m

0 s

)(
x

y

)
=
(
rx+ f(m⊗ y), sy

)
.

Conversely, if a module TV is given then by using the idempotents e1 =
(
1 0
0 0

)
, e2 =

(
0 0
0 1

)
and ring identifications Te1 ≡ R and Te2 ≡ S, the triple (X,Y )f corresponding to TV is

constructed, where X = e1V, Y = e2V and f : M ⊗ e2V → e1V is given by f(m ⊗ e2v) =(
0 m
0 0

)
e2v = e1

(
0 m
0 0

)
v. Thus, the regular module TT corresponds to (R⊕M,S)f , where f is the

map M⊗SS → R⊕M given by f(m⊗s) = (0,ms). If V is a T -module corresponding to (X,Y )f ,

we let f̃ : Y → HomR(M,X) be given by f̃(y)(m) = f(y ⊗ m) for y ∈ Y , m ∈ M . Note that

f̃ is a B-homomorphism. In a similar way, we can get right T -modules and TT = (R,M ⊕ S)g,

where g is the map R⊗R M → M ⊕ S given by g(r ⊗m) = (rm, 0).

Recall that the T2-extension of a ring R is given by

T2 =

(
R R

0 R

)
and every module over T2(R) is a homomorphism φ : Y → X of R-modules.

Lemma 2.1 ([12]) The T -module (X,Y )f is flat (projective) if and only if the modules Y and

Coker(f) are flat (projective) and f : M ⊗S Y → X is monic.

In particular, (X, 0) is flat (projective) if and only if X is a flat (projective) R-module, and

(M ⊗S Y, Y ) is flat (projective) if and only if Y is a flat (projective) S-module.

The following statements are useful: (i) MS has finite flat dimension;

(ii) R is left Gorenstein regular, and RM has finite projective dimension.

We just refer to them by mentioning their assigned numbers. Whenever we think about

Gorenstein projective T -modules, the above statements (i) and (ii) are satisfied.

Lemma 2.2 ([9]) Suppose that both above the statements (i) and (ii) are satisfied. Then a

T -module (X,Y )φ is Gorenstein projective if and only if the following two conditions hold:

(i) Y and Cokerφ are Gorenstein projective S- and R-modules, respectively;

(ii) φ is a monomorphism.

In particular, (X, 0) is Gorenstein projective if and only if X is Gorenstein projective. (M⊗S

Y, Y ) is Gorenstein projective if and only if Y is Gorenstein projective.

Lemma 2.3 ([13]) (i) ExtiT ((X, 0), (X ′, Y ′)) ∼= ExtiR(X,X ′) for any i ≥ 0;

(ii) ExtiT ((X,Y ), (0, Y ′)) ∼= ExtiS(Y, Y
′) for any i ≥ 0;

(iii) Ext1T ((0, Y ), (X, 0)) ∼= HomR(M ⊗S Y,X) for any i ≥ 0.

Lemma 2.4 ([13]) We have

(i) For a left S-module Y , if ExtiS(Y,HomR(M, I)) = 0 for any injective left R-module I,

where i ≥ 1, then Extn+1
T ((0, Y ), (X, 0)) ∼= ExtnR(M ⊗S Y,X), where n ≥ 0;

(ii) For a right R-module X, if ExtiRop(X,HomSop(M, I)) = 0 for any injective right S-
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module I, where i ≥ 1, then Extn+1
T op ((X, 0), (0, Y )) ∼= ExtnSop(X ⊗R M,Y ), where n ≥ 0.

3. Gorenstein hereditary property

Following [4], a ring R is called left Gorenstein hereditary if every submodule of a projective

module is a Gorenstein projective module. A ring R is called left Gorenstein semihereditary

if it is left coherent and every submodule of a flat module is a Gorenstein flat module. By [4],

if R is a ring with finite Gorenstein global dimension, then R is left Gorenstein hereditary if

and only if every left ideal of R is a Gorenstein projective left R-module. By [5], a ring R is

left Gorenstein semihereditary if and only if every finitely generated submodule of a projective

module is Gorenstein projective.

Definition 3.1 A module is said to be a Gorenstein (semihereditary) hereditary module if all

its (finitely generated) submodules are Gorenstein projective modules.

Lemma 3.2 ([12]) Let (X,Y )f be a left T -module. Then (X,Y )f is finitely generated if and

only if X/Imf and Y are finitely generated.

Proposition 3.3 Let M be a flat S-module. If the ring T =
(
R M
0 S

)
is left Gorenstein hereditary,

then R and S are left Gorenstein hereditary. The converse is true provided that (X,Y )f is

projective and the module R(X/Imf1) is projective for every submodule Y1 ≤ Y .

Proof Let the ring T be left Gorenstein hereditary. We take an arbitrary submodule X of

a projective R-module P . By our assumption, (X, 0) is a Gorenstein projective submodule of

the projective T -module (P, 0). We obtain that X is Gorenstein projective. Therefore, R is left

Gorenstein hereditary.

For any projective S-module Q, we take an arbitrary submodule Y in Q. Since MS is flat,

we know that (M ⊗S Y, Y ) is a submodule of the projective T -module (M ⊗S Q,Q). Thus we

get that (M ⊗S Y, Y ) is Gorenstein projective. This shows that Y is a Gorenstein projective

module. Thus, S is left Gorenstein hereditary.

Conversely, we take an arbitrary submodule (X1, Y1)f1 of a projective T -module (X,Y )f . We

know that Y and Coker(f) are projective modules, and f : M⊗SY → X is an R-monomorphism.

Since now M is flat and f is monic, we get that f1 is monic. Since X/Imf1 and Y are projective

modules, we have that X1/Imf1 and Y1 are Gorenstein projective modules. Thus, (X1, Y1)f1 is

a Gorenstein projective module. Therefore, the ring T is left Gorenstein hereditary.2
Corollary 3.4 Let R be left Gorenstein regular. If the T2-extension of a ring R is Gorenstein

hereditary, then R is Gorenstein hereditary.

Proposition 3.5 Let R and S be left Gorenstein semihereditary rings, and M be a flat S-

module. If (X,Y )f is a projective T -module and the module X/Imf1 is a projective module for

every finitely generated submodule Y1 of Y . Then ring T =
(
R M
0 S

)
is left Gorenstein semihered-

itary.
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Proof Using Lemma 3.2 together with the similar arguments of Proposition 3.3, we obtain the

result immediately. 2
Proposition 3.6 If (X,Y )f is a left Gorenstein hereditary module in T -Mod, then X and Y

are Gorenstein hereditary, and X/Imf1 is Gorenstein hereditary for every submodule Y1 of Y .

The converse is true provided that MS is flat and f is monic.

Proof Let (X,Y )f be a Gorenstein hereditary module. We take an arbitrary submodule

(X1, Y1)f1 of (X,Y )f . By the assumption, (X1, Y1)f1 is Gorenstein projective. This shows that

f1 is monic, X1/Imf1 and Y1 are Gorenstein projective by Lemma 2.2, proving that X/Imf1 and

Y are Gorenstein hereditary.

We take an arbitrary submodule X1 in X. Then (X1, 0) is a Gorenstein projective submod-

ule of (X,Y )f . Hence, X1 is a Gorenstein projective module. Consequently, X is Gorenstein

hereditary.

Conversely, let (X1, Y1)f1 be a submodule of (X,Y )f . Since now M is flat and f is monic, we

get that f1 is monic. Since X/Imf1 is a Gorenstein hereditary module, we have that X1/Imf1 is

a Gorenstein projective module. Since Y is a Gorenstein hereditary module, we obtain that Y1

is a Gorenstein projective module. Thus, (X1, Y1)f1 is a Gorenstein projective module. Conse-

quently, (X,Y )f is a Gorenstein hereditary module. 2
Proposition 3.7 If (X,Y )f is a left Gorenstein semihereditary module in T -Mod, then X and

Y are Gorenstein semihereditary, and X/Imf1 is Gorenstein semihereditary for every submodule

Y1 of Y . The converse is true provided that MS is flat and f is monic.

Proof By Lemma 3.2 and the similar arguments of Proposition 3.6, we get the result. 2
Theorem 3.8 Let T =

(
R M
0 S

)
be a triangular matrix ring with finite Gorenstein global dimen-

sion. Then T is left Gorenstein hereditary if and only if the following conditions hold:

(i) The rings R and S are left Gorenstein hereditary;

(ii) RMS is flat as a right S-module;

(iii) M/ML is a Gorenstein hereditary R-module for any left ideal L of the ring S.

Proof We note that the ring T is left Gorenstein hereditary if and only if the left T -modules

(R, 0) and (M,S) are Gorenstein hereditary.

Suppose T is left Gorenstein hereditary. By Proposition 3.6, the rings R and S are Gorenstein

hereditary, and M is a Gorenstein hereditary R-module. In addition, for any left ideal L of

the ring S, we have that the R-module M/ML is Gorenstein hereditary and the canonical

homomorphism M ⊗S L → ML is an isomorphism. The last property is equivalent to the

property that M is a flat S-module.

Conversely, we assume that conditions (i)–(iii) hold. It follows from Proposition 3.6 that the

left T -modules (R, 0) and (M,S) are Gorenstein hereditary. 2
Corollary 3.9 Let T2 =

(
R R
0 R

)
be a ring with finite Gorenstein global dimension and R
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be left Gorenstein regular. Then the T2-extension of a ring R is Gorenstein (semihereditary)

hereditary if and only if R is Gorenstein (semihereditary) hereditary and R/L is a Gorenstein

(semihereditary) hereditary module for any ideal L of the ring R.

4. FP -injectivity

Following [14], a left R-module M is called FP -injective (or absolutely pure, or weakly

injective) if Ext1R(N,M) = 0 for all finitely presented left R-modules N . The FP -injective

dimension of M , denoted by FP -id(M), is defined to be the least nonnegative integer n such

that Extn+1
R (N,M) = 0 for all finitely presented left R-modules N . If no such n exists, set

FP -id(M) = ∞. A ring is said to be an n-FC ring [7] if R is a left and right coherent ring with

FP -id(RR) ≤ n and FP -id(RR) ≤ n for some integer n ≥ 0. A ring R is called an FC ring if R

is 0-FC. Clearly every n-Gorenstein ring is n-FC, but the converse is not true in general.

Lemma 4.1 Let (X,Y )f be a T -module.

(i) If f is a monomorphism, then (X,Y )f is a finitely presented T -module if and only if

X/Imf and Y are finitely presented;

(ii) If f is an epimorphism, then (X,Y )f is a finitely presented T -module if and only if Kerf

is finitely generated and Y is finitely presented.

Proof (i) The question when f is monic is solved by [15, Corollary 3.8]. We have that (M⊗SY, Y )

is a finitely presented T -module if and only if Y is finitely presented.

(ii) Suppose f is epic. Note that the following exact sequence

0 → (Kerf, 0) → (M ⊗S Y, Y ) → (X,Y ) → 0.

If (Kerf, 0) is finitely generated and (M ⊗S Y, Y ) is finitely presented, then (X,Y )f is finitely

presented by [16, 25.1(i)]. Conversely assume (X,Y )f is finitely presented, we proved that Kerf

is finitely generated by [17, 1.2.3]. 2
Proposition 4.2 If (X,Y )f is a finitely presented Gorenstein projective T -module if and only

if f is monic, X/Imf and Y are Gorenstein projective finitely presented.

Proof The result is obtained by Lemmas 2.2 and 4.1 (i). 2
Lemma 4.3 If the RMS is a finitely generated bimodule and SY is a finitely generated S-

module, then M ⊗S Y is a finitely generated R-module.

Proof Assume that mi (i = 1, . . . ,m), yj (j = 1, . . . , n) are generators of RMS and SY ,

respectively, then

m⊗ y =

m,n∑
i=1,j=1

misi ⊗ sjyj =

m,n∑
i=1,j=1

misisj ⊗ yj

=

m,n∑
i=1,j=1

∑
λ

rλmλ ⊗ yj =

m,n∑
i=1,j=1

∑
λ

rλ(mλ ⊗ yj),
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si, sj ∈ S, rλ ∈ R, λ = 1, . . . ,m.

Thus, M ⊗S Y is a finitely generated R-module. 2
Remark 4.4 (i) By Lemma 4.1 (i), (X, 0) is finitely presented if and only if X is finitely

presented;

(ii) By Lemmas 4.1 (ii) and 4.3, if RMS is finitely generated, then (0, Y ) is finitely presented

if and only if Y is finitely presented.

Proposition 4.5 Let RMS be a finitely generated bimodule. If RX and SY are finitely pre-

sented, then (X,Y )f is a finitely presented T -module.

Proof Firstly, consider the following natural short exact sequence of T -modules

0 → (X, 0) → (X,Y ) → (0, Y ) → 0.

Then from [16, 25.1(ii)], it is enough to show that (X, 0) and (0, Y ) are finitely presented T -

modules. So, the proof is completed by Remark 4.4 immediately. 2
Lemma 4.6 The following statements are true.

(i) We have a natural isomorphism HomT ((M ⊗S Y ′, Y ′), (X,Y )) ∼= HomS(Y
′, Y ) for any

S-module Y ′. If MS is flat, then we have ExtiT ((M ⊗S Y ′, Y ′), (X,Y )) ∼= ExtiS(Y
′, Y ), for any

i ≥ 0;

(ii) We have a natural isomorphism HomT ((X,Y ), (X ′,HomR(M,X ′))) ∼= HomR(X,X ′)

for any R-module X ′. If RM is projective, then we have ExtiT ((X,Y ), (X ′,HomR(M,X ′))) ∼=
ExtiR(X,X ′), for any i ≥ 0.

Proof It is easy to show the Lemma by the definition of T -modules and routine calculation. 2
Remark 4.7 For any R-moduleX and any S-module Y , we have HomT ((M⊗SY, Y ), (X, 0)) = 0

and HomT ((0, Y ), (X,HomR(M,X))) = 0.

Lemma 4.8 ([18]) (i) Let R be a left coherent ring. Then (X,Y )f is a finitely presented left

T -module if and only if R(X/Imf) and SY are finitely presented, R(Kerf) is finitely generated;

(ii) Let S be a right coherent ring. Then (X,Y )f is a finitely presented right T -module if

and only if (Y/Imf)S and XR are finitely presented, (Kerf)S is finitely generated.

Proposition 4.9 Let R be a left coherent ring, and RMS be flat as a right S-module. If (X,Y )f

is an FP -injective T -module, then X and Y are FP -injective.

Proof Suppose (X,Y )f is FP -injective. Then we have Ext1T ((P,Q), (X,Y )) = 0 for all finitely

presented T -modules (P,Q).

Since Ext1R(P,X) ∼= Ext1T ((P, 0), (X,Y )) = 0 for all finitely presented R-modules P , it follows

that X is FP -injective. By Lemma 4.6, we have Ext1S(Q,Y ) ∼= Ext1T ((M ⊗S Q,Q), (X,Y )) = 0

for all finitely presented S-modules Q. It shows that Y is FP -injective. 2
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Theorem 4.10 Let T =
(
R M
0 S

)
be an n-FC ring. Then

(i) The rings R and S are left and right coherent rings. M/ML is locally coherent for any

finitely generated left ideal L of S. M/L′M is locally coherent for any finitely generated right

ideal L′ of R;

(ii) FP -id(RR) ≤ n, FP -id(RM) ≤ n, FP -id(SS) ≤ n, and FP -id(MS) ≤ n;

(iii) If RMS is flat as a right S-module, then FP -id(SS) ≤ n;

(iv) If RMS is flat as a left R-module, then FP -id(RR) ≤ n.

Proof (i) Suppose T is a left and right coherent ring. Applying [15, Theorem 4.2], we deduce

that R and S are left and right coherent rings, and M/ML is locally coherent for any finitely

generated left ideal L of S, and M/L′M is locally coherent for any finitely generated right ideal

L′ of R. The converse is true provided that RMS is flat.

(ii) By our assumption, we have FP -id(TT ) ≤ n and FP -id(TT ) ≤ n. We only show that

FP -id(RR) ≤ n and FP -id(RM) ≤ n, and the other can be proved similarly. Note that we have

a decomposition of left T -module (TT ) = (R, 0)⊕ (M,S). Therefore, Extn+i
T ((X,Y ), (R, 0)) = 0

and Extn+i
T ((X,Y ), (M,S)) = 0, for any i ≥ 1.

Since ExtiT ((X, 0), (R, 0)) ∼= ExtiR(X,R), where i ≥ 0. Then, for all finitely presented R-

modules X, we have Extn+i
R (X,R) ∼= Extn+i

T ((X, 0), (R, 0)) = 0, where i ≥ 1. It shows that

FP -id(RR) ≤ n. Similarly, Extn+i
R (X,M) ∼= Extn+i

T ((X, 0), (M,S)) = 0 for all finitely presented

R-modules X, where i ≥ 1. It shows that FP -id(RM) ≤ n.

(iii) Since MS is flat, we have Extn+i
T ((M ⊗S Y, Y ), (M ⊗S S, S)) ∼= Extn+i

S (Y, S)) = 0 for

all finitely presented S-modules Y by Lemma 4.6, where i = 1. It follows that FP -id(SS) ≤ n.

(iv) The proof is similar to (iii). 2
Theorem 4.11 T =

(
R M
0 S

)
is an n-FC ring if the following conditions hold:

(i) R and S are n-FC rings;

(ii) M/ML is locally coherent for any finitely generated left ideal L of S, and M/L′M is

locally coherent for any finitely generated right ideal L′ of R;

(iii) RMS is flat as an R-S-bimodule;

(iv) For any i ≥ 0, Extn+i
R (A,R) = 0, Extn+i

R (B,M) = 0, Extn+i
Sop (C,M) = 0, and

Extn+i
Sop (D,S) = 0, whenever RA, RB, CS , DS are finitely generated.

Proof By the conditions (i)–(iii), we get that T is a left and right coherent ring. For FP -

id(TT ) ≤ n and FP -id(TT ) ≤ n, we only prove that FP -id(TT ) ≤ n, and the other can be

obtained similarly.

By Lemma 4.8, (X,Y )f is a finitely presented left T -module if and only if X/Imf and Y

are finitely presented, and Kerf is finitely generated. Then we have the following two exact

sequences

0 −→ (Kerf, 0) −→ (M ⊗S Y, Y ) −→ (Imf, Y ) −→ 0, (4.1)

0 −→ (Imf, Y ) −→ (X,Y ) −→ (X/Imf, 0) −→ 0. (4.2)
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Applying the functor HomT (−, (R, 0)) to the above exact sequences (4.1) and (4.2), we have two

long exact sequences

· · · −→ Extn+1
T ((Kerf, 0), (R, 0)) −→ Extn+1

T ((M ⊗S Y, Y ), (R, 0)) −→ Extn+1
T ((Imf, Y ), (R, 0))

−→ ExtnT ((Kerf, 0), (R, 0)) −→ ExtnT ((M ⊗S Y, Y ), (R, 0)) −→ ExtnT ((Imf, Y ), (R, 0)) −→ · · ·
−→ HomT ((Kerf, 0), (R, 0)) −→ HomT ((M ⊗S Y, Y ), (R, 0)) −→ HomT ((Imf, Y ), (R, 0)) −→ 0

and

· · · −→ Extn+1
T ((Imf, Y ), (R, 0)) −→ Extn+1

T ((X,Y ), (R, 0)) −→ Extn+1
T ((X/Imf, 0), (R, 0)) −→ · · ·

−→ HomT ((Imf, Y ), (R, 0)) −→ HomT ((X,Y ), (R, 0)) −→ HomT ((X/Imf, 0), (R, 0)) −→ 0.

Since FP -id(RR) ≤ n, we have

Extn+i
R (X/Imf,R) = Extn+i

T ((X/Imf, 0), (R, 0)) = 0, (4.3)

where i ≥ 1. Since MS is flat, we can construct a projective resolution of (M ⊗S Y, Y ), and

show that Extn+i
T ((M ⊗S Y, Y ), (R, 0)) = 0 for any i ≥ 1. By the condition (iv), we have

Extn+i
R (Kerf,R) = 0, where i ≥ 0. Therefore,

Extn+i
T ((Imf, Y ), (R, 0)) = 0, (4.4)

where i ≥ 1. Now by (4.3) and (4.4), we get that Extn+i
T ((X,Y ), (R, 0)) = 0 for any i ≥ 1.

Similarly, applying the functor HomT (−, (M,S)) to the above two exact sequences (4.1) and

(4.2), we have the following two long exact sequences

· · · −→ Extn+1
T ((Kerf, 0), (M,S)) −→ Extn+1

T ((M ⊗S Y, Y ), (M,S)) −→ Extn+1
T ((Imf, Y ), (M,S))

−→ ExtnT ((Kerf, 0), (M,S)) −→ ExtnT ((M ⊗S Y, Y ), (M,S)) −→ ExtnT ((Imf, Y ), (M,S)) −→ · · ·
−→ HomT ((Kerf, 0), (M,S)) −→ HomT ((M ⊗S Y, Y ), (M,S)) −→ HomT ((Imf, Y ), (M,S)) −→ 0

and

· · · −→ Extn+1
T ((Imf, Y ), (M,S)) −→ Extn+1

T ((X,Y ), (M,S)) −→ Extn+1
T ((X/Imf, 0), (M,S)) −→ · · ·

−→ HomT ((Imf, Y ), (M,S)) −→ HomT ((X,Y ), (M,S)) −→ HomT ((X/Imf, 0), (M,S)) −→ 0.

By the condition (iii) and Lemma 4.6, we have

Extn+i
T ((M ⊗S Y, Y ), (M ⊗S S, S)) ∼= Extn+i

S (Y, S) = 0

for all finitely presented S-modules Y , where i ≥ 1. Note that the condition (iv) on M yields

that Extn+i
R (Kerf,M) = 0 for any i ≥ 0, whenever R(Kerf) is finitely generated. Thus,

Extn+i
T ((Imf, Y ), (M,S)) = 0, (4.5)

where i ≥ 1. Since FP -id(RM) ≤ n, we get that

Extn+i
T ((X/Imf, 0), (M,S)) ∼= Extn+i

R ((X/Imf,M) = 0, (4.6)

where i ≥ 1. Consequently, by (4.5) and (4.6), we have Extn+i
T ((X,Y ), (M,S)) = 0 for any i ≥ 1.

This completes the proof. 2
Lemma 4.12 ([18]) (i) Let R be a left coherent ring, and RMS be finitely presented as a left
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R-module, then a left T -module (X,Y )f is finitely presented if and only if X and Y are finitely

presented;

(ii) Let S be a right coherent ring, and RMS be finitely presented as a right S-module, then

a right T -module (X,Y )f is finitely presented if and only if X and Y are finitely presented.

Lemma 4.13 The following statements are true.

(i) Let R be a left coherent ring, then (0, Y ) is FP -injective if and only if Y is FP -injective;

(ii) Let R be a left coherent ring, and RM be finitely generated and projective as a left

R-module. Then (X,HomR(M,X)) is FP -injective if and only if X is FP -injective;

(iii) Let R be a left coherent ring, and RM be finitely presented as a left R-module. If

HomR(M ⊗S Q,X) = 0 whenever SQ is finitely presented, then X is FP -injective if and only if

(X, 0) is FP -injective.

Proof (i) It is obvious since Ext1S(Q,Y ) ∼= Ext1T ((P,Q), (0, Y )) whenever (P,Q) is a finitely

presented module.

(ii) Suppose that (X,HomR(M,X)) is an FP -injective T -module. Let (P,Q) be a finitely

presented module. Since Ext1T ((P, 0), (X,HomR(M,X))) ∼= Ext1R(P,X)) = 0 for all finitely

presented R-modules P , we have that X is FP -injective. Conversely, if X is FP -injective, then

applying the functor HomT (−, (X,HomR(M,X))) to the short exact sequence

0 −→ (P, 0) −→ (P,Q) −→ (0, Q) −→ 0, (4.7)

we have the following long exact sequence

0 −→ HomT ((0, Q), (X,HomR(M,X)) −→ HomT ((P,Q), (X,HomR(M,X))

−→ HomT ((P, 0), (X,HomR(M,X)) −→ Ext1T ((0, Q), (X,HomR(M,X))

−→ Ext1T ((P,Q), (X,HomR(M,X)) −→ Ext1T ((P, 0), (X,HomR(M,X)) −→ · · · .

As RM is projective, we have Ext1T ((0, Q), (X,HomR(M,X))) = 0 by Lemma 4.6. It induces

that (X,HomR(M,X)) is an FP -injective T -module.

(iii) Suppose that X is FP -injective. Similarly, applying functor HomT (−, (X, 0)) to the

short exact sequence (4.7), we have the following long exact sequence

0 −→ HomT ((0, Q), (X, 0)) −→ HomT ((P,Q), (X, 0)) −→ HomT ((P, 0), (X, 0))

−→ Ext1T ((0, Q), (X, 0)) −→ Ext1T ((P,Q), (X, 0)) −→ Ext1T ((P, 0), (X, 0)) −→ · · · .

As Ext1T ((0, Q), (X, 0) ∼= HomR(M ⊗S Q,X) and Ext1T ((P, 0), (X, 0)) ∼= Ext1R(P,X) = 0, and

HomT ((0, Q), (X, 0)) = 0, we obtain the following long exact sequence

0 −→ HomT ((P,Q), (X, 0)) −→ HomT ((P, 0), (X, 0))

−→ HomT (M ⊗S Q,X) −→ Ext1T ((P,Q), (X, 0)) −→ 0.

By the assumption that HomR(M ⊗S Q,X) = 0, we get Ext1T ((P,Q), (X, 0)) = 0. Conversely, it

is obvious.

We have finished the proof. 2
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Theorem 4.14 Assume that R is a left coherent ring and RM is finitely generated and projective

as a left R-module. Then (X,Y )f is an FP -injective T -module if and only if X is FP -injective,

f̃ is epic, and Kerf̃ is FP -injective.

Proof Assume (X,Y )f is FP -injective, then we have Ext1T ((P,Q), (X,Y )) = 0 for all finitely

presented modules (P,Q).

By Lemma 4.12, we know that (P, 0) is finitely presented for all finitely presented R-modules

P . Thus Ext1R(P,X) ∼= Ext1T ((P, 0), (X,Y )) = 0. It follows that X is FP -injective. Moreover,

by Lemma 4.13 (ii), we get that (X,HomR(M,X)) is an FP -injective T -module. Considering

the short exact sequence

0 → (M, 0) → (M,S) → (0, S) → 0,

and noting that (M,S) is finitely presented, we get the following long exact sequence

0 → HomT ((0, S), (X,Y )) → HomT ((M,S), (X,Y )) → HomT ((M, 0), (X,Y )) → 0.

Let the homomorphism Φ : HomT ((M,S), (X,Y )) → HomS(S, Y ) be given by Φ(α, β) = β,

where (α, β) ∈ HomT ((M,S), (X,Y )), α = f(1M ⊗β). From the following commutative diagram

HomT ((M,S), (X,Y ))

Φ

��

(1M ,0)∗// HomT ((M, 0), (X,Y ))

∼=
��

Y ∼= HomS(S, Y )
f̃ // HomR(M,X),

we get that f̃ is an epimorphism, and the short exact sequence

0 → (0,Kerf̃) → (X,Y ) → (X,HomR(M,X)) → 0. (4.8)

For a finitely presented S-module Q, we apply the functor HomT ((0, Q),−) to the short exact

sequence (4.8). Since (X,Y )f is FP -injective, we have the following long exact sequence

0 → HomT ((0, Q), (0,Kerf̃)) → HomT ((0, Q), (X,Y ))

→ HomT ((0, Q), (X,HomR(M,X))) → Ext1T ((0, Q), (0,Kerf̃)) → 0.

Since HomT ((0, Q), (X,HomR(M,X))) = 0, we get that Kerf̃ is FP -injective.

Conversely, we know that (0,Kerf̃) and (X,HomR(M,X)) are FP -injective by Lemma 4.13

(i) and (ii), respectively. Therefore, (X,Y )f is FP -injective. 2
Proposition 4.15 Assume that R is a left coherent ring, RMS is finitely presented as a left

R-module and RMS is flat as a right S-module. Let HomR(M ⊗S Q,X) = 0 for every finitely

presented S-module Q. Then (X,Y )f is an FP -injective T -module if and only if X and Y are

FP -injective.

Proof Assume that (X,Y )f is FP -injective. As (P, 0) is finitely presented for all finitely

presented R-modules P by Lemma 4.12, we get that

Ext1R(P,X) ∼= Ext1T ((P, 0), (X,Y )) = 0.
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It follows that X is FP -injective. By the assumption and Lemma 4.6 (i), we obtain that

Ext1T ((M ⊗S Q,Q), (X,Y )) ∼= Ext1S(Q,Y ) = 0

for all finitely presented S-modules Q. And so we deduce that Y is FP -injective. Conversely, it

is obvious for sufficiency by Lemma 4.13 (i) and (iii). 2
Propsiton 4.16 Let T be a left and right coherent ring. Then FP -id(TT ) ≤ n and FP -

id(TT ) ≤ n if the following conditions hold:

(i) ExtiS(Y,HomR(M, I)) = 0 for a left S-module Y and any injective left R-module I, where

i ≥ 1;

(ii) ExtiRop(X,HomSop(M, I)) = 0 for a right R-module X and any injective right S-module

I, where i ≥ 1;

(iii) FP -id(RR) ≤ n − 1, FP -id(RR) ≤ n, FP -id(SS) ≤ n, FP -id(SS) ≤ n − 1, FP -

id(RM) ≤ n− 1, and FP -id(MS) ≤ n− 1.

Proof We only prove that FP -id(TT ) ≤ n. Assume that (X,Y )f is a finitely presented T -

module. Now by Lemma 4.12, we know that (X,Y )f is a finitely presented T -module if and only

if X and Y are finitely presented. In particular, (M ⊗S Y, Y ) is finitely presented if and only if

M ⊗S Y and Y are finitely presented if and only if Y is finitely presented.

Since FP -id(RR) ≤ n− 1, we have

Extn+i
T ((X, 0), (R, 0)) ∼= Extn+i

R (X,R) = 0 for any i ≥ 1,

and

Extn+i+1
T ((0, Y ), (R, 0)) ∼= Extn+i

R (M ⊗ Y,R) = 0 for any i ≥ 0.

In a word, we obtain Extn+i
T ((X,Y ), (R, 0)) = 0, where i ≥ 1.

Since FP -id(RM) ≤ n− 1, we have

Extn+i
T ((X, 0), (M,S)) ∼= Extn+i

R (X,M) = 0 for any i ≥ 1,

and

Extn+i+1
T ((0, Y ), (M, 0)) ∼= Extn+i

R (M ⊗ Y,M) = 0 for any i ≥ 0.

Since FP -id(SS) ≤ n, we get

Extn+i
T ((0, Y ), (0, S)) ∼= Extn+i

S (Y, S) = 0 for any i ≥ 1.

It follows that Extn+i
T ((X,Y ), (M,S)) = 0, where i ≥ 1. Consequently, we have FP -id(TT ) ≤

n. 2
Corollary 4.17 Let T2 =

(
R R
0 R

)
be a left and right coherent ring. If FP -id(RRR) ≤ n − 1,

then we have FP -id(T2T2) ≤ n and FP -id(T2T2
) ≤ n.
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