Journal of Mathematical Research with Applications Jan., 2021, Vol. 41, No. 1, pp. 7–13 DOI:10.3770/j.issn:2095-2651.2021.01.002 Http://jmre.dlut.edu.cn

Finite Two-Arc-Regular Graphs Admitting an Almost Simple Group

Gaixia WANG*, Beilei GAO

School of Mathematics and Physics, Anhui University of Technology, Anhui 243032, P. R. China

Abstract This paper completes the classification of (G, 2)-arc-regular graphs of square-free order where G is an almost simple group.

Keywords coset graph; two-arc-regular; automorphism group; square-free

MR(2020) Subject Classification 05C25; 05E18

1. Introduction

Denote by Γ a finite connected undirected graph with vertex set $V\Gamma$ and edge set $E\Gamma$. For a positive integer s, an s-arc of Γ is an (s + 1)-tuple (v_0, v_1, \ldots, v_s) of vertices such that $(v_{i-1}, v_i) \in E\Gamma$ for $1 \leq i \leq s$ and $v_{i-1} \neq v_{i+1}$ for $1 \leq i \leq s - 1$. Let Aut Γ denote the full automorphism group of Γ . If $G \leq \operatorname{Aut}\Gamma$ is transitive on $V\Gamma$ and on the set of s-arcs of Γ , then Γ is called a (G, s)-arc-transitive graph. Further, if $G \leq \operatorname{Aut}\Gamma$ is transitive on $V\Gamma$ and regular on the set of s-arcs of Γ , then Γ is called a (G, s)-arc-regular graph. In particular, if G itself is the full automorphism group, then a (G, s)-arc-regular is simply called an s-arc-regular graph.

The class of s-arc-regular graphs is closely connected to some important classes of combinatorial constructions, such as regular Mobius maps, near-polygonal graphs, and half-transitive graphs. There is a remarkable observation that, if a graph acts s-arc transitively on a graph for $s \ge 2$, the vertex stabilizer is 2-transitive on the neighbors of that vertex. Thus the problems of classifying all finite 2-arc-transitive graphs, in particular, the graphs with square-free order, are highly attractive, and they have received considerable attentions [1–7]. In particular, the cases of 2-arc-transitive graphs admitting a Suzuki simple group and a Ree simple group are classified in 1999 (see [3,4]). And we have got some symmetric results on graphs with square-free order [8–12].

This paper aims to get a classification of (G, 2)-arc-regular graphs with square-free order where G is an almost simple group. The following is our main result.

Theorem 1.1 Let Γ be a (G, 2)-arc-regular graph of square-free order, and G is an almost

Received September 22, 2019; Accepted October 24, 2020

Supported by the National Natural Science Foundation of China (Grant No. 11601005) and the Anhui Provincial Science Fund for Excellent Young Scholars (Grant No. gxyq2020011).

^{*} Corresponding author

E-mail address: wgx075@163.com (Gaixia WANG)

G	G_{lpha}	$ \Gamma(\alpha) $	$ V\Gamma $	Remarks
J_1	$2^3:7$	8	$3 \times 5 \times 11 \times 19$	
M ₁₁	$3^2:Q_8$	9	$2 \times 5 \times 11$	
PSL(2,q)	A_4	4	$\frac{q(q^2-1)}{24}$	$q = \pm 3 \pmod{8}$ and $q \ge 5$
$\operatorname{PSL}(2,q)$	$(Z_q:Z_{q-1})\times Z_{q-1}$	q	$\frac{q+1}{2}$	$q = p^d$ where p is odd prime
PSL(3,q)	$Z_{q^2}: Z_{q^2-1}$	q^2	$q^2 + q + 1$	$q = p^d$ where p is odd prime

simple group. Then the graph is isomorphic to one of the Coset graphs $Cos(G, G_{\alpha}, G_{\alpha}gG_{\alpha})$ where G and G_{α} are listed as follows

Table 1 Two-arc-regular graphs admitting almost simple group

This paper is organized as follows. Section 2 collects several preliminary results relating to this paper. In Section 3, we prove the main theorem by working out the corresponding $\operatorname{soc}(G), G_{\alpha}$ and constructing the corresponding graphs $\Gamma = \operatorname{Cos}(G, G_{\alpha}, G_{\alpha}gG_{\alpha})$ which are 2-arc-regular.

2. Preliminaries

In this section, we collect some notations and results which will be used later. For an abstract group G, a subgroup $H \leq G$ is said to be core free if no non-trivial normal subgroups of G is contained in H. For a subset $S \subseteq G$ and a core free subgroup H of G, the coset graph $\Gamma = \mathsf{Cos}(G, H, HSH)$ is defined as the digraph with vertex set $V\Gamma := [G : H] = \{Hx | x \in G\}$ such that Hx is adjacent to Hy if and only if $yx^{-1} \in HSH$. It easily follows that each element $g \in G$ induces an automorphism of Γ acting by right multiplication, this is for all $x \in G$,

$$g: Hx \mapsto Hxg$$

In the coset action, G is faithful on $V\Gamma$, and so we may assume that $G \leq \operatorname{Aut}\Gamma$. The following two lemmas collect some properties about coset graphs.

Lemma 2.1 ([13, P303, Theorem 11.1]) Let G be a finite group with a core-free subgroup H and a 2-element g. Then the graph $\Gamma = \text{Cos}(G, H, HgH)$ is a finite, connected, (G, 2)-arc-transitive graph with G transitive on vertices (acting by right multiplication) if and only if

$$g \notin N_G(H), g^2 \in H, \langle H, g \rangle = G_g$$

and the action of H on $[H: H \cap H^g]$ by right multiplication is 2-transitive.

Given a vertex $\alpha \in V\Gamma$, the stabilizer G_{α} induces an action on the neighborhood $\Gamma(\alpha)$. Let $G_{\alpha}^{\Gamma(\alpha)}$ be the group induced by G_{α} .

Lemma 2.2 ([13, P297, Lemma 9.4]) Suppose that the graph Γ is *G*-vertex-transitive and let $\alpha \in V\Gamma$. Then Γ is (*G*, 2)-arc-transitive if and only if $G_{\alpha}^{\Gamma(\alpha)}$ is 2-transitive.

To classify the (G, 2)-arc-regular graphs of square-free order, where G is an almost simple group, we also need two lemmas regarding finite non-abelian simple groups.

Finite two-arc-regular graphs admitting an almost simple group

Lemma 2.3 ([14, P485, Theorem]) If G is a nonabelian simple group with abelian Sylow 2-subgroup, then one of the following holds.

- (1) G is isomorphic to $PSL(2,q), q \ge 3, q \equiv 3, 5 \pmod{8}$, or $q = 2^m$;
- (2) G is isomorphic to J_1 ;
- (3) G is of Ree type.

The 2-rank $m_2(X)$ of X is the maximum rank of an abelian 2-subgroup A of X (the rank of A is by definition the number of factors in a direct product decomposition of A into cyclic subgroups).

Lemma 2.4 ([15, P72, Theorem 1.86]) If G is a simple group of 2-rank at most 2, then $G \cong PSL(2,q)$ with $q \ge 5$ is odd, PSL(3,q) with q is odd, $U_3(q)$ with q is odd, $U_3(4)$, A_7 or M_{11} .

3. The proof of the main Theorem

Let Γ be a (G, 2)-arc-regular graph of square-free order, where G is an almost simple group and Let $L = \operatorname{soc}(G)$. From Lemma 2.2, it follows that G_{α} is a sharply 2-transitive permutation group on $\Gamma(\alpha)$. Then $G_{\alpha} < \operatorname{AGL}(d, p)$ where p is a prime and $d \ge 1$. Further $G_{\alpha} = N : H$, where $N \cong Z_p^d$, and $H = G_{\alpha\beta}$ for some $\beta \in \Gamma(\alpha)$ and $|H| = p^d - 1$. We split the proof in two cases.

Case 1. p = 2.

Let P be a Sylow 2-subgroup of G. Then P is isomorphic to Z_2^d or $Z_2^d.Z_2$, since $|G:G_{\alpha}|$ is square-free. There are two subcases. At first, we assume |P:N| = 1. That is, P is elementary abelian. It follows that by Lemma 2.3, L is isomorphic to PSL(2,q) with $q \ge 3$ and $q \equiv \pm 3$ (mod 8), $PSL(2,2^m), J_1$ or $Ree(3^e)$. We shall analyze these candidates in the following.

Suppose that $L \cong \mathrm{PSL}(2,q)$ where $q \ge 3$ and $q \equiv \pm 3 \pmod{8}$. Let $q = p'^d$ for a prime p' and $p' \ne 2, d$ is odd. Since $L \le G \le \mathrm{Aut}(L)$ and a Sylow 2-subgroup of L is isomorphic to Z_2^2 while a Sylow 2-subgroup of $\mathrm{Aut}(L)$ is isomorphic to a dihedral group of order 8, it follows that $P \cong Z_2^2$ and $G_\alpha \cong A_4$. Let $G = \mathrm{PSL}(2,q).Z_f$ where f|d. Since $|G:G_\alpha| = \frac{q(q+1)(q-1)f}{24}$ is square-free, we have f = 1 and q = p' is prime. That is $G = \mathrm{PSL}(2,p')$ where $p' \ge 3$ and $p' \equiv \pm 3 \pmod{8}$ is prime and $G_\alpha = A_4$. We can construct an infinite family of (G, 2)-arc-regular graphs of square-free order. Let $G_i = \mathrm{PSL}(2,q_i)$ where $q_i \ge 3$ and $q_i \equiv 3,5 \pmod{8}$ are primes, and let H_i be a subgroup of G_i with $H_i \cong A_4$. Then there exists a 2-element $g_i \in G_i$ such that $G_i = \langle H_i, g_i \rangle$ and $H_i \cap H_i^{g_i} \cong Z_3$. Note that, for each i, the triple G_i, H_i, g_i satisfies the conditions of Lemma 2.1, and hence the graph $\Gamma(i) = \mathrm{Cos}(G_i, H_i, H_ig_iH_i)$ is connected, G_i -vertex-transitive, and $(G_i, 2)$ -arc-transitive of valency 4. Moreover, $G_{i\alpha}$ is 2-transitive on $\Gamma(\alpha)$, and the order of $G_{i\alpha}$ is 12, thus the graph we constructed is $(G_i, 2)$ -arc-regular graphs of square-free, we constructed a class of $(G_i, 2)$ -arc-regular graphs of square-free order.

Suppose that $L \cong \text{PSL}(2, 2^m)$. Since $L \leq G \leq \text{Aut}(L)$, it follows that $P \cong \mathbb{Z}_2^m$ and $G_{\alpha} \cong \mathbb{Z}_2^m : H$ where $|H| = 2^m - 1$. We shall prove there is no (G, 2)-arc-regular graph corresponding to this kind of group.

We assume $G = L Z_f$, then $f|(m, 2^m - 1)$. Further we can assume f is prime, otherwise

there is a prime f' such that f'|f and $f'|(m, 2^m - 1)$.

Suppose $f^{i+1} \parallel 2^m - 1$ (where $l^k \parallel n$ means the power of l dividing n is at most k), and $2^m - 1 = kf^{i+1}$ where (k, f) = 1. Then

$$H = (Z_k \times Z_{f^i}) \cdot Z_f \cong (\langle a \rangle \times \langle b \rangle) \cdot \langle c \rangle \cong \langle a \rangle \times \langle b c \rangle$$

where o(a) = k, $o(b) = f^i$ and o(c) = f. Since $o(bc) = f^{i+1}$ and H centralises no elements of $Z_2^m \setminus \{1\}, G_\alpha \cong Z_2^m : H \cong Z_2^m : (\langle a \rangle \times \langle bc \rangle)$ and

$$N_L(H) \le N_L(\langle a \rangle) \cong N_L(\langle Z_k \rangle) = D_{2(2^m - 1)}.$$

Let $g \in N_L(H)$ be an involution,

$$g: a \longrightarrow a^{-1}, b \longrightarrow b^{-1}.$$

Then consider the induced action of g on $N_L(\langle a \rangle)/\langle a \rangle$ and $N_L(\langle a \rangle)/\langle a \rangle \times \langle b \rangle$, denoted by \bar{g} and g', respectively. Then

$$\bar{g}: N_L(\langle a \rangle)/\langle a \rangle \longrightarrow N_L(\langle a \rangle)/\langle a \rangle,$$
$$\bar{b}\bar{c} \longrightarrow (\bar{b}\bar{c})^t$$

and

$$g': N_L(\langle a \rangle)/\langle a \rangle \times \langle b \rangle \longrightarrow N_L(\langle a \rangle)/\langle a \rangle \times \langle b \rangle,$$
$$c' \longrightarrow (c')^t.$$

Since o(c) = f, we have $t \equiv 1 \pmod{f}$. If t = 1, then $\bar{b}\bar{c}^{\bar{g}} = \bar{b}^{\bar{g}}\bar{c}^{\bar{g}} = \bar{b}^{-1}\bar{c} = \bar{b}\bar{c}$. Thus $\bar{b}^{-1} = \bar{b}$, $b = b^{-1}$, which is impossible. So let t = lf + 1, then

$$(\bar{b}\bar{c})^t = (\bar{b}\bar{c})^{lf+1} = (\bar{b}\bar{c})^{lf} \cdot (\bar{b}\bar{c}).$$

Since $o(b) = f^i$,

$$\bar{b}^{\bar{c}^{-1}} = \bar{b}^{1+jf^{i-1}}, \ 1 \le j \le f-1.$$

To simplify, we omit the symbol '-'. That is

$$(bc)^t = (bc)^{lf+1} = (bc)^{lf} \cdot (bc)$$

and

$$b^{c^{-1}} = b^{1+jf^{i-1}}, \ 1 \le j \le f-1.$$

Then it follows that

$$(bc)^{2} = bcbc^{-1}c^{2} = b \cdot b^{1+jf^{i-1}}c^{2},$$
$$(bc)^{3} = bcb^{2+jf^{i-1}}c^{-1}c^{3} = b \cdot b^{(1+jf^{i-1})+(1+jf^{i-1})^{2}}c^{3},$$
$$\dots$$

$$(bc)^f = b \cdot b^{(1+jf^{i-1})+(1+jf^{i-1})^2+\cdots(1+jf^{i-1})^{f-1}}$$

If we let $z := 1 + jf^{i-1}$, then

$$(bc)^f = b^{1+z+z^2+\cdots+z^{f-1}} = b^{\frac{z^f-1}{z-1}}.$$

10

Finite two-arc-regular graphs admitting an almost simple group

Thus $(bc)^{lf+1} = b^{\frac{z^f-1}{z-1} \cdot l+1}c = b^{-1}c$, that is $b^{\frac{z^f-1}{z-1} \cdot l+1} = b^{-1}$. Then $[(1+jf^{i-1})^f - 1]l \equiv -2jf^{i-1} \pmod{f^i},$

which is impossible, since $f^i | [(1+jf^{i-1})^f - 1]l$ but $f^i | jf^{i-1}$. Thus there is no (G, 2)-arc-regular graph corresponding to this kind of group.

Suppose $L \cong J_1$. Then by Atlas [16], we have $G = J_1$ and $G_{\alpha} \leq M$ where M is a maximal subgroup of J_1 . Since $|G_{\alpha}| = 2^d(2^d - 1)$ for some $d \geq 1$, it follows that $G_{\alpha} \cong Z_2^2.Z_3$ or $G_{\alpha} \cong Z_2^3: Z_7$. For the former case, $G_{\alpha} \leq \text{PSL}(2,11)$ and $G_{\alpha\beta} \cong Z_3$. Then there exists no element $g \in N_G(G_{\alpha\beta}) \setminus N_G(G_{\alpha})$ and $g^2 \in Z_3$. For the latter case, there is an involution $g \in N_G(G_{\alpha\beta}) \cong Z_7: Z_6$ such that $\langle G_{\alpha}, g \rangle = G$ and G_{α} acts 2-regularly on $|\Gamma(\alpha)|$. So the corresponding graph $\Gamma = \text{Cos}(G, G_{\alpha}, G_{\alpha}gG_{\alpha})$ is (G, 2)-arc-regular graph of square-free order. Further, the graph is given in line 2 of our main Theorem 1.1.

Suppose that $L \cong \text{Ree}(3^{2m+1})$ for some integer m. Then $|L| = q^3(q^3 + 1)(q - 1)$, so $3^9||L|$. Therefore, $|G : G_{\alpha}|$ is not square-free. Thus there is no (G, 2)-arc-regular graph of square-free order for this case.

Now we assume that $P \cong Z_2^d Z_2 \cong Q Z_2$ where $Q \cong Z_2^d$, we shall analyze two conditions based on d = 2 and $d \ge 3$. For these cases, there is no corresponding (G, 2)-arc-regular graphs of square-free order.

If d = 2, then $L = \operatorname{soc}(G)$ has 2-rank 2, then by Lemma 2.4, $L \cong \operatorname{PSL}(2,q)$ (q is odd, and $q \ge 5$), $\operatorname{PSL}(3,q)$ or $U_3(q)$ (q is odd), $U_3(4)$, A_7 , or M_{11} . As an example, we prove the case $L \cong U_3(q)$ only, the others can be proved by similar arguments and checking by Atlas [16]. If $L \cong U_3(q)$ where $q = r^e$ for an odd prime r, it is obvious that $2^3 ||G : G_\alpha|$ if q = 3, and $q^3 ||G : G_\alpha|$ if q > 3, that is, there is no corresponding (G, 2)-arc-regular graph.

If $d \ge 3$, let $X = N_G(Q)$, then $G_{\alpha}, P \le X$, and |G : X| is odd square-free. Let Y_2 and Y_1 be the subgroups of G such that $X \le Y_2 < Y_1 \le G$, and $\operatorname{soc}(Y_2) \ne \operatorname{soc}(Y_1) = \operatorname{soc}(G) = L$. Furthermore, Y_2 is maximal in Y_1 , that is Y_1 acts faithfully and primitively on $[Y_1 : Y_2]$. Thus we can read out some information about Y_1 from [17]. Suppose there exists a (G, 2)-arc-regular graph for corresponding group G, we can get that the following three conditions with respect to the four tables in [17] must be satisfied.

(1) n is odd square-free.

(2) If $G = Y_1 = L$, then $|G_{\bar{\alpha}} : G_{\alpha}|$ is even square free, where $G_{\bar{\alpha}}$ is the stabilizers in the four tables.

(3) If $G = L.O_1, Y_1 = L.O_2$, and $G_{\alpha} \leq L_{\bar{\alpha}}$ where $1 < O_2 \leq O_1$, then $|L_{\bar{\alpha}} : G_{\alpha}|$ is even square free.

Using the above three conditions and carefully computing the orders of the groups occurring in Tables [17] one by one, we can get that for all these groups, there exists no corresponding (G, 2)-arc-transitive graph.

Case 2. $p \neq 2$.

Let P be a Sylow 2-subgroup of G. Then $P = Q.Z_2$, where Q is a Sylow 2-subgroup of H. Since H has only one involution by the structure of sharply 2-transitive graphs in [18], it follows that P has at most 2-rank-2. By Lemma 2.4, L = soc(G) is isomorphic to PSL(2,q), where q is odd and $q \ge 5$, PSL(3,q) or $U_3(q)$ with q is odd, $U_3(4)$, A_7 , or M_{11} . We shall analyse these candidates one by one in the following.

Suppose that L = PSL(2,q) with $q = r^e$ and r is an odd prime number. Now $G_{\alpha} \cong Z_p^d$: H. Suppose $e \ge 1$. Then $r||G_{\alpha}|$, hence $G_{\alpha} \cong (Z_p^d : Z_{p^d-1}) \times Z_{p^d-1}$. Suppose e = 1. Then |G||q(q+1)(q-1), and $p^d(p^d-1)|q(q+1)(q-1)$, since p and q are two odd prime numbers, d = 1, q = p, and $G_{\alpha} \cong (Z_p : Z_{p-1}) \times Z_{p-1}$. In both cases, we get $G_{\alpha} \cong (Z_q : Z_{q-1}) \times Z_{q-1}$. There is an involution g in Z_{q-1} satisfying the conditions in Lemma 2.1, so the corresponding graph $\Gamma = \text{Cos}(G, G_{\alpha}, G_{\alpha}gG_{\alpha})$ is (G, 2)-arc-regular graph, which occurs in line 5 of of our main Theorem 1.1.

In order to analyze the following two cases, we need to use Zsigmondy Theorem [19]. If a > b > 0 are coprime numbers, then for any natural number n > 1, there is a prime number p that divides $a^n - b^n$ and does not divide $a^k - b^k$ for any k < n, with two exceptions: (1) a = 2, b = 1 and n = 6; or (2) a + b is a power of two, and n = 2.

Suppose that L = PSL(3, q) where $q = r^e$ and r is an odd prime number. Then $L_{\alpha} \leq M$ for a maximal subgroup of G. If $L_{\alpha} \leq P_1 \cong [q^2].\text{GL}(2, q)/Z_{(3,q-1)}$, then

$$G_{\alpha} \leq ([q^2].\mathrm{GL}(2,q)/Z_{(3,q-1)}).O, O \leq Z_2.Z_e.Z_{(3,q-1)}.$$

Since $G_{\alpha} \cong Z_p^d : H$ where $|H| = p^d - 1$, it follows that

$$p^{d}(p^{d}-1)|q^{3}(q+1)(q-1)^{2} \times 2 \times e^{-q}$$

and $\frac{q^3(q+1)(q-1)^2 \times 2 \times e}{p^d(p^d-1)}$ is square-free, then $p^d | q^3$, that is $p | q = r^e$, $d \ge 3e - 1$. If d = 3e, then $p^d = p^{3e} = q^3$, so $p^d - 1 = q^3 - 1$, which does not divide $|G_{\alpha}|$, this is not possible. Thus d = 3e - 1. If $e \ge 2$, then $p^d = p^{3e-1}$, $q = p^{d+1}$. By Zsigmondy Theorem, there exists a prime l such that $l \mid p^{d+1} - 1$ but $l \nmid p^d - 1$, it follows that $l^2 \mid |G : G_{\alpha}|$, that is $|G : G_{\alpha}|$ is not square-free. Therefore, e = 1. That is $L \cong L_3(q)$ with q prime. Then

$$G_{\alpha} \leq ([q^2].\mathrm{GL}(2,q)/Z_{(3,q-1)}).O, O \leq Z_2.Z_{(3,q-1)}.$$

By straightforward computation, it follows that $|G_{\alpha}| = q^2(q^2 - 1)$. So $(G_{\alpha})_{q'} \leq \operatorname{GL}(2,q)$ or $(G_{\alpha})_{q'} \leq \operatorname{GL}(2,q)/Z_{(3,q-1)}.Z_{(3,q-1)}$. For the former case,

$$(G_{\alpha})_{q'} \cong Z_{q^2-1}, G_{\alpha} \cong Z_{q^2} : Z_{q^2-1}.$$

In this case, there is an involution g in Z_{q^2-1} satisfying the conditions in Lemma 2.1, so the corresponding graph $\Gamma = \text{Cos}(G, G_{\alpha}, G_{\alpha}gG_{\alpha})$ is (G, 2)-arc-regular graph, which occurs in line 6 of our main Theorem 1.1. For the latter case, (3, q - 1) = 3, then we can get $3^2 ||G : G_{\alpha}|$, contrary to that $|G : G_{\alpha}|$ is square-free.

As examples, we prove the cases $L \cong A_7$ and $L \cong M_{11}$ only, the others can be proved by similar arguments and checking by Atlas or GAP software.

Suppose $L = A_7$. Then $G = A_7$ or S_7 . And $G_{\alpha} \leq M$ for a maximal subgroup of G. Since $|G_{\alpha}| = p^d(p^d - 1)$ for some prime $p \neq 2$ and $|M : G_{\alpha}|$ is square-free. However, by Atlas [16]

there is no maximal subgroup of G which contains such a subgroup. It follows that there is no (G, 2)-arc-regular graph of square-free order for this group.

Suppose $L = M_{11}$. Then by Atlas [16], we have $G = M_{11}$ and $G_{\alpha} \leq M$ for a maximal subgroup of M_{11} . Since $|G_{\alpha}| = 2^d(2^d - 1)$ for some $d \geq 1$, it follows that $G_{\alpha} \cong Z_3^2 : Q_8, G_{\alpha\beta} \cong Q_8$. There is an involution $g \in N_G(G_{\alpha\beta}) \cong Q_8.2$ such that $\langle G_{\alpha}, g \rangle = G$ and G_{α} acts 2-regularly on $|\Gamma(\alpha)|$. So the corresponding graph $\Gamma = \text{Cos}(G, G_{\alpha}, G_{\alpha}gG_{\alpha})$ is (G, 2)-arc-regular graph of squarefree order which is given in line 3 of our main Theorem 1.1. \Box

Acknowledgements We thank the referees for their time and comments.

References

- K. W. BADDELEY. Two-arc transitive graphs and twisted wreath products. J. Algebraic Combin., 1993, 2(3): 215–237.
- [2] A. A. IVANOV, C. E. PRAEGER. On finite affine 2-arc transitive graphs. European J. Combin., 1993, 14(5): 421–444.
- [3] Xingui FANG, C. E. PRAEGER. Finite two-arc transitive graphs admitting a Suzuki simple group. Comm. Algebra, 1999, 27(8): 3727–3754.
- [4] Xingui FANG, C. E. PRAEGER. Finite two-arc transitive graphs admitting a Ree simple group. Comm. Algebra, 1999, 27(8): 3755–3769.
- [5] M. DRAGAN, P. POTOČNIK. Classifying 2-arc transitive graphs of order a product of two primes. Discrete Math., 2002, 244(1-3): 331–338.
- [6] Xingui FANG, Caiheng LI, Jie WANG. Finite vertex-primitive 2-arc regular graphs. J. Algebraic Combin., 2007, 25(2): 125–140.
- [7] Yanquan FENG, Yantao LI. One-regular graphs of square-free order of prime valency. European J. Combin., 2011, 32(2): 265–275.
- [8] Caiheng LI, Zaiping LU, Gaixia WANG. Vertex-transitive cubic graphs of square-free order. J. Graph Theory, 2014, 75(1): 1–19.
- Caiheng LI, Zaiping LU, Gaixia WANG. The vertex-transitive and edge-transitive tetravalent graphs of square-free order. J. Algebraic Combin., 2015, 42(1): 25–50.
- [10] Caiheng LI, Zaiping LU, Gaixia WANG. On edge-transitive graphs of square-free order. Electron. J. Combin., 2015, 22(3): Paper 3.25, 22 pp.
- [11] Caiheng LI, Zaiping LU, Gaixia WANG. Arc-transitive graphs of square-free order and small valency. Discrete Math., 2016, 339(12): 2907–2918.
- [12] Gaixia WANG, Zaiping LU. The two-arc-transitive graphs of square-free order admitting alternating or symmetric groups. J. Aust. Math. Soc., 2018, 104(1): 127–144.
- [13] G. HAHN, G. SABODISSI. Graph Symmetry: Algebraic Methods and Applications. Kluwer Academic Publishers, 1996.
- [14] D. GROENSTEIN. Finite Groups. Chelsea Publishing Company, 1980.
- [15] D. GROENSTEIN. The Classifation of Finite Simple Groups. New Jersey, 1983.
- [16] J. H. CONWAY, R. T. CURTIS, S. P. NORTON, et al. Atlas of Finite Groups. Oxford University Press, 1985.
- [17] Caiheng LI, A. SERESS. The primitive permutation groups of squarefree degree. Bull. London Math. Soc., 2003, 35(5): 635–644.
- [18] B. HUPPERT, N. BLOCKBORN. Finite Groups (III). Springer-Verlag, New York, Berlin, 1982.
- [19] M. TELEUCA. Zsigmondy's theorem and its applications in contest problems. Internat. J. Math. Ed. Sci. Tech., 2013, 44(3): 443–451.