Finite Two-Arc-Regular Graphs Admitting an Almost Simple Group

Gaixia WANG*, Beilei GAO
School of Mathematics and Physics, Anhui University of Technology, Anhui 243032, P. R. China

Abstract

This paper completes the classification of ($G, 2$)-arc-regular graphs of square-free order where G is an almost simple group.

Keywords coset graph; two-arc-regular; automorphism group; square-free
MR(2020) Subject Classification 05C25; 05E18

1. Introduction

Denote by Γ a finite connected undirected graph with vertex set $V \Gamma$ and edge set $E \Gamma$. For a positive integer s, an s-arc of Γ is an $(s+1)$-tuple $\left(v_{0}, v_{1}, \ldots, v_{s}\right)$ of vertices such that $\left(v_{i-1}, v_{i}\right) \in E \Gamma$ for $1 \leq i \leq s$ and $v_{i-1} \neq v_{i+1}$ for $1 \leq i \leq s-1$. Let Aut Γ denote the full automorphism group of Γ. If $G \leq A u t \Gamma$ is transitive on $V \Gamma$ and on the set of s-arcs of Γ, then Γ is called a (G, s)-arc-transitive graph. Further, if $G \leq A u t \Gamma$ is transitive on $V \Gamma$ and regular on the set of s-arcs of Γ, then Γ is called a (G, s)-arc-regular graph. In particular, if G itself is the full automorphism group, then a (G, s)-arc-regular is simply called an s-arc-regular graph.

The class of s-arc-regular graphs is closely connected to some important classes of combinatorial constructions, such as regular Mobius maps, near-polygonal graphs, and half-transitive graphs. There is a remarkable observation that, if a graph acts s-arc transitively on a graph for $s \geq 2$, the vertex stabilizer is 2 -transitive on the neighbors of that vertex. Thus the problems of classifying all finite 2 -arc-transitive graphs, in particular, the graphs with square-free order, are highly attractive, and they have received considerable attentions [1-7]. In particular, the cases of 2 -arc-transitive graphs admitting a Suzuki simple group and a Ree simple group are classified in 1999 (see [3,4]). And we have got some symmetric results on graphs with square-free order [8-12].

This paper aims to get a classification of $(G, 2)$-arc-regular graphs with square-free order where G is an almost simple group. The following is our main result.

Theorem 1.1 Let Γ be a ($G, 2$-arc-regular graph of square-free order, and G is an almost

[^0]simple group. Then the graph is isomorphic to one of the Coset graphs $\operatorname{Cos}\left(G, G_{\alpha}, G_{\alpha} g G_{\alpha}\right)$ where G and G_{α} are listed as follows

G	G_{α}	$\|\Gamma(\alpha)\|$	$\|V \Gamma\|$	Remarks
J_{1}	$2^{3}: 7$	8	$3 \times 5 \times 11 \times 19$	
M_{11}	$3^{2}: Q_{8}$	9	$2 \times 5 \times 11$	
$\operatorname{PSL}(2, q)$	A_{4}	4	$\frac{q\left(q^{2}-1\right)}{24}$	$q= \pm 3(\bmod 8)$ and $q \geq 5$
$\operatorname{PSL}(2, q)$	$\left(Z_{q}: Z_{q-1}\right) \times Z_{q-1}$	q	$\frac{q+1}{2}$	$q=p^{d}$ where p is odd prime
$\operatorname{PSL}(3, q)$	$Z_{q^{2}}: Z_{q^{2}-1}$	q^{2}	$q^{2}+q+1$	$q=p^{d}$ where p is odd prime

Table 1 Two-arc-regular graphs admitting almost simple group

This paper is organized as follows. Section 2 collects several preliminary results relating to this paper. In Section 3, we prove the main theorem by working out the corresponding $\operatorname{soc}(G), G_{\alpha}$ and constructing the corresponding graphs $\Gamma=\operatorname{Cos}\left(G, G_{\alpha}, G_{\alpha} g G_{\alpha}\right)$ which are 2-arc-regular.

2. Preliminaries

In this section, we collect some notations and results which will be used later. For an abstract group G, a subgroup $H \leq G$ is said to be core free if no non-trivial normal subgroups of G is contained in H. For a subset $S \subseteq G$ and a core free subgroup H of G, the coset graph $\Gamma=\operatorname{Cos}(G, H, H S H)$ is defined as the digraph with vertex set $V \Gamma:=[G: H]=\{H x \mid x \in G\}$ such that $H x$ is adjacent to $H y$ if and only if $y x^{-1} \in H S H$. It easily follows that each element $g \in G$ induces an automorphism of Γ acting by right multiplication, this is for all $x \in G$,

$$
g: H x \mapsto H x g
$$

In the coset action, G is faithful on $V \Gamma$, and so we may assume that $G \leq \mathrm{Aut} \Gamma$. The following two lemmas collect some properties about coset graphs.

Lemma 2.1 ([13, P303, Theorem 11.1]) Let G be a finite group with a core-free subgroup H and a 2-element g. Then the graph $\Gamma=\operatorname{Cos}(G, H, H g H)$ is a finite, connected, ($G, 2$)-arc-transitive graph with G transitive on vertices (acting by right multiplication) if and only if

$$
g \notin N_{G}(H), g^{2} \in H,\langle H, g\rangle=G,
$$

and the action of H on $\left[H: H \cap H^{g}\right]$ by right multiplication is 2-transitive.
Given a vertex $\alpha \in V \Gamma$, the stabilizer G_{α} induces an action on the neighborhood $\Gamma(\alpha)$. Let $G_{\alpha}^{\Gamma(\alpha)}$ be the group induced by G_{α}.

Lemma 2.2 ([13, P297, Lemma 9.4]) Suppose that the graph Γ is G-vertex-transitive and let $\alpha \in V \Gamma$. Then Γ is ($G, 2$)-arc-transitive if and only if $G_{\alpha}^{\Gamma(\alpha)}$ is 2-transitive.

To classify the $(G, 2)$-arc-regular graphs of square-free order, where G is an almost simple group, we also need two lemmas regarding finite non-abelian simple groups.

Lemma 2.3 ([14, P485, Theorem $]$) If G is a nonabelian simple group with abelian Sylow 2-subgroup, then one of the following holds.
(1) G is isomorphic to $\operatorname{PSL}(2, q), q \geq 3, q \equiv 3,5(\bmod 8)$, or $q=2^{m}$;
(2) G is isomorphic to J_{1};
(3) G is of Ree type.

The 2-rank $m_{2}(X)$ of X is the maximum rank of an abelian 2-subgroup A of X (the rank of A is by definition the number of factors in a direct product decomposition of A into cyclic subgroups).

Lemma 2.4 ([15, P72, Theorem 1.86]) If G is a simple group of 2-rank at most 2, then $G \cong \operatorname{PSL}(2, q)$ with $q \geq 5$ is odd, $\operatorname{PSL}(3, q)$ with q is odd, $U_{3}(q)$ with q is odd, $U_{3}(4), A_{7}$ or M_{11}.

3. The proof of the main Theorem

Let Γ be a $(G, 2)$-arc-regular graph of square-free order, where G is an almost simple group and Let $L=\operatorname{soc}(G)$. From Lemma 2.2, it follows that G_{α} is a sharply 2-transitive permutation group on $\Gamma(\alpha)$. Then $G_{\alpha}<\operatorname{AGL}(d, p)$ where p is a prime and $d \geq 1$. Further $G_{\alpha}=N: H$, where $N \cong Z_{p}^{d}$, and $H=G_{\alpha \beta}$ for some $\beta \in \Gamma(\alpha)$ and $|H|=p^{d}-1$. We split the proof in two cases.

Case 1. $p=2$.
Let P be a Sylow 2-subgroup of G. Then P is isomorphic to Z_{2}^{d} or $Z_{2}^{d} \cdot Z_{2}$, since $\left|G: G_{\alpha}\right|$ is square-free. There are two subcases. At first, we assume $|P: N|=1$. That is, P is elementary abelian. It follows that by Lemma $2.3, L$ is isomorphic to $\operatorname{PSL}(2, q)$ with $q \geq 3$ and $q \equiv \pm 3$ $(\bmod 8), \operatorname{PSL}\left(2,2^{m}\right), J_{1}$ or $\operatorname{Ree}\left(3^{e}\right)$. We shall analyze these candidates in the following.

Suppose that $L \cong \operatorname{PSL}(2, q)$ where $q \geq 3$ and $q \equiv \pm 3(\bmod 8)$. Let $q={p^{\prime}}^{d}$ for a prime p^{\prime} and $p^{\prime} \neq 2, d$ is odd. Since $L \leq G \leq \operatorname{Aut}(L)$ and a Sylow 2-subgroup of L is isomorphic to Z_{2}^{2} while a Sylow 2-subgroup of $\operatorname{Aut}(L)$ is isomorphic to a dihedral group of order 8 , it follows that $P \cong Z_{2}^{2}$ and $G_{\alpha} \cong A_{4}$. Let $G=\operatorname{PSL}(2, q) . Z_{f}$ where $f \mid d$. Since $\left|G: G_{\alpha}\right|=\frac{q(q+1)(q-1) f}{24}$ is square-free, we have $f=1$ and $q=p^{\prime}$ is prime. That is $G=\operatorname{PSL}\left(2, p^{\prime}\right)$ where $p^{\prime} \geq 3$ and $p^{\prime} \equiv \pm 3(\bmod 8)$ is prime and $G_{\alpha}=A_{4}$. We can construct an infinite family of ($G, 2$)-arc-regular graphs of squarefree order. Let $G_{i}=\operatorname{PSL}\left(2, q_{i}\right)$ where $q_{i} \geq 3$ and $q_{i} \equiv 3,5(\bmod 8)$ are primes, and let H_{i} be a subgroup of G_{i} with $H_{i} \cong A_{4}$. Then there exists a 2-element $g_{i} \in G_{i}$ such that $G_{i}=\left\langle H_{i}, g_{i}\right\rangle$ and $H_{i} \cap H_{i}{ }^{g_{i}} \cong Z_{3}$. Note that, for each i, the triple G_{i}, H_{i}, g_{i} satisfies the conditions of Lemma 2.1, and hence the graph $\Gamma(i)=\operatorname{Cos}\left(G_{i}, H_{i}, H_{i} g_{i} H_{i}\right)$ is connected, G_{i}-vertex-transitive, and ($\left.G_{i}, 2\right)$ -arc-transitive of valency 4. Moreover, $G_{i \alpha}$ is 2-transitive on $\Gamma(\alpha)$, and the order of $G_{i \alpha}$ is 12 , thus the graph we constructed is $\left(G_{i}, 2\right)$-arc-regular. Moreover, when $n=\frac{q(q+1)(q-1)}{24}$ is square-free, we constructed a class of $\left(G_{i}, 2\right)$-arc-regular graphs of square-free order.

Suppose that $L \cong \operatorname{PSL}\left(2,2^{m}\right)$. Since $L \leq G \leq \operatorname{Aut}(L)$, it follows that $P \cong Z_{2}^{m}$ and $G_{\alpha} \cong$ $Z_{2}^{m}: H$ where $|H|=2^{m}-1$. We shall prove there is no $(G, 2)$-arc-regular graph corresponding to this kind of group.

We assume $G=L . Z_{f}$, then $f \mid\left(m, 2^{m}-1\right)$. Further we can assume f is prime, otherwise
there is a prime f^{\prime} such that $f^{\prime} \mid f$ and $f^{\prime} \mid\left(m, 2^{m}-1\right)$.
Suppose $f^{i+1} \| 2^{m}-1$ (where $l^{k} \| n$ means the power of l dividing n is at most k), and $2^{m}-1=k f^{i+1}$ where $(k, f)=1$. Then

$$
H=\left(Z_{k} \times Z_{f^{i}}\right) \cdot Z_{f} \cong(\langle a\rangle \times\langle b\rangle) \cdot\langle c\rangle \cong\langle a\rangle \times\langle b c\rangle
$$

where $o(a)=k, o(b)=f^{i}$ and $o(c)=f$. Since $o(b c)=f^{i+1}$ and H centralises no elements of $Z_{2}^{m} \backslash\{1\}, G_{\alpha} \cong Z_{2}^{m}: H \cong Z_{2}^{m}:(\langle a\rangle \times\langle b c\rangle)$ and

$$
N_{L}(H) \leq N_{L}(\langle a\rangle) \cong N_{L}\left(\left\langle Z_{k}\right\rangle\right)=D_{2\left(2^{m}-1\right)}
$$

Let $g \in N_{L}(H)$ be an involution,

$$
g: a \longrightarrow a^{-1}, b \longrightarrow b^{-1}
$$

Then consider the induced action of g on $N_{L}(\langle a\rangle) /\langle a\rangle$ and $N_{L}(\langle a\rangle) /\langle a\rangle \times\langle b\rangle$, denoted by \bar{g} and g^{\prime}, respectively. Then

$$
\begin{aligned}
\bar{g}: N_{L}(\langle a\rangle) /\langle a\rangle & \longrightarrow N_{L}(\langle a\rangle) /\langle a\rangle, \\
\bar{b} \bar{c} & \longrightarrow(\bar{b} \bar{c})^{t}
\end{aligned}
$$

and

$$
\begin{gathered}
g^{\prime}: N_{L}(\langle a\rangle) /\langle a\rangle \times\langle b\rangle \longrightarrow N_{L}(\langle a\rangle) /\langle a\rangle \times\langle b\rangle \\
c^{\prime} \longrightarrow\left(c^{\prime}\right)^{t}
\end{gathered}
$$

Since $o(c)=f$, we have $t \equiv 1(\bmod f)$. If $t=1$, then $\bar{b} \bar{c}^{\bar{g}}=\bar{b}^{\bar{g}} \bar{c}^{\bar{g}}=\bar{b}^{-1} \bar{c}=\bar{b} \bar{c}$. Thus $\bar{b}^{-1}=\bar{b}$, $b=b^{-1}$, which is impossible. So let $t=l f+1$, then

$$
(\bar{b} \bar{c})^{t}=(\bar{b} \bar{c})^{l f+1}=(\bar{b} \bar{c})^{l f} \cdot(\bar{b} \bar{c})
$$

Since $o(b)=f^{i}$,

$$
\bar{b}^{\bar{c}^{-1}}=\bar{b}^{1+j f^{i-1}}, \quad 1 \leq j \leq f-1
$$

To simplify, we omit the symbol ' - '. That is

$$
(b c)^{t}=(b c)^{l f+1}=(b c)^{l f} \cdot(b c)
$$

and

$$
b^{c^{-1}}=b^{1+j f^{i-1}}, \quad 1 \leq j \leq f-1
$$

Then it follows that

$$
\begin{gathered}
(b c)^{2}=b c b c^{-1} c^{2}=b \cdot b^{1+j f^{i-1}} c^{2} \\
(b c)^{3}=b c b^{2+j f^{i-1}} c^{-1} c^{3}=b \cdot b^{\left(1+j f^{i-1}\right)+\left(1+j f^{i-1}\right)^{2}} c^{3}, \\
\ldots \\
(b c)^{f}=b \cdot b^{\left(1+j f^{i-1}\right)+\left(1+j f^{i-1}\right)^{2}+\cdots\left(1+j f^{i-1}\right)^{f-1}}
\end{gathered}
$$

If we let $z:=1+j f^{i-1}$, then

$$
(b c)^{f}=b^{1+z+z^{2}+\cdots z^{f-1}}=b^{\frac{z^{f-1}}{z-1}}
$$

Thus $(b c)^{l f+1}=b^{\frac{z^{f}-1}{z-1} \cdot l+1} c=b^{-1} c$, that is $b^{\frac{z^{f}-1}{z-1} \cdot l+1}=b^{-1}$. Then

$$
\left[\left(1+j f^{i-1}\right)^{f}-1\right] l \equiv-2 j f^{i-1} \quad\left(\bmod f^{i}\right)
$$

which is impossible, since $f^{i} \mid\left[\left(1+j f^{i-1}\right)^{f}-1\right] l$ but $f^{i} \mid j f^{i-1}$. Thus there is no ($G, 2$)-arc-regular graph corresponding to this kind of group.

Suppose $L \cong J_{1}$. Then by Atlas [16], we have $G=J_{1}$ and $G_{\alpha} \leq M$ where M is a maximal subgroup of J_{1}. Since $\left|G_{\alpha}\right|=2^{d}\left(2^{d}-1\right)$ for some $d \geq 1$, it follows that $G_{\alpha} \cong Z_{2}^{2} \cdot Z_{3}$ or $G_{\alpha} \cong Z_{2}^{3}: Z_{7}$. For the former case, $G_{\alpha} \leq \operatorname{PSL}(2,11)$ and $G_{\alpha \beta} \cong Z_{3}$. Then there exists no element $g \in N_{G}\left(G_{\alpha \beta}\right) \backslash N_{G}\left(G_{\alpha}\right)$ and $g^{2} \in Z_{3}$. For the latter case, there is an involution $g \in N_{G}\left(G_{\alpha \beta}\right) \cong Z_{7}: Z_{6}$ such that $<G_{\alpha}, g>=G$ and G_{α} acts 2-regularly on $|\Gamma(\alpha)|$. So the corresponding graph $\Gamma=\operatorname{Cos}\left(G, G_{\alpha}, G_{\alpha} g G_{\alpha}\right)$ is ($G, 2$)-arc-regular graph of square-free order. Further, the graph is given in line 2 of our main Theorem 1.1.

Suppose that $L \cong \operatorname{Ree}\left(3^{2 m+1}\right)$ for some integer m. Then $|L|=q^{3}\left(q^{3}+1\right)(q-1)$, so $3^{9}| | L \mid$. Therefore, $\left|G: G_{\alpha}\right|$ is not square-free. Thus there is no $(G, 2)$-arc-regular graph of square-free order for this case.

Now we assume that $P \cong Z_{2}^{d} \cdot Z_{2} \cong Q . Z_{2}$ where $Q \cong Z_{2}^{d}$, we shall analyze two conditions based on $d=2$ and $d \geq 3$. For these cases, there is no corresponding $(G, 2)$-arc-regular graphs of square-free order.

If $d=2$, then $L=\operatorname{soc}(G)$ has 2-rank 2 , then by Lemma 2.4, $L \cong \operatorname{PSL}(2, q)$ (q is odd, and $q \geq 5), \operatorname{PSL}(3, q)$ or $U_{3}(q)(q$ is odd $), U_{3}(4), A_{7}$, or M_{11}. As an example, we prove the case $L \cong U_{3}(q)$ only, the others can be proved by similar arguments and checking by Atlas [16]. If $L \cong U_{3}(q)$ where $q=r^{e}$ for an odd prime r, it is obvious that $2^{3} \| G: G_{\alpha} \mid$ if $q=3$, and $q^{3} \| G: G_{\alpha} \mid$ if $q>3$, that is, there is no corresponding $(G, 2)$-arc-regular graph.

If $d \geq 3$, let $X=N_{G}(Q)$, then $G_{\alpha}, P \leq X$, and $|G: X|$ is odd square-free. Let Y_{2} and Y_{1} be the subgroups of G such that $X \leq Y_{2}<Y_{1} \leq G$, and $\operatorname{soc}\left(Y_{2}\right) \neq \operatorname{soc}\left(Y_{1}\right)=\operatorname{soc}(G)=L$. Furthermore, Y_{2} is maximal in Y_{1}, that is Y_{1} acts faithfully and primitively on $\left[Y_{1}: Y_{2}\right]$. Thus we can read out some information about Y_{1} from [17]. Suppose there exists a $(G, 2)$-arc-regular graph for corresponding group G, we can get that the following three conditions with respect to the four tables in [17] must be satisfied.
(1) n is odd square-free.
(2) If $G=Y_{1}=L$, then $\left|G_{\bar{\alpha}}: G_{\alpha}\right|$ is even square free, where $G_{\bar{\alpha}}$ is the stabilizers in the four tables.
(3) If $G=L . O_{1}, Y_{1}=L . O_{2}$, and $G_{\alpha} \leq L_{\bar{\alpha}}$ where $1<O_{2} \leq O_{1}$, then $\left|L_{\bar{\alpha}}: G_{\alpha}\right|$ is even square free.

Using the above three conditions and carefully computing the orders of the groups occurring in Tables [17] one by one, we can get that for all these groups, there exists no corresponding $(G, 2)$-arc-transitive graph.

Case 2. $p \neq 2$.
Let P be a Sylow 2-subgroup of G. Then $P=Q . Z_{2}$, where Q is a Sylow 2-subgroup of H. Since H has only one involution by the structure of sharply 2-transitive graphs in [18], it follows
that P has at most 2-rank-2. By Lemma 2.4, $L=\operatorname{soc}(G)$ is isomorphic to $\operatorname{PSL}(2, q)$, where q is odd and $q \geq 5, \operatorname{PSL}(3, q)$ or $U_{3}(q)$ with q is odd, $U_{3}(4), A_{7}$, or M_{11}. We shall analyse these candidates one by one in the following.

Suppose that $L=\operatorname{PSL}(2, q)$ with $q=r^{e}$ and r is an odd prime number. Now $G_{\alpha} \cong Z_{p}^{d}$: H. Suppose $e \geq 1$. Then $r\left|\left|G_{\alpha}\right|\right.$, hence $G_{\alpha} \cong\left(Z_{p}^{d}: Z_{p^{d}-1}\right) \times Z_{p^{d}-1}$. Suppose $e=1$. Then $|G| \mid q(q+1)(q-1)$, and $p^{d}\left(p^{d}-1\right) \mid q(q+1)(q-1)$, since p and q are two odd prime numbers, $d=1, q=p$, and $G_{\alpha} \cong\left(Z_{p}: Z_{p-1}\right) \times Z_{p-1}$. In both cases, we get $G_{\alpha} \cong\left(Z_{q}: Z_{q-1}\right) \times Z_{q-1}$. There is an involution g in Z_{q-1} satisfying the conditions in Lemma 2.1, so the corresponding graph $\Gamma=\operatorname{Cos}\left(G, G_{\alpha}, G_{\alpha} g G_{\alpha}\right)$ is $(G, 2)$-arc-regular graph, which occurs in line 5 of of our main Theorem 1.1.

In order to analyze the following two cases, we need to use Zsigmondy Theorem [19]. If $a>b>0$ are coprime numbers, then for any natural number $n>1$, there is a prime number p that divides $a^{n}-b^{n}$ and does not divide $a^{k}-b^{k}$ for any $k<n$, with two exceptions: (1) $a=2, b=1$ and $n=6$; or (2) $a+b$ is a power of two, and $n=2$.

Suppose that $L=\operatorname{PSL}(3, q)$ where $q=r^{e}$ and r is an odd prime number. Then $L_{\alpha} \leq M$ for a maximal subgroup of G. If $L_{\alpha} \leq P_{1} \cong\left[q^{2}\right]$.GL $(2, q) / Z_{(3, q-1)}$, then

$$
G_{\alpha} \leq\left(\left[q^{2}\right] \cdot \mathrm{GL}(2, q) / Z_{(3, q-1)}\right) \cdot O, O \leq Z_{2} \cdot Z_{e} \cdot Z_{(3, q-1)}
$$

Since $G_{\alpha} \cong Z_{p}^{d}: H$ where $|H|=p^{d}-1$, it follows that

$$
p^{d}\left(p^{d}-1\right) \mid q^{3}(q+1)(q-1)^{2} \times 2 \times e
$$

and $\frac{q^{3}(q+1)(q-1)^{2} \times 2 \times e}{p^{d}\left(p^{d}-1\right)}$ is square-free, then $p^{d} \mid q^{3}$, that is $p \mid q=r^{e}, d \geq 3 e-1$. If $d=3 e$, then $p^{d}=p^{3 e}=q^{3}$, so $p^{d}-1=q^{3}-1$, which does not divide $\left|G_{\alpha}\right|$, this is not possible. Thus $d=3 e-1$. If $e \geq 2$, then $p^{d}=p^{3 e-1}, q=p^{d+1}$. By Zsigmondy Theorem, there exists a prime l such that $l \mid p^{d+1}-1$ but $l \nmid p^{d}-1$, it follows that $l^{2}| | G: G_{\alpha} \mid$, that is $\left|G: G_{\alpha}\right|$ is not square-free. Therefore, $e=1$. That is $L \cong L_{3}(q)$ with q prime. Then

$$
G_{\alpha} \leq\left(\left[q^{2}\right] \cdot \mathrm{GL}(2, q) / Z_{(3, q-1)}\right) \cdot O, O \leq Z_{2} \cdot Z_{(3, q-1)}
$$

By straightforward computation, it follows that $\left|G_{\alpha}\right|=q^{2}\left(q^{2}-1\right)$. So $\left(G_{\alpha}\right)_{q^{\prime}} \leq \operatorname{GL}(2, q)$ or $\left(G_{\alpha}\right)_{q^{\prime}} \leq \operatorname{GL}(2, q) / Z_{(3, q-1)} \cdot Z_{(3, q-1)}$. For the former case,

$$
\left(G_{\alpha}\right)_{q^{\prime}} \cong Z_{q^{2}-1}, G_{\alpha} \cong Z_{q^{2}}: Z_{q^{2}-1}
$$

In this case, there is an involution g in $Z_{q^{2}-1}$ satisfying the conditions in Lemma 2.1, so the corresponding graph $\Gamma=\operatorname{Cos}\left(G, G_{\alpha}, G_{\alpha} g G_{\alpha}\right)$ is $(G, 2)$-arc-regular graph, which occurs in line 6 of our main Theorem 1.1. For the latter case, $(3, q-1)=3$, then we can get $3^{2}\left\|G: G_{\alpha}\right\|$, contrary to that $\left|G: G_{\alpha}\right|$ is square-free.

As examples, we prove the cases $L \cong A_{7}$ and $L \cong M_{11}$ only, the others can be proved by similar arguments and checking by Atlas or GAP software.

Suppose $L=A_{7}$. Then $G=A_{7}$ or S_{7}. And $G_{\alpha} \leq M$ for a maximal subgroup of G. Since $\left|G_{\alpha}\right|=p^{d}\left(p^{d}-1\right)$ for some prime $p \neq 2$ and $\left|M: G_{\alpha}\right|$ is square-free. However, by Atlas [16]
there is no maximal subgroup of G which contains such a subgroup. It follows that there is no ($G, 2$)-arc-regular graph of square-free order for this group.

Suppose $L=M_{11}$. Then by Atlas [16], we have $G=M_{11}$ and $G_{\alpha} \leq M$ for a maximal subgroup of M_{11}. Since $\left|G_{\alpha}\right|=2^{d}\left(2^{d}-1\right)$ for some $d \geq 1$, it follows that $G_{\alpha} \cong Z_{3}^{2}: Q_{8}, G_{\alpha \beta} \cong Q_{8}$. There is an involution $g \in N_{G}\left(G_{\alpha \beta}\right) \cong Q_{8} .2$ such that $\left\langle G_{\alpha}, g\right\rangle=G$ and G_{α} acts 2-regularly on $|\Gamma(\alpha)|$. So the corresponding graph $\Gamma=\operatorname{Cos}\left(G, G_{\alpha}, G_{\alpha} g G_{\alpha}\right)$ is ($G, 2$)-arc-regular graph of squarefree order which is given in line 3 of our main Theorem 1.1.

Acknowledgements We thank the referees for their time and comments.

References

[1] K. W. BADDELEY. Two-arc transitive graphs and twisted wreath products. J. Algebraic Combin., 1993, $2(3): 215-237$.
[2] A. A. IVANOV, C. E. PRAEGER. On finite affine 2-arc transitive graphs. European J. Combin., 1993, 14(5): 421-444.
[3] Xingui FANG, C. E. PRAEGER. Finite two-arc transitive graphs admitting a Suzuki simple group. Comm. Algebra, 1999, 27(8): 3727-3754.
[4] Xingui FANG, C. E. PRAEGER. Finite two-arc transitive graphs admitting a Ree simple group. Comm. Algebra, 1999, 27(8): 3755-3769.
[5] M. DRAGAN, P. POTOČNIK. Classifying 2-arc transitive graphs of order a product of two primes. Discrete Math., 2002, 244(1-3): 331-338.
[6] Xingui FANG, Caiheng LI, Jie WANG. Finite vertex-primitive 2-arc regular graphs. J. Algebraic Combin., 2007, 25(2): 125-140.
[7] Yanquan FENG, Yantao LI. One-regular graphs of square-free order of prime valency. European J. Combin., 2011, 32(2): 265-275.
[8] Caiheng LI, Zaiping LU, Gaixia WANG. Vertex-transitive cubic graphs of square-free order. J. Graph Theory, 2014, $75(1): 1-19$.
[9] Caiheng LI, Zaiping LU, Gaixia WANG. The vertex-transitive and edge-transitive tetravalent graphs of square-free order. J. Algebraic Combin., 2015, 42(1): 25-50.
[10] Caiheng LI, Zaiping LU, Gaixia WANG. On edge-transitive graphs of square-free order. Electron. J. Combin., 2015, 22(3): Paper 3.25, 22 pp.
[11] Caiheng LI, Zaiping LU, Gaixia WANG. Arc-transitive graphs of square-free order and small valency. Discrete Math., 2016, 339(12): 2907-2918.
[12] Gaixia WANG, Zaiping LU. The two-arc-transitive graphs of square-free order admitting alternating or symmetric groups. J. Aust. Math. Soc., 2018, 104(1): 127-144.
[13] G. HAHN, G. SABODISSI. Graph Symmetry: Algebraic Methods and Applications. Kluwer Academic Publishers, 1996.
[14] D. GROENSTEIN. Finite Groups. Chelsea Publishing Company, 1980.
[15] D. GROENSTEIN. The Classifation of Finite Simple Groups. New Jersey, 1983.
[16] J. H. CONWAY, R. T. CURTIS, S. P. NORTON, et al. Atlas of Finite Groups. Oxford University Press, 1985.
[17] Caiheng LI, A. SERESS. The primitive permutation groups of squarefree degree. Bull. London Math. Soc., 2003, 35(5): 635-644.
[18] B. HUPPERT, N. BLOCKBORN. Finite Groups (III). Springer-Verlag, New York, Berlin, 1982.
[19] M. TELEUCA. Zsigmondy's theorem and its applications in contest problems. Internat. J. Math. Ed. Sci. Tech., 2013, 44(3): 443-451.

[^0]: Received September 22, 2019; Accepted October 24, 2020
 Supported by the National Natural Science Foundation of China (Grant No. 11601005) and the Anhui Provincial Science Fund for Excellent Young Scholars (Grant No. gxyq2020011).

 * Corresponding author

 E-mail address: wgx075@163.com (Gaixia WANG)

