Journal of Mathematical Research with Applications Jan., 2021, Vol. 41, No. 1, pp. 25–32 DOI:10.3770/j.issn:2095-2651.2021.01.004 Http://jmre.dlut.edu.cn

n-Gorenstein Projective Modules and Dimensions over Frobenius Extensions

Miao WANG, Zhanping WANG*

Department of Mathematics, Northwest Normal University, Gansu 730070, P. R. China

Abstract In this paper, we study *n*-Gorenstein projective modules over Frobenius extensions and *n*-Gorenstein projective dimensions over separable Frobenius extensions. Let $R \subset A$ be a Frobenius extension of rings and M any left A-module. It is proved that M is an *n*-Gorenstein projective left A-module if and only if $A \otimes_R M$ and $\operatorname{Hom}_R(A, M)$ are *n*-Gorenstein projective left A-modules if and only if M is an *n*-Gorenstein projective left R-module. Furthermore, when $R \subset A$ is a separable Frobenius extension, *n*-Gorenstein projective dimensions are considered.

 $\label{eq:keywords} {\bf Keywords} \quad {\rm Frobenius \ extensions; \ } n {\rm -Gorenstein \ projective \ modules; \ } n {\rm -Gorenstein \ projective \ } \\$

MR(2020) Subject Classification 13B02; 16G50; 18G25

1. Introduction

The study of Gorenstein homological algebra stems from finitely generated modules of Gdimensions zero over any noetherian rings, introduced by Auslander and Bridger [1] in 1969 as a generalization of finite generated projective modules. In order to complete the analogy, in 1995, Enochs and Jenda introduced the Gorenstein projective modules (not necessarily finitely generated) over any associative rings; and dually, Gorenstein injective modules were defined in [2]. In 2004, Holm further studied the properties of these modules in [3]. In 2015, n-Gorenstein projective modules and n-Gorenstein injective modules were introduced by Tang in [4] as a generalization of these modules. Tang used these two classes of modules to give a new characterization of Gorenstein rings in terms of top local cohomology modules of flat modules.

The theory of Frobenius extensions was developed by Kasch [5] in 1954 as a generalization of Frobenius algebras, and was further studied by Nakayama and Tsuzuku [6,7] in 1960–1961, Morita [8] in 1965, and Kadison [9] in 1999. In 2018, Ren studied the Gorenstein projective properties of modules and Gorenstein homological dimensions along Frobenius extensions of rings in [10,11].

Inspired by above conclusions, in this paper, we intend to study the n-Gorenstein projective properties of modules and n-Gorenstein homological dimensions along Frobenius extensions of rings.

* Corresponding author

Received February 16, 2020; Accepted September 26, 2020

Supported by the National Natural Science Foundation of China (Grant No. 11561061).

E-mail address: 513131292@qq.com (Miao WANG); wangzp@nwnu.edu.cn (Zhanping WANG)

Throughout this paper, let R be an associative ring with identity. All modules will be unitary left R-modules. We write P(R) and GP(R) for the classes of projective and Gorenstein projective left R-modules, respectively. For each positive integer n and the class of modules \mathcal{X} , we denote by ${}^{\perp_n}\mathcal{X} := \{M | \operatorname{Ext}^i_R(M, X) = 0 \text{ for any } X \in \mathcal{X}, \text{ and } 1 \leq i \leq n\}.$

2. n-Gorenstein projective modules over Frobenius extensions

As a generalization of Gorenstein projective modules, Tang defined *n*-Gorenstein projective modules in [4].

Definition 2.1 Suppose that *n* is a positive integer. An *R*-module *M* is said to be *n*-Gorenstein projective, if there exists an acyclic complex of projective modules $\mathbf{P} = \cdots \rightarrow P_1 \rightarrow P_0 \rightarrow P_{-1} \rightarrow P_{-2} \rightarrow \cdots$ such that $M \cong \operatorname{Im}(P_0 \rightarrow P_{-1})$ and such that for any projective module *Q* the complex $\operatorname{Hom}_R(\mathbf{P}, Q) = \cdots \rightarrow P_1^* \rightarrow P_0^* \rightarrow P_{-1}^* \rightarrow P_{-2}^* \rightarrow \cdots$ is exact at P_i^* for all $i \geq -n$, where $P_i^* = \operatorname{Hom}_R(P_{-i}, Q)$. The class of *n*-Gorenstein projective modules is denoted by *n*-GP(*R*).

Clearly, by the definitions we have $P(R) \subseteq GP(R) \subseteq n$ -GP(R). However, there are *n*-Gorenstein projective modules which are not Gorenstein projective by [4, Example 2.4].

Lemma 2.2 ([4, Proposition 2.2]) Suppose that M is an R-module, and m, n are positive integers such that m < n, then the following statements hold.

(1) M is n-Gorenstein projective if and only if M belongs to the class $^{\perp_n}P(R)$, and admits a co-proper right P(R)-resolution.

- (2) n-Gorenstein projective modules are m-Gorenstein projective modules.
- (3) $GP(R) = \bigcap_{n=1}^{\infty} n GP(R).$

(4) If M is n-Gorenstein projective, then there is an exact sequence $0 \to M \to P \to G \to 0$ such that P is projective and G is (n + 1)-Gorenstein projective.

Lemma 2.3 ([4, Proposition 2.6 and Corollary 2.7]) n-GP(R) is closed under direct sums, direct summands and extensions.

Lemma 2.4 ([4, Corollary 3.2]) Let $0 \to G_1 \to G \to M \to 0$ be an exact sequence, where G and G_1 are *n*-Gorenstein projective and $\text{Ext}^1(M, Q) = 0$ for all projective modules Q. Then M is *n*-Gorenstein projective.

Definition 2.5 ([9, Definition 1.1 and Theorem 1.2]) A ring extension $R \subset A$ is a Frobenius extension, which provided that one of the following equivalent conditions holds:

- (1) The functors $T = A \otimes_R -$ and $H = Hom_R(A, -)$ are naturally equivalent.
- (2) $_{R}A$ is finite generated projective and $_{A}A_{R} \cong (_{R}A_{A})^{*} = \operatorname{Hom}_{R}(_{R}A_{A}, R).$
- (3) A_R is finite generated projective and ${}_RA_A \cong ({}_AA_R)^* = \operatorname{Hom}_{R^{\operatorname{op}}}({}_AA_R, R).$

Example 2.6 ([9, Definition 1.1 and Theorem 1.2]) (1) For a finite group $G, \mathbb{Z} \subset \mathbb{Z}G$ is a Frobenius extension.

(2) ([11, Lemma 3.1]) Let R be an arbitrary ring, and $A = R[x]/(x^2)$ is the quotient of the

polynomial ring, where x is a variable which is supposed to commute with all the elements of R. Then the ring extension $R \subset A$ is a Frobenius extension.

In [11], Ren studied the Gorenstein projective properties of modules along Frobenius extensions of rings. Let M be any left A-module. It is proved that M is a Gorenstein projective left A-module if and only if M is a Gorenstein projective left R-module if and only if $A \otimes_R M$ and $\operatorname{Hom}_R(A, M)$ are Gorenstein projective left A-modules. Analogously, we have the following conclusions for n-Gorenstein projective modules.

Proposition 2.7 Let $R \subset A$ be a Frobenius extension of rings and M a left A-module. If $_AM$ is *n*-Gorenstein projective, then the underlying left R-module $_RM$ is also *n*-Gorenstein projective.

Proof Let M be an n-Gorenstein projective left A-module. There exists an acyclic complex of projective left A-module $\mathbf{P} = \cdots \rightarrow P_1 \rightarrow P_0 \rightarrow P_{-1} \rightarrow P_{-2} \rightarrow \cdots$ such that $M \cong \operatorname{Im}(P_0 \rightarrow P_{-1})$ and for any projective left A-module Q the complex $\operatorname{Hom}_A(\mathbf{P}, Q) = \cdots \rightarrow P_1^* \rightarrow P_0^* \rightarrow P_{-1}^* \rightarrow P_{-2}^* \rightarrow \cdots$ is exact at P_i^* for all $i \geq -n$, where $P_i^* = \operatorname{Hom}_A(P_{-i}, Q)$. Note that each P_i is a projective left R-module. Then by restricting \mathbf{P} one gets an acyclic complex of projective R-modules.

Let F be a projective left R-module. It follows from isomorphisms $\operatorname{Hom}_R(A, F) \cong A \otimes_R F$ that $\operatorname{Hom}_R(A, F)$ is a projective left A-module. Then the complex

$$\operatorname{Hom}_{A}(\mathbf{P},\operatorname{Hom}_{R}(A,F)) = \cdots \to T_{1}^{*} \to T_{0}^{*} \to T_{-1}^{*} \to T_{-2}^{*} \to \cdots$$

is exact at T_i^* for all $i \ge -n$, where $T_i^* = \operatorname{Hom}_A(P_{-i}, \operatorname{Hom}_R(A, F))$. Moreover, there are isomorphisms

$$\operatorname{Hom}_R(\mathbf{P}, F) \cong \operatorname{Hom}_R(A \otimes_A \mathbf{P}, F) \cong \operatorname{Hom}_A(\mathbf{P}, \operatorname{Hom}_R(A, F)).$$

This implies that the complex $\operatorname{Hom}_R(\mathbf{P}, F)$ is exact at H_i^* for all $i \geq -n$, where $H_i^* = \operatorname{Hom}_R(P_{-i}, F)$, and hence the underlying *R*-module *M* is *n*-Gorenstein projective. \Box

Proposition 2.8 Let $R \subset A$ be a Frobenius extension of rings and M a left A-module. Then $A \otimes_R M(\operatorname{Hom}_R(A, M))$ is an n-Gorenstein projective left A-module if and only if the underlying left R-module $_RM$ is also n-Gorenstein projective.

Proof \Leftarrow . Let M be an n-Gorenstein projective left R-module. There exists an acyclic complex of projective left R-module $\mathbf{P} = \cdots \rightarrow P_1 \rightarrow P_0 \rightarrow P_{-1} \rightarrow P_{-2} \rightarrow \cdots$ such that $M \cong \operatorname{Im}(P_0 \rightarrow P_{-1})$ and for any projective left R-module Q the complex $\operatorname{Hom}_R(\mathbf{P}, Q) = \cdots \rightarrow P_1^* \rightarrow P_0^* \rightarrow P_{-1}^* \rightarrow P_{-2}^* \rightarrow \cdots$ is exact at P_i^* for all $i \ge -n$, where $P_i^* = \operatorname{Hom}_R(P_{-i}, Q)$. It is easy to see that $A \otimes_R \mathbf{P}$ is an acyclic complex of projective A-modules, and

$$A \otimes_R M \cong \operatorname{Im}(A \otimes_R P_0 \to A \otimes_R P_{-1}).$$

Moreover, for any projective left A-module P, there are isomorphisms

$$\operatorname{Hom}_A(A \otimes_R \mathbf{P}, P) \cong \operatorname{Hom}_R(\mathbf{P}, P).$$

This implies that the complex $\operatorname{Hom}_A(A \otimes_R \mathbf{P}, P)$ is exact at U_i^* for all $i \geq -n$, where $U_i^* =$

 $\operatorname{Hom}_A(A \otimes_R P_{-i}, P)$. Hence $A \otimes_R M$ is an *n*-Gorenstein projective left *A*-module. There is an isomorphism

$$\operatorname{Hom}_R(A, M) \cong A \otimes_R M.$$

This implies that the module $\operatorname{Hom}_R(A, M)$ is an *n*-Gorenstein projective left A-module.

⇒. Note that for the ring extension $R \subset A$ and any A-module M, the module M is a left R-module. By Proposition 2.7, it suffices to prove that when the left A-module $A \otimes_R M$ is n-Gorenstein projective, $A \otimes_R M$ is an n-Gorenstein projective left R-module. It is easy to see that the module $_RM$ is a direct summand of the left R-module $A \otimes_R M$. According to Lemma 2.3, $_RM$ is an n-Gorenstein projective left R-module. \Box

Theorem 2.9 Suppose M is any left A-module. Then $A \otimes_R M$ (Hom_R(A, M)) is an n-Gorenstein projective left A-module if and only if M is an n-Gorenstein projective left A-module.

Proof By Propositions 2.7 and 2.8, it suffices to prove that n-Gorenstein projective left R-module M is also an n-Gorenstein projective left A-module.

Let Q be any projective left A-module. Then Q is a projective left R-module. Note that for the ring extension $R \subset A$ and any A-module M, the module M is a left R-module. Therefore, by the isomorphisms

 $\operatorname{Hom}_{A}(M, A \otimes_{R} Q) \cong \operatorname{Hom}_{A}(M, \operatorname{Hom}_{R}(A, Q)) \cong \operatorname{Hom}_{R}(A \otimes_{A} M, Q) \cong \operatorname{Hom}_{R}(M, Q),$

we get the cohomology isomorphisms

$$\operatorname{Ext}_{A}^{i}(M, A \otimes_{R} Q) \cong \operatorname{Ext}_{A}^{i}(M, \operatorname{Hom}_{R}(A, Q)) \cong \operatorname{Ext}_{R}^{i}(A \otimes_{A} M, Q) \cong \operatorname{Ext}_{R}^{i}(M, Q).$$

Since M is an n-Gorenstein projective left R-module, it follows from Lemma 2.2(1) that $M \in {}^{\perp_n} P(R)$, i.e., $\operatorname{Ext}^i_R(M,Q) = 0$ for all $1 \leq i \leq n$. Then we have $\operatorname{Ext}^i_A(M,A \otimes_R Q) \cong \operatorname{Ext}^i_R(M,Q) = 0$. Moreover, since ${}_AQ$ is a direct summand of $A \otimes_R Q$, and then $\operatorname{Ext}^i_A(M,Q) = 0$.

Since $\operatorname{Hom}_R(A, M)$ is an *n*-Gorenstein projective left *A*-module, by Lemma 2.2(2), there is an exact sequence $0 \to \operatorname{Hom}_R(A, M) \xrightarrow{f} P_0 \to L \to 0$ of left *A*-modules, where P_0 is projective and *L* is (n + 1)-Gorenstein projective. By Lemma 2.2(4), *L* is *n*-Gorenstein projective. There is a map $\varphi : M \to \operatorname{Hom}_R(A, M)$ given by $\varphi(m)(a) = am$, which is an *A*-monomorphism, and split when we restrict it as an *R*-homomorphism. Hence we have an *R*-homomorphism $\varphi' : \operatorname{Hom}_R(A, M) \to M$ such that $\varphi' \varphi = \operatorname{id}_M$. Let *P* be any projective *R*-module, and $g : M \to P$ be any *R*-homomorphism. Since *L* is also *n*-Gorenstein projective as an *R*-module, for the *R*homomorphism $g\varphi' : \operatorname{Hom}_R(A, M) \to P$, there is an *R*-homomorphism $h : P_0 \to P$, such that $g\varphi' = hf$. That is, we have the following commutative diagram:

$$0 \longrightarrow \operatorname{Hom}_{R}(A, M) \xrightarrow{f} P_{0} \longrightarrow L \longrightarrow 0$$

$$\downarrow^{g\varphi'}_{P} \xrightarrow{\exists h}$$

Now we have an A-monomorphism $f\varphi : M \to P_0$. Consider the exact sequence $0 \to M \xrightarrow{f\varphi} P_0 \to L_0 \to 0$ of A-modules, where P_0 is projective, $L_0 = \operatorname{Coker}(f\varphi)$. Restricting

the sequence, we note that it is $\operatorname{Hom}_R(-, P)$ -exact for any projective *R*-modules *P*, since for any *R*-homomorphism $g: M \to P$, there is an *R*-homomorphism $h: P_0 \to P$, such that $g = (g\varphi')\varphi = h(f\varphi)$. Then, it follows from the exact sequence $\operatorname{Hom}_R(P_0, P) \to \operatorname{Hom}_R(M, P) \to$ $\operatorname{Ext}^1_R(L_0, P) \to 0$ that $\operatorname{Ext}^1_R(L_0, P) = 0$. Moreover, *M* and P_0 are *n*-Gorenstein projective left *R*-modules, it follows from Lemma 2.4 that L_0 is an *n*-Gorenstein projective left *R*-module.

Let F be any projective left A-module. There is a split epimorphism $\psi : A \otimes_R F \to F$ of A-modules given by $\psi(a \otimes_R x) = ax$ for any $a \in A$ and $x \in F$, and then there exists an A-homomorphism $\psi' : F \to A \otimes_R F$ such that $\psi\psi' = \operatorname{id}_F$. Note that F is also projective as an R-module. Then, it follows from $\operatorname{Ext}^1_A(L_0, A \otimes_R F) \cong \operatorname{Ext}^1_R(L_0, F) = 0$ that the exact sequence $0 \to M \xrightarrow{f\varphi} P_0 \to L_0 \to 0$ remains exact after applying $\operatorname{Hom}_A(-, A \otimes_R F)$. For any A-homomorphism $\alpha : M \to F$, we consider the following diagram

$$0 \longrightarrow M \xrightarrow{f\varphi} P_0 \longrightarrow L_0 \longrightarrow 0$$

$$\downarrow^{\alpha} \swarrow^{\prime} \downarrow^{\exists\beta}$$

$$F \xrightarrow{\not{}} \phi' A \otimes_R F$$

For $\psi'\alpha: M \to A \otimes_R F$, there exists an A-map $\beta: P_0 \to A \otimes_R F$ such that $\psi'\alpha = \beta(f\varphi)$. And then, we have $\psi\beta: P_0 \to F$, such that $\alpha = (\psi\psi')\alpha = (\psi\beta)(f\varphi)$. This implies that the sequence $0 \to M \xrightarrow{f\varphi} P_0 \to L_0 \to 0$ is $\operatorname{Hom}_A(-, F)$ -exact.

Note that L_0 is an *n*-Gorenstein projective left *R*-module, and then $\operatorname{Hom}_R(A, L_0)$ is an *n*-Gorenstein projective left *A*-module. Repeating the process we followed with *M*, we inductively construct an exact sequence $0 \to M \to P_0 \to P_1 \to P_2 \to \cdots$ of *A*-modules, with each P_i projective and which is also exact after applying $\operatorname{Hom}_A(-, F)$ for any projective left *A*-module *F*. It follows from Lemma 2.2 (1) that *M* is an *n*-Gorenstein projective left *A*-module. \Box

3. *n*-Gorenstein projective dimensions over Frobenius extensions

In [10], Ren studied the Gorenstein projective dimensions along Frobenius extensions of rings. In this section, we consider similar conclusions for n-Gorenstein projective dimensions.

Definition 3.1 Let R be a ring. The n-Gorenstein projective dimension of a left R-module M, denote by n-Gpd_RM, is defined as $\inf\{m | \text{ there exists an exact sequence } 0 \to G_m \to \cdots \to G_1 \to G_0 \to M \to 0$ of R-modules, where G_i is an n-Gorenstein projective left R-module}. If such m does not exist, then n-Gpd_R $M = \infty$. Obviously, M is an n-Gorenstein projective left R-module if and only if n-Gpd_RM = 0.

Lemma 3.2 ([4, Proposition 3.1]) Let M be an R-module with finite n-Gorenstein projective dimension m. Then there exists an exact sequence $0 \to K \to G \to M \to 0$, where G is n-Gorenstein projective and $pd_R K = m - 1$.

Proposition 3.3 Let $0 \to K \to G \to M \to 0$ be an exact sequence of left *R*-module, where *G* is *n*-Gorenstein projective. If $1 \le n$ -Gpd_{*R*} $M < \infty$, then *n*-Gpd_{*R*}K = n-Gpd_{*R*}M - 1.

Proof Let $1 \leq n$ -Gpd_R $M < \infty$. On the one hand, by Lemma 3.2 and inclusion relation $P(R) \subseteq n$ -GP(R), we have an inequality n-Gpd_R $K \leq pd_R K = n$ -Gpd_RM - 1.

On the other hand, let n-Gpd_R $K = s < \infty$. Then there exists an exact sequence $0 \to K_s \to K_{s-1} \to \cdots \to K_1 \to K_0 \to K \to 0$, where $K_j \in n$ - $GP(R), j = 0, 1, \ldots, s-1, s$. There exists another exact sequence $0 \to K_s \to K_{s-1} \to \cdots \to K_1 \to K_0 \to G \to M \to 0$. So, we have an inequality n-Gpd_R $M \le s + 1 = n$ -Gpd_RK + 1, i.e., n-Gpd_R $K \ge n$ -Gpd_RM - 1. \Box

Proposition 3.4 Let R be a ring. If $(M_i)_{i \in I}$ is any family of left R-module, then we have an equality,

$$n\operatorname{-Gpd}_R(\oplus_{i\in I}M_i) = \sup\{n\operatorname{-Gpd}_RM_i | i\in I\}.$$

Proof The inequality ' \leq ' is clear since n-GP(R) is closed under direct sums by Lemma 2.3. For the converse inequality ' \geq ', it suffices to show that if M_1 is any direct summand of an R-module M, then n- $\operatorname{Gpd}_R M_1 \leq n$ - $\operatorname{Gpd}_R M$. Naturally we may assume that n- $\operatorname{Gpd}_R M = m$ is finite, and then proceed by induction on m.

The induction start is clear, because if M is n-Gorenstein projective, then so is M_1 , by Lemma 2.3. If $m \ge 1$, we write $M = M_1 \oplus M_2$ for some module M_2 . Suppose that when we have equality n-Gpd_RM = m - 1, there is an inequality n-Gpd_R $M \ge n$ -Gpd_R M_1 . Naturally we have n-Gpd_R $M_i < \infty$, where i = 1, 2. By Lemma 3.2, there are exact sequences $0 \to K_1 \to G_1 \to$ $M_1 \to 0$ and $0 \to K_2 \to G_2 \to M_2 \to 0$ of left *R*-modules, where G_1 and G_2 are *n*-Gorenstein projective. We get commutative diagram with split-exact rows.

Diagram 1 By Horseshoe Lemma

In Diagram 1, $G_1 \oplus G_2$ is *n*-Gorenstein projective. Applying Proposition 3.3 to the middle column in Diagram 1, we get that

$$n$$
-Gpd_R $(K_1 \oplus K_2) = n$ -Gpd_R $(M_1 \oplus M_2) - 1 = m - 1.$

Hence the induction hypothesis yields that n-Gpd_R $K_1 \le m-1$, and thus the short exact sequence $0 \to K_1 \to G_1 \to M_1 \to 0$ shows that n-Gpd_R $M_1 \le m$, as desired. \Box

Proposition 3.5 Let $R \subset A$ be a Frobenius extension of rings. For any left *R*-module *M*, if n-Gpd_{*R*} $M < \infty$, then

$$n\text{-}\mathrm{Gpd}_R M = n\text{-}\mathrm{Gpd}_A(A \otimes_R M) = n\text{-}\mathrm{Gpd}_R(A \otimes_R M).$$

Proof It follows from Proposition 2.7 that $n\operatorname{-Gpd}_R(A \otimes_R M) \leq n\operatorname{-Gpd}_A(A \otimes_R M)$. For any *n*-Gorenstein projective left *R*-module *M*, it follows from Proposition 2.8 that $A \otimes_R M$ is an *n*-Gorenstein projective left *A*-module. Then $n\operatorname{-Gpd}_A(A \otimes_R M) \leq n\operatorname{-Gpd}_R M$. As *R*-modules, *M* is a direct summand of $A \otimes_R M$. It follows immediately from Proposition 3.4 that $n\operatorname{-Gpd}_R M \leq$ $n\operatorname{-Gpd}_R(A \otimes_R M)$. Hence, we get the desired equality. \Box

Definition 3.6 ([11, Definition 2.8]) A ring extension $R \subset A$ is separable provided that the multiplication map $\varphi : A \otimes_R A \to A(a \otimes_R b \mapsto ab)$ is a split epimorphism of A-bimodules. If $R \subset A$ is simultaneously a Frobenius and separable extension, then it is called a separable Frobenius extension.

Example 3.7 (1) ([11, Example 2.10]) For a finite group G, the integral group ring extension $\mathbb{Z} \subset \mathbb{Z}G$ is a separable Frobenius extension.

(2) ([9, Example 2.7]) Let F be a field and set $A = M_4(F)$. Let R be the subalgebra of A with F-basis consisting of the idempotents and matrix units $e_1 = e_{11} + e_{44}, e_2 = e_{22} + e_{33}, e_{21}, e_{31}, e_{41}, e_{42}, e_{43}$. Then $R \subset A$ is a separable Frobenius extension.

Lemma 3.8 ([11, Lemma 2.9]) The following are equivalent:

- (1) $R \subset A$ is a separable extension.
- (2) For any A-bimodule $M, \theta : A \otimes_R M \to M$ is a split epimorphism of A-bimodules.

Proposition 3.9 Let $R \subset A$ be a separable Frobenius extension of rings. For any left A-module M, if n-Gpd_A $M < \infty$, then n-Gpd_AM = n-Gpd_BM.

Proof By Proposition 2.7, any *n*-Gorenstein projective left *A*-module is also *n*-Gorenstein projective left *R*-module. It is easy to see that $n\text{-}\mathrm{Gpd}_R M \leq n\text{-}\mathrm{Gpd}_A M < \infty$. For the converse, we can assume that $n\text{-}\mathrm{Gpd}_R M = m < \infty$, then there exists an exact sequence $0 \to G_m \to G_{m-1} \to \cdots \to G_1 \to G_0 \to M \to 0$ of *R*-modules, where G_i is *n*-Gorenstein projective. By Proposition 2.8, $A \otimes_R G_i$ is *n*-Gorenstein projective left *A*-modules, where $i = 0, 1, \ldots, m-1, m$. Then there exists an exact sequence $0 \to A \otimes_R G_m \to A \otimes_R G_{m-1} \to \cdots \to A \otimes_R G_1 \to A \otimes_R G_0 \to A \otimes_R M \to 0$ of left *A*-modules. Then *n*-Gpd_{*A*} $(A \otimes_R M) \leq m$. By Lemma 3.8, left *A*-module *M* is direct summand of $A \otimes_R M$. By Proposition 3.4, we have inequalities $n\text{-}\mathrm{Gpd}_A M \leq n\text{-}\mathrm{Gpd}_A (A \otimes_R M) \leq m$. \Box

Acknowledgements The authors would like to express sincere thanks to the referees for their helpful corrections, suggestions and comments, which have greatly improved the paper.

References

[1] M. AUSLANDER, M. BRIDGER. Stable Module Category. Mem. Amer. Math. Soc., 1969.

- [2] E. E. ENOCHS, O. M. G. JENDA. Gorenstein injective and projective modules. Math. Z., 1995, 220(4): 611–633.
- [3] H. HOLM. Gorenstein homological dimensions. J. Pure Appl. Algebra, 2004, 189(1-3): 167–193.
- Xi TANG. Applications of n-Gorenstein projective and injective modules. Hacet. J. Math. Stat., 2015, 44(6): 1435–1443.
- [5] F. KASCH. Grundlagen einer Theorie der Frobeniuserweiterungen. Math. Ann., 1954, 127: 453–474. (in German)
- [6] T. NAKAYAMA, T. TSUZUKU. On Frobenius extensions (I). Nagoya Math. J., 1960, 17: 89–110.
- [7] T. NAKAYAMA, T. TSUZUKU. On Frobenius extensions (II). Nagoya Math. J., 1961, 19: 127–148.
- [8] K. MORITA. Adjoint pair of functors and Frobenius extensions. Sci. Rep. Tokyo Kyoiku Daigaku Sect. A, 1965, 9: 40–71.
- [9] L. KADISON. New Examples of Frobenius Extensions. American Mathematical Society, Providence, RI, 1999.
- [10] Wei REN. Gorenstein projective and injective dimensions over Frobenius extensions. Comm. Algebra, 2018, ${\bf 46}(12)$: 5348–5354.
- [11] Wei REN. Gorenstein projective modules and Frobenius extensions. Sci. China. Math., 2018, 61(7): 1175– 1186.