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Abstract In this paper the author studies the singular integral with the circularly deleted
neighborhood on the boundary of the intersection of two balls, and obtain the principal value of
the singular integral with holomorphic kernel and the Plemelj formula.
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1. Introduction

As well-known in several complex variables there is no uniform holomorphic kernel for d-
ifferent domains, and the principal value of the singular integral depends on the shape of the
deleted neighborhood. Gong [1], Wolfgang Alt [2], Kerzman [3,4] and [5,6] et al. studied the
singular integral with holomorphic kernel on the bounded domain with smooth strictly pseudo-
convex boundary. In particular, Gong [1] studied the singular integral on the complex sphere
with different deleted neighborhoods, i.e., circular, elliptic and rectangular neighborhoods, and
obtained different principal values, further, they studied the singular integral on the bound-
ed domain with smooth strictly pseudoconvex boundary with circular, elliptic and rectangular
deleted neighborhoods, respectively, and obtained different principal values. It characterized the
difference between one complex variable and several complex variables.

Range and Siu [7] studied d-equation on the bounded strictly pseudoconvex domain with
piecewise smooth boundary, and obtained the integral representation of holomorphic functions.

For the study of the singular integral on the bounded strictly pseudoconvex domain with
piecewise smooth boundary, even for the basic case of the intersection of two balls, the calculation
of the principal value, a key and first step of the the study of the singular integrals, is complicated.
The difficulty is mainly due to the asymmetry of the deleted neighborhood on the boundary, and
the integration being taken on the whole boundary including the lower dimensional intersection
parts.

In this paper the author studies the singular integrals on the intersection of two balls D,

for the deleted neighborhood on the boundary is asymmetric, the estimates of the singular
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integrals are more complicated than the smooth case. Compared with the singular integrals with
Bochner-Martinelli kernel, the integral is on the whole boundary including the lower dimensional
part [8-10].

We always suppose n > 1, and all the results may not hold for n = 1.

2. Notations and main results

The Cauchy kernel on the ball is invariant under translations, rotations or dilations [5]. So

we define the intersection of two balls as the following special case for simplicity.

Definition 2.1 D = B; N By is said to be an intersection of two balls, if
By ={2€C":|z| <1}, By={2€C": |z —a]* +|¢|* < R?},
such that 0By and 0By intersect real transversally, a = aj +1iag € C, a3 >0, R =|a — 1| > 1,
0<|a] <14+ R, and 2’ = {22,...,2,} € C"7L.
For the singular integrals on the boundary 9D, we focus on the standard position zg =

{1,0,...,0} € 9D. We first discuss the local geometry on the boundary 0D at the standard
position zy. The real tangent hyperplanes of 0B and 0B5 at zy are

’/TliReZl:l’lz]., 7T221m21: (.’ﬂlfl),

as
respectively. The hyperplane that the manifold 9B; N 0Bs lies in is
7 Imzy = —E(:cl —-1).
as
We denote by ¢; the included angle between the outer normal vectors of 95; and the normal
vector of the hyperplane 7, at zgp = (1,0,...,0), j =1,2. Then 0 < ¢; < 7, and
k 1 R2 +ay — 1
VI k2 Ral

Range and Siu [7] constructed the integral representation for holomorphic functions on domains

@01 =cos ! Y2 = Cos (2.1)

with piecewise smooth strictly pseudoconvex boundaries. We borrow their method to write out
the concrete form of the holomorphic kernel on the intersection domain of two balls.

Suppose that the boundary definition functions for B; and By are
pr(Q) = [C1° =1, p2(Q) =G —al* + [')* — R,
respectively, then we have
Vor=(C, Gy Ga)s Ve = (G —a,Coye s Ga),
w(C) = (u1,uz,...,up) = AVp1 + (1 =N Vpy = ({ — (1 = N)a, o, ..., Gr), 0 AL

Obviously, one has <<u(“)(%, ¢—z) =1for ¢ # 2. So {u(¢)(< u(¢),{—2 >)"1} is a partition of
unity. Using this partition of unity we can construct the Range-Siu’s type integral representation

for holomorphic functions [7]. We denote the barrier function by

q)(ngv)‘) = <’U/(C),C - Z> = )‘q)l(C?Z) + (1 - A)®2(Caz)7
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where ®1((,2) =1 — 2¢t, ®2(¢,2) =1 — 2¢t —a(l — z1) —a(l — (1). Set
dup) = dug A+ Adug—1 Aduggr A A dug,

then the holomorphic Cauchy-Fantappie kernel is

Q¢ 2, 0) = Cu(®(¢, 2, M) D (1) Mugdugy A dC, (2.2)

k=1

where C,, = 2= q¢ = d¢i A AdG,.

(2me)™
Since the domain D in Definition 2.1 is special case of strictly pseudoconvex domain with

piecewise smooth boundary, and the kernel (2.2) is a special form of Range-Siu’s kernel, we have
the following Range-Siu’s type formula of integral representation [7, P.333, (2.5)].

Theorem 2.2 ([7]) Let D be an intersection of two balls. Suppose f(z) is holomorphic in D,
then for z € D,

=3 /( ea, FORG 2

[ _soca s [ soeca0 s [ FORCN,  (23)
¢eS, CES2 (¢,A\)ES12XxA12
where I = {172}, Sl = 8B1 n D, SQ = 8B2 n D, Slg = 881 N 8B2, and A12 = [0, 1]
We first calculate the last term in (2.3).
En (= )J 1quU[J] A dC
FORC 2, A) =C,, !
/(c A)ES12x A (N ) (CA\)ES1a X A1 APy + (1 = A)®g)"

-, / /1 2o (=17 71aC A A dCp A dC
(€S2

0 (A<I>1 + (1= X)®y)"
- B C 1 1 _
<€S12 JZ TL - 1 ) ((I) -1 (I)1 1) (1.5]
where d¢;; 1 = dC /\.../\df,_ AdC; 4 A---AdC, . So the kernel (2.2) is
[1,7] 2 1 Jj+1 n
—lag; 1 1 .-
- d¢y 5 A dC. 2.
=Cn Z (n—1)( cI>1 @2)(@;—1 q)fl’b—l) C[l,g] Ad¢ (2.5)

The main results in this note are

Theorem 2.3 Suppose z € 9D, f(z) € H(«a,0D). Then the Cauchy principal value (3.1)
exists, and

pv. / FONAC 2, ) = / (FO) = FEIAC 2, A) +7(2)F(2).
¢(edD ¢eoD

Theorem 2.4 (Plemelj Formula) If f € H(«,0D), z € D, and z approaches zyp € 9D, and
satisfies |z — zg|/d(z,0D) < M, M is a positive constant. Then

im [ FOQAC 2N =pv. / FORAC 70, ) + (1= 7(20)) £ (20).

=20 J¢edD ¢ceoD
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3. Cauchy principal value

In several complex variables the principal values of singular integrals with holomorphic kernels
depend on the shapes of the deleted neighborhood [1-5]. We define the Cauchy principal value
at zg € D by the circularly deleted neighborhood.

Definition 3.1 For f(z) € C(D), z € D, the Cauchy principal value is defined as

253 /(M)ESMI HOG2 ) = Iy 3 Joorn OGN, @1

[1—=2Ct|>e

Definition 3.2 If f(z) satisfies, for z1, 29 € D,

[f(21) = f(22)] S 121 — 22|,

0 < o <1. Then we say f(z) € H(a,0D). A S B means that there exists a positive constant
M, such that A < M B.

We first give some lemmas.

Lemma 3.3 Suppose a, 5 € R. Then

B n—1 1 n—1 1
/Oé (1—pre i) = Hl—pr@ iaym mz::lﬁ 1—pre ipym +
ilog(1 — pre™) —ilog(l — pre™") + 8 — a. (3.2)

The proof can be found in [1, proof of Lemma 1.2.1]. In this note we always assume that the
logarithmic function is the principal branch.

The existence of the Cauchy principal value (3.1), for f(z) = 1, is the first and important
step to study the boundary behavior of the Cauchy integral.

Lemma 3.4 Suppose z € 0D, f(z) = 1. Then the Cauchy principal value (3.1) (denoted by

7(z)) exists, and when z is a smooth point, 7(z) = , when z is a non-smooth point,
1 2n—2 T/2—p1 )
T(2) == — — / e~ =Dt cos" 2 ¢ sin tdt+
2 T Jpy—n/2
1 ! 1 — e2¥rig)n—2 1 ! 1 — e~ 2p2iq)n—2
1 / Qe L ( )" g
271 _e2e1i u 271 _e—2p2i u

where 1 and g9 are defined in (2.1).

Proof For zy € 0B N By, or By N 0By, i.e., 2y is on the smooth parts of 9D, 7(z) = %
(see [1], Lemma 1.2.1 or [2]). Therefore, we only need consider zo € 9By NIBs, i.e., zg is on the
non-smooth part. For convenience, we take the standard position zp = (1,0’). The other points
on 0B; NJB; can be turned to the standard position. Let € > 0 be sufficiently small,

o={C€dD:|1-zC"<e}, X:0D\o.
Clearly, o and ¥ can be split into three disjoint parts, respectively,

01 =0N0By, 0o =0NIBy, 013 =0cNIOBL NIBy,
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Y1 =XN0OBy, Yo=XN0IBy, Y12 =XN0OB; NIBs.

Set 2o = (p+ k(1 — p),0') € D, 0 < p < 1, by Theorem 2.2, we have

1= / +/ Q(C, 30, \). 3.3
Z( (C,)\)GE}XAI (C,)\)GO’IXA[> ( 0 ) ( )

I

Then one has

= lim lim / Q(¢, 20, A)
5—)Op~>lz (CA)EorxAf

—imim ([ ecan+ [ ocno+ [ Q¢ 70.0))
e=0p—1 (€01 (€02 (¢, N\)ET12 X A2

e—=0p—1

Let us compute the three terms in (3.4). It is well-known that on the unit sphere the Cauchy-
Fantappié kernel is just the same as the Cauchy-Szegd kernel. So the term J; in (3.4) can be

_ L _ o
h= Wan—1 /CEUl (1 — ZoCt)n’

where wo, 1 = 27"/(n — 1)!, and o(() is the Lebesgue volume element of the sphere ¢t = 1.

written as

By Painleve’s Theorem, the limit value of J; does not depend on the path of Zy approaching
to the standard position point zp = (1,0’). So we can choose a special path, i.e., taking Zp =
(p,0") (0 < p < 1). Therefore, we have

lim lim J; = lim lim w; . / LQ
(€0 (

e—0p—1 e—0p—1 n-l 1-— pCl)n7
where o7 is given as follows,
o [¢l=1, [1-G|<e kReG +1ImG >k,

where k = aq/aq, without loss of generality, suppose a; > 0, for a; < 0, the proof is similar.

Suppose ¢; = re’?, v = ((a,...,¢,). Then we have

= 2 2 2
. v’ =1—7 S\/1+67_€’ .
o1t N 1 k24 (14k2)r2—k2 9 114022 ( . )
p = COS W < < cos T 9.
By Lemma 3.3,

_, -1
Jl _w2n—1/ 5
! 14
V0 S\/W
_, -1
*w2n71/
vy’ <

“V14k2

ilog(1 — pre” ") —ilog(1 — pre™"2) + (ag — al))a(v)

O
—e2 7 a (1 - preiie)n
n—1

(30 1= pre-ion) = — (1 = pre=ion)

) el m

Z )+ Py — Py + P*. (3.6)

m=1
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For the second term .Js in (3.4), we take the coordinate transformation

(=(G,¢) = ¢=((G—a)/(1—a),(/R), (3.7)
then, as Zy — 1o,
& —al? + () = R?, 1€l =1,
o2 1-G <e, —> 0514 (Reéy —1)? +Iméf < ?/R?,
Im¢; < —k(Re¢; — 1), Imé; < k(Re&; — 1),

where k = (Ja|> — a1)/as. Let & = ret, v = (&,...,&,). We have

,U,E,/:l_,r2< 2e _ &

o = RV1itke BV
2 - 2 _2,p2 7.2 A T
- —1 14+r’—€*/R . —1 K+ (A +kH)r2—k2
f1 = —cos™! T < < —cos — o - Ba.

Taking @y = (p,0") (0 < p < 1), we have by Lemma 3.3

—B2 d6
-1
T2 =wan /-,< 2¢ c2 U(U)/IB (1 — pre=)n
VU - —pP1

n—1
1 . )
—ois | (X ey ey
o' < 2e _ &2 m
= Rrvitk2 RZ  m=l
ilog(1 — pre'™) — ilog(1 - pre'™) + (81 — ) ) o(v)
n—1 . N
= (Qm_Qm)+QO_QO+Q*- (3 8)
m=1

lim lim P* =0, lim lim Q* =0. (3.9)

e—0p—1 e—0p—1

We compute Py in (3.6) as follows. First we have

1+ ki
1+ k2
Set c=1—p, b= p(1+ki), g=[20+ c(1+k?)]/(1+ k?), one has

1—pre ™ =1—p+4p (1=~ (1+Kk2)r2 —k2). (3.10)

1+ ki

log[1 — -
og| PP 2

—upl / (1 - /I— (11 )i )o(v)
v’ <2e/v/1+k%—e2

1+ ki
1+ k2

271_71712‘(")2—71171 2e /v 1+k?—g2
——= log[l —p+p
0

I'(n—1)
(01 [V
ey,

(1 — /1 —(1+k?)s2)]s*"3ds

1+ k¢
log[1 — p + pﬁ(l VTt R 2dt

(n— 1)i /s/m

T Jo y" 22— (L4 Ky = (1+ k)yllog(c + by)dy.

For an integer m > 0,
be/V1+k?
lim lim y™ log(c + by)dy = 0,

e—=0c—0 Jq
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it yields
lim lim Py = 0. (3.11)
e—=0p—1
For the same reason, we have
lim lim Qo = 0. (3.12)
e—0p—1
For the terms X7_" P,, and 7! Q,,, we have
- / O
" imanfl UE’SQE/W—EQ (]. — pT€71a2)m
B 1 / 2 /V/1+k2—g2 S2n73d5
TMwan—1 Jo 1—p+ p# + %\/252(2 — %) — 2 —e2m
™ T 2w
/ sin?" % p1dey . .. / Sin o, —4dwan_4 dpon_3
0 0 0
9nn—1 2e/V/1+k2—¢2 $2n—3]g
im(n — 2)lwap /0 [1—p+p=t + 2, /4e2 — (52 +2)2m

When 1 <m<n—-2,if1/2<p<1,

2 2
|1fp+p8 +5 Zp\/4€2 s24+e2)27™ < ((p < JQFS )2+%(462*(52+€2)2))7m/2

I S L
(pe)m = em’
For 1 < m < n — 2, by Lebesgue’s Theorem,
2 /VIHh2—e?
|Pn| < s*m/o s 3ds — 0, & — 0. (3.13)
When m = n — 1, setting s = ny, n = 1/2¢/v1 + k2 — £2, then by Lebesgue’s Theorem

1 2n—3d
lim lim P, _; = lim — A
cm0p—1 VT 5o y2te?n=2 | i 4.2 _ (.2 2,—2)\2]n—1
e 0 [ 2 + 2\/477 € (y +e°n ) ]

_ on—1 /1 2n 3dy
moJo (y2 4 i1+ k2 — yh)n-1

on—2 5 Y1 )
- / —/ )e_z(”_l)tcos"_Qtsintdt. (3.14)

=m/2 — ¢1. While for P,

1/)1:C0871ﬁ
g2
log|1—p+p +S Zp\/452 52 4 £2) |<log(1—p+p 28) +Z(4EQ—(82+€2)2)

1 1
Slogz((l—#s —l—s) +4e? — (s? —|—6))§log§(1+2£),

so we have

iljr(l) ;;rrﬁ Py, =0. (3.15)
Similarly, when 0 < m < n — 2,

lim hm Qm=0 (3.16)

e—=0p—1
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and
on—2 5 P2 )
hr% hH} Qn—1 = - / —/ )el(”_l)tcosn_ztsintdt. (3.17)
e—0 p— T
1)y = cos™1 \/ﬁ = m/2 — @y. Next we consider B,,. We have
~ 1 14 ki
P —— 1= p+p——Ll = JT= (AL B2)00)] ™o (v).
miwan—1 ’U’TJ'SQS/\/W*&Z’ 1 + k2
By spheroidal coordinates, one has
}5 B ,n_n—l / 25/\/ 1+k2—e2 tn_2dt (3 18)
" mn = 2)liwsn 1 Jo [1—p+pitE(1—/1- 1+ )" :

Setl—\/l—(l—i—kQ) = (1 + k?)y, then, for 0 <m <n — 1,
> /\/W 297722 — (14 k?)y]" 21 — (1 + k?)y]dy
(n—2 Viwan—1

P, = - —0, e—=0, p—1.
L [1—p+p(l+ki)y™ g

Form=n-1,

ﬁ 7 L E/\/1+k2 2yn72[2 _ (1 + kQ)y]n72[1 o (1 + k2)y]dy
" omi [1—p+ p(1 + ki)y]—1 '

Set c=1—p, b= p(1+ ki),

Fu(y) = (20" 2 — 1+ E)y]" *[1 = 1+ E)y))/[e+ by]" ",

then we have
. 1 E/\/ 1+k2

ZR— Fy1(y)dy. 1
1= 5 11(y)dy (3.19)

For @m, it can be treated similarly to ﬁm, when m <n —1, lim._olim,_; @m =0, and

2e 2 ~
~ 1 RV1+k2 R? 1—ki 7 - -
et = — 1— (1 — /1 — (14 k2)t)) "t 2dt.
Q=57 | L= ptp (1+R)1)

Set 1—\/1—(1+k2)t = (1+k2)y,
Fou(y) = (29" 2= (1+ K" (1= 1+ F)y))/[e + p(1 — ki)y]" ",

then
1 e/(RV1+k2)
Qn 1= % FQl(y)dy (320)

Now let us compute J3. On 012, 2% + k?(x — 1)% + |¢'|?> = 1, = Re(y, then
_ 1<& _
dé, = a 3 ¢d¢; mod(da, d, dls, ..., d¢n), G2 # 0. (3.21)
j=3

So we have, by (2.3),

Cnha / I¢'[Pd gy A dC Cha / '[P gy A dC
012 ( g12 (

- Py — o) (@5

= J31 — Jaa. 3.22
O — 0)(07 7 n—1 e (322

J:
ST -1
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Set v1 = ((3,...,(n) € C"2) 21 = p,0 < p < 1, by (3.21)
S 27iC,, (1 — ki)a /1 dx/ (1 —a? = k(1 — 2)?)d(}y9 A Ay
o n—1 1—e/VITR? 017, <122 —k2(1—x)2 (@1 — @2)(1 — 21G1)"t
11— ki /1 (1—22—k2(1—2)?)" dz
- 2mi e (I-p—(1—-Fki)1—2))(1- ki(x — 1)))n—1
i 1_ﬁ( p—(L=ki)(1—x))(1—p(x+ki(z —1)))
1 (e (1 — ki)t" 12 — (1 + k2)t)"—1dt
-2 S, (1—p—(1—ki)t)(1 —p+ p(1l+ ki)t)n=1
Set
Fia(t) = (1 —ki)t" ' 2 - 1+ E)O)" 1 —p— (1 = ki)t)(1 — p+ p(1 + ki)t)" 1],
then
1 6/\/ 1+k2
= — Fio(t)dt. 3.23
ng o o 12( ) ( )
For the second term Jsg in (3.22), by the transformation (3.7), we have
J Cn / |€'[7d€ 19 A dE
32 = ~ =~ - —
n= Lo, (T—ur — (L4 ki) /(1= ki)(1 = &))&(l — wi&n)"!
_2miCy (1 + ki) /1 "
n—1 1-¢/(RV1+k2)
y / (1 —a? = k*(1 — 2)?)d€} 19 A dépg
0T <102 =i (1-)? (1 —u1 — (L4 ki) /(1 = ki) (1 — &))éa(1 — wr )" !
1+ ki /1 (1—22—k*(1—x)?)" dz
21 Ji—eprv/irie) (1—ug — (1+ ki) (1 — 2))(1 — ug + (1 + ki) (1 — )1
1 e/ RV (1+ ki)t (2 — (1 + ko) at
omi J, (1 —uy — (1 + ki)t)(1 — ug +uy (1 — ki)t)yn—1
Set ur = (p,0'), 0 < p <1,
(1+ki)t"=1(2 — (1 + k2)t)n1
Fy(t) = = = ;
1-p—QQ+Eki)t)(1—p+p(l—Eki)t)~!
then
1 e/ (RV1+E2)
J3g = — Fyo(t)dt. 3.24
=55 ) 22(t) (3.24)
By (3.22) and (3.23), we have
1 [Vie 1 [avie
= — Fio(t)dt — — Foo(t)dt. 3.25

Let us consider (3.19) and (3.23). Set c=1—p, b = p(1 + ki), d = —(1 — ki), we have
207722 — (L+ k2)en 26" 2[2 — (1 + k)t 2
Fll(t) - —1 - 1 )
(c+ bt)» (c+bt)n
" PR - (AR P2 - (L R

P == e s o et
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1 (Vie2
Z =5 [ V" (Fut) + Fua(t)dt
e 0
1 [Vie et 22— (1Bt (L+ k)12 — (14 k)2
( - - - )dt
“omi (c+ bt)" e+ db) (c+ bt)n1
=71 — Zg. (3.26)
Put ¢+ bt =z, and [2b+ (1 + k?)c]/(1 + k?) = g, then
_1\n—2 2\n—1 ot —2— _ \n—1 _ \n—2
lim lim Z5 = (=1) - (L+ k) lim lim wh? (2 —0) (z-9) dz =0
e—0c—0 2t (14 ki)?"=2 e=0c—0 gn—1
While

1n11 2\n—1 %1 _ \n—2 n—1
lim lim Z; = (1) (1+ &%) hmhm/ = oz — o) (z-9) dx

€—0c—0 2mi(1 + ki)2n=3 5050 - 1( b — cd + dx)

(1)1 (1 + k2= i / e Oy (—ep !
= " lim 1 )= e T S|
Sl 1 kayzn—s o m(= Z 2 (cb—cd +dz)

o2 d, Y (1-w)°
- = Cs \s 7d
2mi(1 + ki)n—2 ; ”—2(2) /,ezw w

-1 1 — e2p1ig\n—2
_t / (A - et
271 ) _ 200 U

Let us consider (3.20) and (3.24). Set ¢ =1 — p, p = p(1 — ki), ¢ = —(1 + ki), we have
2" 22— (L+ At 222 — (1 + k)2

For(t) = - ,
2t e+ pty] (e piy]
A" 22 — (L4 k2" 722 — (1 + k)]t
Fa(t) = - — — )
(c+ qt)(c+ pt)» (c+ pt)™
1 o
Z=5- TV (B () + Faa(t))dt
i

1 [ (ctH‘[z —(1+ ) A+ 2 - (1 + E?)t]H)dt

27 Jo (c+pt)"=1(c+ qt) (c+ pt)n—1

=7y — 5. (3.27)

Put ¢+ pt =z, and [2p + (1 + k2)]/(1 + k?) = §, then
B ~1)7—2 (1 4+ k2)n—1 c—s—% _o\n—=1(,. _ =\n—2
lim lim 2, = S AE Ry [ R @) @9
e—=0c—0 2w (1+ k2)2” 2 £50c—0 grn—1
While
B 1)~ 1 1 k2 n—1 —E _ \n—2 ~\n—1
lim lim Z; = (=1) (L+ lim hm/ 8 sz oz —c) (z=9) dx
e—0c—0 2mi(1 — ki)2n—3  £—0c—0 "~ 1(ep — cq + qx)
2n—2 n—2 q (1 _ u)s
=— = C3 (= 3/ du
2mi(1 — ki)n—2 ;) 2(3) e 2eni U
-1 (1 _ e*?@giu)n72

— du.

" omi =200 U
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By (3.3), (3.4), (3.6), (3.8), (3.15)—(3.27),

7(z) =1 — lim 11m(J1+J2+J3) =1 —lim im(Qu_1 — Po_1 + Z1 — Z1)

e—0p— e—0p—1

gn— 2 wl
=1+ / / e =Dt o2 tgin tdt—

on— 2
/ / e~ =Dt 02 gin tdt+
P2

1 _ e2prigyn—2 1 1 1 — e—2w2iy\n—2
— e—)du - — (1—e ) du
271 ) _ 201 U 2Tt J_ 2001 U
1 on—2 T/2—p1 )
= - — / e Dt cos" 2 ¢ sin tdi+
2 T Jpy—m/2
1 1 1 — e2¢1ig\n—2 1 1 1 — e~ 221y \n—2
271 ) _ 2014 U 21t ) _—2e0i U

The proof is completed. O

Proof of Theorem 2.3 For z € 0D a smooth point, the case is the same as in the complex
sphere [1], so we only need to consider z € 9D a non-smooth point. Without loss of generality,
let z = (1,0"). By Lemma 3.4, we have

p“z;lgmﬁﬂggﬂo (€2 —g%EZ/LMQ:ﬂM O~ FEIACN +7()f(2),

while
Z/ (f(¢) = F(2))(¢, 2, A)
7 J(GNET XA
:</ +/ +/ Q) = FE)QAE =)
CGEE(I)y)\Zl 4625(2),)\20 (C’)\)GEEUz)XAI
= Jl + JQ + J3.
(<) _ .
For Ji, |J1| S fgezg(l) ¢, |ner2 — O(1). Similarly, we have |J3| < O(1). For Js,
L L = G s (-1 aGdd ) A dd
|J3‘ 5/ ( Q) n—1 + n—l)‘ 1| ‘ J 2( ) J [11] |
C€Zc(12) | 1‘ |(I)2| ‘(I)l — @2|
= J31 + Jaa.
J32 < / |1 _Zl|a|1 - l‘|n_1|(712[12] N d<[12] /\dﬂ?l
™ Jeesian 11—y

1—_—2c 4.2
= & _on).

(a2—a3)/la)z (1 — )7/

Similarly, we have J3; < O(1). Hence, J; + Jo + Js3 is a convergent generalized integral. The
proof is completed. O

4. The limit value of Cauchy type integral and Plemelj formula
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We introduce a symbol d(z,dD) = minceap |1 — 2.

Theorem 4.1 Suppose f(¢) € H(a,0D), 0 < o <1, € dD. Let z € D approach zy € 0D,
when
|¢ = 2|/d(z,0D) < M,

M is a positive constant, then

93 S0y O = 50620 = > Lo SO = S0 20,0, (01)

Proof We only consider the case of zy the non-smooth point. Without loss of generality we
can take zp = (1,0’). Then the integral on the left hand side of (4.1) equals

T=( / + / + / + / + / + / )
(€o1,A=1 (€o2,A=0 (C,)\)Erflzxﬂlg CeXq,A=1 CeX,A=0 (CAN)EX12x Aqg

(F(Q) = F(20))(Q(C, 2, ) = Q(C, 20, A))
=T\ +To+T5+ Ty + Ts + Tg.

Taking similar operation in [1, Theorem 1.4.1], we have
|Tj| =O(e), j=1,2,4,5.

While
T </ ( 1 3 1 ) B _61|a|2?=2(_1>j_1a?jd6[1,j] A d(]
N Jeeors 1@ @ @1 — @]
=G24+ 1= 3= ¢ +a(l = G)
</ bt =G ral - QP
~Jeeors 1= ¢y Pl = ¢ +a(l — ¢!
</ (K1(1=2)" 2 4 Ky o(1 = 2)"72) 2]y (—1)71ag;dC 4y A dC|
(E€o12

) 275 (=1)7 " ad;dpy ;A dC|

~ (1 _ x)2n—2—o¢

12 4.2 q
s[ 7 e — o

(a2-a3)/la)2 (L —2)17"
where K is a positive constant (j = 1,...,n—2). While |Tg| = O(1). The proof is completed. O

Proof of Theorem 2.4 (Plemelj Formula) For

Q A
2}: /(MGSMI FORAC, )

-y /MESMIU(O L GEEIE) 3y (¢, %)

7 J(GA)ESI X Aot

:J1+J27

by Theorem 2.3, for z € D, zg € 0D, then

lim J; =; /@,Mesm(ﬂo — F(20)2AC, 70, A)

Z—r2z0
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—p.v. / FORUC 70, ) — 7(20) (20):
(¢ Nens

For }, f(C,A)eszxAz Q(¢,2,A) =1, we have lim,_,,, Jo = f(20). The proof is completed. O
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