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Abstract We study the stability of endemic equilibriums of the deterministic and stochastic

SIS epidemic models with vaccination. The deterministic SIS epidemic model with vaccination

was proposed by Li and Ma (2004), for which some sufficient conditions for the global stability

of the endemic equilibrium were given in some earlier works. In this paper, we first prove by

Lyapunov function method that the endemic equilibrium of the deterministic model is global-

ly asymptotically stable whenever the basic reproduction number is larger than one. For the

stochastic version, we obtain some sufficient conditions for the global stability of the endemic

equilibrium by constructing a class of different Lyapunov functions.
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1. Introduction

Studies of epidemic models with vaccination have become an important area in the math-

ematical theory of epidemiology, and they have largely been inspired by the works [1–5]. The

vaccination enables the vaccinated to acquire a permanent or temporary immunity. When the

immunity is temporary, the immunity can be lost after a period of time. In [6], Li and Ma

proposed the following SIS model with vaccination:
dS
dt = (1− q)A− βSI − (µ+ p)S + γI + εV,
dI
dt = βSI − (µ+ γ + α)I,
dV
dt = qA+ pS − (µ+ ε)V.

(1.1)

Here S(t) denotes the number of members who are susceptible to an infection at time t. I(t)

denotes the number of members who are infective at time t. V (t) denotes the number of members

who are immune to an infection at time t as a result of vaccination. A stands for a constant input

of new members into the population per unit time, q denotes the fraction of vaccinated for new

born; µ denotes the natural death rate of S, I, V compartments; β is the transmission coefficient

between compartments S and I; p represents the proportional coefficient of vaccinated for the
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susceptible individuals; γ is the recovery rate of I; ε denotes the rate of losing their immunity for

vaccinated individuals; α is the disease-caused mortality rate. The parameters q, A, β, µ, p, γ, ε

are positive with 0 < q < 1.

They obtained the threshold value R0 = Aβ[ε+(1−q)A]
µ(µ+γ+α)(µ+ε+p) of system (1.1), and proved that

if R0 < 1, the disease-free equilibrium is globally asymptotically stable in the invariant set Ω,

where Ω = {(S, I, V ) : S > 0, I ≥ 0, V ≥ 0, S + I + V ≤ A
µ }, while if R0 > 1, there exists a

unique endemic equilibrium E∗ = (S∗, I∗, V ∗), where

(S∗, I∗, V ∗) =
(µ+ γ + α

β
,
µ(µ+ γ + α)(µ+ ε+ p)

β(µ+ α)(µ+ ε)
(R0 − 1),

qβA+ p(µ+ γ + α)

β(µ+ ε)

)
,

which is globally asymptotically stable in Ω under certain sufficient condition. Recently, a new

sufficient condition for the global stability of E∗ is given in [7]. Some related works can be

referred to [8, 9]. In this paper, we prove the following

Theorem 1.1 Let R0 > 1. Then the endemic equilibrium E∗ of system (1.1) is globally

asymptotically stable.

However, the evolving process of the epidemic disease over the time is naturally subject to

random and environmental perturbations. To understand the impacts due to such randomness

and fluctuations, it is convenient and effective to model the disease spreading through a stochastic

differential equation (SDE) approach [11–18]. In [15], Zhao, Jiang and O’Regan take into account

the effect of randomly fluctuating environment in model (1.1) by assuming that fluctuations in

the environment will manifest themselves mainly as fluctuations in the parameter β: β → β+σḂ,

where B is standard Brownian motion and σ2 represents its intensity, and obtained the following

SDE model: 
dS = [(1− q)A− βSI − (µ+ p)S + γI + εV ]dt− σSIdB,

dI = [βSI − (µ+ γ + α)I]dt+ σSIdB,

dV = [qA+ pS − (µ+ ε)V ]dt+ σ3dB3.

(1.2)

They proved that when the noise is large, the infective decays exponentially to zero regardless

of the magnitude of R0. When the noise is small, some sufficient conditions on extinction and

persistence are established. Some further works on system (1.2) can be referred to [19–23].

In [16], Zhao and Jiang considered the following stochastic system:
dS = [(1− q)A− βSI − (µ+ p)S + γI + εV ]dt− σ1SdB1,

dI = [βSI − (µ+ γ + α)I]dt+ σ2IdB2,

dV = [qA+ pS − (µ+ ε)V ]dt+ σ3dB3,

(1.3)

where Bi (i = 1, 2, 3) are independent Brownian motions and σi (i = 1, 2, 3) are their intensities.

When the perturbations and the disease-related death rate α are small, they showed that there

is a stationary distribution and it is ergodic when R0 > 1, whereas the asymptotic behavior of

the solution around the disease-free equilibrium prevails when R0 ≤ 1. In [24], the sufficient

conditions for extinction and persistence in mean are obtained, and a threshold of the stochastic

model which determines the outcome of the disease was established when the white noises are

small.
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From the above we know that system (1.1) admits a unique endemic equilibrium E∗ when

R0 > 1. Furthermore, we assume stochastic perturbations are of white noise type, which are

directly proportional to distances S, I, V from values of S∗, I∗, V ∗, influence on the S, I, V re-

spectively. Thus system (1.1) results in
dS = [(1− q)A− βSI − (µ+ p)S + γI + εV ]dt+ σ1(S − S∗)dB1(t),

dI = [βSI − (µ+ γ + α)I]dt+ σ2(I − I∗)dB2(t),

dV = [qA+ pS − (µ+ ε)V ]dt+ σ3(V − V ∗)dB3(t),

(1.4)

where Bi (i = 1, 2, 3) are independent standard Brownian motions and σi (i = 1, 2, 3) represent

their intensities. Obviously, stochastic system (1.4) has the same equilibrium points as system

(1.1). In this paper, we will investigate asymptotic stability of the equilibrium E∗ of stochastic

system (1.4). We obtain

Theorem 1.2 Let R0 > 1. Then the equilibrium E∗ of system (1.4) is stochastically asymp-

totically stable in the large if the following conditions are satisfied:
σ2
1 < 2βη∗I∗

η∗+1 ,

σ2
2 < (µ+ α)(1 + p+α+2µ+η∗(µ+α)

βI∗ )−1,

σ2
3 < ε2

4η∗(µ+α)(η∗+1)M∗ ,

where M∗ = 1
p2 [2(µ+ ε)(µ+ p)− pε] and η∗ = p2ε2

4µ(µ+α)(µ+ε)(µ+p+ε) .

This paper is organized as follows. In Section 2, we will prove Theorem 1.1 by using Lyapunov

function method. In Section 3, the proof of Theorem 1.2 will be given by constructing a class of

different Lyapunov functions.

2. Proof of Theorem 1.1

In the section, we will give the proof of Theorem 1.1 by using Lyapunov function method.

Proof Let us consider a nonnegative solution (S, I, V ) of system (1.1). Denote

x = S − S∗, y = V − V ∗, z = N −N∗, N = S + I + V,

where N∗ = S∗ + I∗ + V ∗. Adding the three equations in (1.1) yields

dN

dt
= A− (µ+ α)N + α(S + V ). (2.1)

Thus, (x, I, y, z) satisfies
dx
dt = −βIx− (µ+ p)x− (µ+ α)(I − I∗) + εy,
dI
dt = βIx,
dy
dt = px− (µ+ ε)y,
dz
dt = α(x+ y)− (µ+ α)z.

(2.2)

Define the functions Vi (i = 1, 2, 3) along the solution (x, I, y, z) of system (2.2) by

V1 =
1

2
x2 +

µ+ α

β
(I − I∗ − I∗ ln

I

I∗
), V2 =

1

2
y2, V3 =

1

2
z2.
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Consider the Lyapunov function VX,Y (t) = V1(t)+XV2(t)+Y V3(t), where the positive constants

X and Y will be determined later. Next, we calculate the derivatives dVi

dt along the solution of

system (2.2). By the identities{
S∗ = µ+γ+α

β , qA+ pS∗ − (µ+ ε)V ∗ = 0,

(1− q)A− βS∗I∗ − (µ+ p)S∗ + γI∗ + εV ∗ = 0,
(2.3)

we have 
dV1

dt = −βIx2 − (µ+ p)x2 + εxy,
dV2

dt = pxy − (µ+ ε)y2,
dV3

dt = −(µ+ α)z2 + αxz + αyz.

Then for any positive constants X and Y , we have

dVX,Y

dt
≤− (µ+ p)x2 + (pX + ε)xy −X(µ+ ε)y2−

Y (µ+ α)z2 + Y αxz + Y αyz

=:− xM(X,Y )xT, (2.4)

where x = (x, y, z), T denotes the transpose, and the matrix M(X,Y ) is defined by

M(X,Y ) =

 µ+ p −pX+ε
2 −Y α

2

−pX+ε
2 X(µ+ ε) −Y α

2

−Y α
2 −Y α

2 Y (µ+ α)

 .

It is easy to see that by some elementary transformations, M(X,Y ) can be transferred into

M̃(X,Y ) =


µ+ p −pX+ε

2 −Y α
2

0 X(µ+ ε)− (pX+ε)2

4(µ+p) −Y α
2 − Y α(pX+ε)

4(µ+p)

0 −Y α
2 − Y α(pX+ε)

4(µ+p) Y (µ+ α)− (Y α)2

4(µ+p)

 .

Clearly, M(X,Y ) is positive definite if the following conditions are satisfied:{
∆1(X) =: X(µ+ ε)− (pX+ε)2

4(µ+p) > 0,

∆2(X,Y ) =: ∆1(X) · [Y (µ+ α)− (Y α)2

4(µ+p) ]− [Y α
2 + Y α(pX+ε)

4(µ+p) ]2 > 0.

Note that

∆2(X,Y ) = Y
{
(µ+ α)∆1(X)− Y

[X(µ+ ε)α2

4(µ+ p)
+

α2

4
+

α2(pX + ε)

4(µ+ p)

]}
=: Y [(µ+ α)∆1(X)− Y∆3(X)],

and

∆1(X) = − 1

4(µ+ p)

{
p2X2 − 2[2(µ+ ε)(µ+ p)− pε]X + ε2

}
.

Since 2(µ+ ε)(µ+ p)− pε > 0 and [2(µ+ ε)(µ+ p)− pε]2 − p2ε2 > 0, the equation ∆1(X) = 0

has two positive roots X1 and X2 with X1 < X2. Taking X∗ = 1
2 (X1 +X2) yields ∆1(X

∗) > 0.

By choosing Y = Y ∗ = (µ+α)∆1(X
∗)

2∆3(X∗) , one has ∆2(X
∗, Y ∗) > 0 and hence, the matrix M(X∗, Y ∗)

is positive definite. It follows from (2.4) that
dVX∗,Y ∗

dt is negative-definite. On the other hand,
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it is clear that
dVX∗,Y ∗

dt = 0 if and only if (S, I, V ) = (S∗, I∗, V ∗). According to the LaSalle’s

invariant principle [10], E∗ is globally asymptotically stable. The proof is completed. 2
3. Proof of Theorem 1.2

In the section, we study the stochastically asymptotic stability of E∗ of system (1.4). To this

end, we will construct a class of different Lyapunov functions to finish the proof of Theorem 1.2.

Proof Let x(t) = S(t)− S∗, y(t) = I(t)− I∗ and z(t) = V (t)− V ∗. Noticing (2.3), we have
dx = [−βxy − βI∗x− (µ+ α)y − (µ+ p)x+ εz]dt+ σ1xdB1,

dy = (βxy + βI∗x)dt+ σ2ydB2,

dz = [px− (µ+ ε)z]dt+ σ3zdB3.

(3.1)

To prove the theorem, it suffices to show that the zero solution of system (3.1) is stochastically

asymptotically stable in the large. Let x = (x, y, z). Define the Lyapunov function

V (x) =

4∑
i=1

aiVi(x),

where ai are positive constants to be chosen later, and Vi (i = 1, 2, 3, 4) are defined as follows:

V1(x) =
1

2
x2, V2(y) =

1

2
y2, V3(z) =

1

2
z2, V4(x, y) =

1

2
(x+ y)2.

Let L be the differential operator associated with (3.1). By Itô formula [25, Theorem 6.2 of

Chapter 1], we have
LV1 = −βI∗x2 − (µ+ α)xy − (µ+ p)x2 + εxz − βx2y + 1

2σ
2
1x

2,

LV2 = βI∗xy + βxy2 + 1
2σ

2
2y

2,

LV3 = pxz − (µ+ ε)z2 + 1
2σ

2
3z

2,

LV4 = −(µ+ p)x2 − (µ+ α)y2 − (p+ α+ 2µ)xy + εxz + εyz + 1
2σ

2
1x

2 + 1
2σ

2
2y

2.

Due to 2(µ+ ε)(µ+ p)− pε > 0, taking M∗ = 1
p2 [2(µ+ ε)(µ+ p)− pε] yields

L(V1 +
µ+ α

βI∗
V2 +M∗V3) =− βI∗x2 − [(µ+ p)x2 − (M∗p+ ε)xz +M∗(µ+ ε)z2]−

βx2y +
µ+ α

I∗
xy2 +

1

2
σ2
1x

2 +
µ+ α

2βI∗
σ2
2y

2 +
M∗

2
σ2
3z

2

≤− βI∗x2 − f(M∗)

4(µ+ p)
z2 − βx2y +

µ+ α

I∗
xy2+

1

2
σ2
1x

2 +
µ+ α

2βI∗
σ2
2y

2 +
M∗

2
σ2
3z

2, (3.2)

where f(M∗) = −{p2(M∗)2 − 2[2(µ+ ε)(µ+ p)− pε]M∗ + ε2} > 0. Similarly, we have

L(V4 +
p+ α+ 2µ

βI∗
V2 +M∗V3)

= −[(µ+ p)x2 − (M∗p+ ε)xz +M∗(µ+ ε)z2]− (µ+ α)y2 + εyz+

p+ α+ 2µ

I∗
xy2 +

1

2
σ2
1x

2 +
1

2

(
1 +

p+ α+ 2µ

βI∗
)
σ2
2y

2 +
M∗

2
σ2
3z

2
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≤ − 1

4(µ+ p)
f(M∗)z2 − (µ+ α)y2 + εyz+

p+ α+ 2µ

I∗
xy2 +

1

2
σ2
1x

2 +
1

2

(
1 +

p+ α+ 2µ

βI∗
)
σ2
2y

2 +
M∗

2
σ2
3z

2. (3.3)

Note that η∗ = 2ε2(µ+p)
(µ+α)f(M∗) . It follows from (3.2) and (3.3) that

L(V4 +M∗V3 +
p+ α+ 2µ

βI∗
V2 + η∗(V1 +M∗V3 +

µ+ α

βI∗
V2))

≤ −((µ+ α)y2 − εyz +
η∗f(M∗)

4(µ+ p)
z2)− f(M∗)

4(µ+ p)
z2 − βη∗I∗x2+

p+ α+ 2µ

I∗
xy2 +

1

2
σ2
1x

2 +
1

2
(1 +

p+ α+ 2µ

βI∗
)σ2

2y
2 +

M∗

2
σ2
3z

2−

βη∗x2y + η∗(
µ+ α

I∗
xy2 +

1

2
σ2
1x

2 +
M∗

2
σ2
3z

2 +
µ+ α

2βI∗
σ2
2y

2)

= −µ+ α

2
(y − ε

µ+ α
z)2 − µ+ α

2
y2 − f(M∗)

4(µ+ p)
z2 − βη∗I∗x2−

βη∗x2y +
p+ α+ 2µ+ η∗(µ+ α)

I∗
xy2+

η∗ + 1

2
σ2
1x

2 +
1

2
(1 +

p+ α+ 2µ+ η∗(µ+ α)

βI∗
)σ2

2y
2 +

η∗ + 1

2
M∗σ2

3z
2

≤ −βη∗I∗x2 − µ+ α

2
y2 − f(M∗)

4(µ+ p)
z2 − βη∗x2y +

p+ α+ 2µ+ η∗(µ+ α)

I∗
xy2+

η∗ + 1

2
σ2
1x

2 +
1

2
(1 +

p+ α+ 2µ+ η∗(µ+ α)

βI∗
)σ2

2y
2 +

η∗ + 1

2
M∗σ2

3z
2.

By choosing ai (i = 1, 2, 3, 4) as follows:

a1 = η∗, a2 =
p+ α+ 2µ+ η∗(µ+ α)

βI∗
, a3 = (η∗ + 1)M∗, a4 = 1,

we have

LV ≤ −(Ax2 +By2 + Cz2)− βη∗x2y +
p+ α+ 2µ+ η∗(µ+ α)

I∗
xy2,

where 
A = βη∗I∗ − η∗+1

2 σ2
1 > 0,

B = µ+α
2 − 1

2 (1 +
p+α+2µ+η∗(µ+α)

βI∗ )σ2
2 > 0,

C = f(M∗)
4(µ+p) −

η∗+1
2 M∗σ2

3 > 0.

Let λ = min{A,B,C}. Then LV ≤ −λ∥x(t)∥2 + o(∥x(t)∥2), where ∥x∥ =
√
x2 + y2 + z2, and

o(∥x(t)∥2) is an infinitesimal of higher order of ∥x(t)∥2 for t ≥ 0. Hence LV is negative-definite

in a sufficiently small neighborhood of x = 0 for t ≥ 0. Besides, it is clear that V (x) is positive-

definite decrescent. According to [25, Theorem 2.4 of Chapter 4], we therefore conclude that the

zero solution of system (3.1) is stochastically asymptotically stable in the large. The proof is

completed. 2
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