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Abstract In this paper, the option pricing problem is formulated as a distributionally robust

optimization problem, which seeks to minimize the worst case replication error for a given distri-

butional uncertainty set (DUS) of the random underlying asset returns. The DUS is defined as a

Wasserstein ball centred the empirical distribution of the underlying asset returns. It is proved

that the proposed model can be reformulated as a computational tractable linear programming

problem. Finally, the results of the empirical tests are presented to show the significance of the

proposed approach.
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1. Introduction

The problem of pricing derivative securities has been one of the most well studied problems

in finance and mathematical finance. The most well-known approach for pricing options is

the Black-Scholes-Merton model, introduced by [1] and [2]. As the future market price of the

underlying asset is an uncertain quantity, the Black-Scholes-Merton pricing model includes a

key assumption, that the underlying asset returns follow a log-normal distribution with known

volatility. There is sample empirical evidence suggesting that the strong assumption of the

underlying asset price following a stationary geometric Brownian motion does not hold. Attempts

have been made to model the volatility of the underlying asset as a stochastic quantity [3–6].

The option pricing problem is typically modeled as optimization problem under uncertain-

ty [7]. To date, optimization under uncertainty has been addressed by several complementary

modeling paradigms that differ mainly in the representation of uncertainty. For instance, stochas-

tic programming assumes that the uncertainty is governed by a known probability distribution

and seeks to minimize a probability functional such as the expected cost or a quantile of the

cost distribution [8]. Contrary to stochastic programming, robust optimization ignores all dis-

tributional information and aims to minimize the worst-case cost under all possible uncertainty

realizations [9,10]. While stochastic programs may rely on distributional information that is not
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available or hard to acquire in practice, robust optimization models may adopt an overly pes-

simistic view of the uncertainty and thereby promote over-conservative decisions. The emerging

field of distributionally robust optimization aims to bridge the gap between the conservatism of

robust optimization and the specificity of stochastic programming: it seeks to minimize a worst-

case probability functional (e.g., the worst-case expectation), where the worst case is taken with

respect to a distributional uncertainty set (DUS), that is, a family of distributions consistent

with the given prior information on the uncertainty. The vast majority of the existing litera-

ture focuses on DUSs characterized through moment and support information [11–18]. For such

kind of DUSs, the DRO model can be reformulated as a second-order cone program (SOCP)

or semidefinite program (SDP) and efficient algorithms can be developed accordingly. However,

DUSs can also be constructed via distance measures in the space of probability distribution-

s. More general and important probability metric used to define the metric-based DUSs are

the Wasserstein metric [19–24] and the ϕ-divergence [11, 24–30]. The Prohorov metric [31], the

goodness-of-fit [32] and the likelihood function [33] were also used to define the DUSs. To the

best of our knowledge, distributionally robust optimization paradigm has not been established

for the option pricing problem. In this paper we aim to close this gap by adopting distributionally

robust optimization based on a new Wasserstein DUS due to its attractive measure concentration

properties. In particular, we propose to model the underlying price dynamics using Wasserstein

DUS. We then utilize the ϵ-arbitrage approach [34] where one seeks a self-financing dynamic

portfolio strategy that most closely approximates the payoff of an option. This choice of the l1

norm to measure the error in replication when matched with Wasserstein DUS results in a com-

putational tractable problem. In addition, we adapt our approach to capture the phenomenon

of “implied volatility smile” that characterizes the classical Black-Scholes-Merton model. The

reason behind the implied volatility smile may be the different levels of risk aversion of an option

writer for different strikes.

The paper is structured as follows. In Section 2, we utilize the ϵ-arbitrage approach to price

a European call option to obtain the corresponding stochastic optimization problem. In Section

3, the computational tractable reformulation of the distributionall robust option pricing problem

based on Wasserstein DUS can be derived. Section 4 contains computational results and Section

5 includes our conclusions.

2. Option pricing stochastic optimization problem

An option is a contract that gives its owner the right to trade in a fixed number of shares

of the specified underlying securities at a fixed price at any time on or before a given date. The

act of making this transaction is referred to as exercising the option. The fixed price is termed

the strike price, and the given date, the expiration date. A call option gives the right to buy

the shares; a put option gives the right to sell the shares [4]. An option is associated with a

payoff function. The payoff function determines the value of the option after the realization

of random returns of the underlying securities. For instance, a European Call options payoff is

given by f(ST ,K) = [ST −K]+, where [x]+ := max{x, 0}, ST denotes the price of the underlying
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security at the time of expiry T , and K denotes the strike price. The option pricing problem

refers to the problem of calculating the value of an option before the realization of the random

returns. The idea of the ϵ-arbitrage approach [34] is to find a replicating portfolio that consists

of the underlying stock S and a risk-free asset B so that the value of this portfolio at the time

of exercise matches the payoff of the option as closely as possible. The replication error is given

by |f(ST ,K) − VT |, where VT is the value of the portfolio at the time of exercise T . In a

distributionally robust optimization setting, our goal is to find a portfolio that minimizes the

worst case expected replication error (denoted by ϵ), between the portfolio wealth and the option

payoff, over all possible probability distributions of the underlying stock returns that fall into a

predetermined DUS. The price of the option would thus be the initial value of this replicating

portfolio. We now consider a discrete model of the underlying stock price movements where the

price of the stock changes at discrete points of time. Denote the return from period [t, t + 1)

by r̃St . Suppose that the random returns variables {r̃S1 , r̃S2 , . . . , r̃ST } be identical and independent

random variables. In the context of a European call option, the associated optimization problem

can be represented as follows:

min
uS
t ,uB

t ,vt

∣∣[ST −K]+ −
(
uS
T + uB

T

)∣∣
s.t. uS

t = (1 + r̃St−1)
(
uS
t−1 + vt−1

)
, ∀t = 1, . . . , T,

uB
t = (1 + rBt−1)

(
uB
t−1 − vt−1

)
, ∀t = 1, . . . , T,

(2.1)

where uS
t is the amount invested in the underlying stock, uB

t is the amount invested in the risk-

less asset, and vt is the amount traded from the underlying stock to the risk-less asset during

the period [t, t + 1). From optimization perspective, we seek to minimize the replication error

and obtain the price of the option would then be given by uS
0 +uB

0 . By introducing the following

variable transformations: xS
t = uS

t /ξ̃
S
t , xB

t = uB
t /ξ

B
t , yt = vt/ξ̃

S
t , where ξ̃St :=

∏t−1
i=0

(
1 + r̃Si

)
, is

the cumulative return up to time t, and ξBt :=
∏t−1

i=0(1 + rBi ), problem (2.1) can be rewritten as

min
xS
t ,xB

t ,yt

|[S0ξ̃
S
T −K]+ − (ξ̃STx

S
T + ξBT xB

T )|

s.t. xS
t = xS

t−1 + yt−1, ∀t = 1, . . . , T,

xB
t = xB

t−1 − yt−1
ξ̃St−1

ξBt−1
, ∀t = 1, . . . , T,

where ξ̃S0 := 1 and ξB0 := 1. Substituting all intermediate xS
t , xB

t , we obtain the following

formulation:

min
xS
0 ,xB

0 ,y

∣∣∣[S0ξ̃
S
T −K]+ −

(
xS
0 +

T∑
t=1

yt−1

)
ξ̃ST − xB

0 ξ
B
T +

T−1∑
t=0

yt
ξBT
ξBt

ξ̃St

∣∣∣. (2.2)

By denoting a := (0, . . . , 0, S0)
′ ∈ RT , b(xS

0 ,y) := (y1
ξBT
ξB1

, . . . , yt−1
ξBT
ξBt−1

,−xS
0 −

∑T
t=1 yt−1)

′ ∈ RT ,

c(xB
0 ,y) := −xB

0 ξ
B
T + y0

ξBT
ξB0

∈ R, ξ̃S := (ξ̃S1 , ξ̃
S
2 , . . . , ξ̃

S
T )

′ ∈ RT , problem (2.2) can be simplified as

min
xS
0 ,xB

0 ,y
|[a′ξ̃S −K]+ + b(xS

0 ,y)
′ξ̃S + c(xB

0 ,y)|. (2.3)

For ease of notations, ξ̃S is replaced by ξ̃ in what follows. Suppose that the random cumulative

returns ξ̃ of the underlying stock enjoys the probability distribution Q. By taking the expectation
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of the replication error function in problem (2.3), we obtain the following optimization problem:

min
xS
0 ,xB

0 ,y
EQ[|[a′ξ̃ −K]+ + b(xS

0 ,y)
′ξ̃ + c(xB

0 ,y)|], (2.4)

which is a stochastic optimization problem. In data-driven setting, we are given the historical

stock price information, i.e., the sample set {ξ̂1, ξ̂2, . . . , ξ̂N}, which are typically assumed to be

drawn IID from the probability distribution Q. Using the Sample Average Approximation (SAA)

approach, problem (2.4) can be approximated as

min
xS
0 ,xB

0 ,y

1

N

N∑
i=1

|[a′ξ̂i −K]+ + b(xS
0 ,y)

′ξ̂i + c(xB
0 ,y)|, (2.5)

which is a convex optimization problem. We prove the following proposition.

Proposition 2.1 The optimization problem (2.5) is equivalent to the following linear optimiza-

tion problem

min
xS
0 ,xB

0 ,y,z,ϵ

1
N

∑N
i=1 ϵi

s.t. zi + b(xS
0 ,y)

′ξ̂i + c(xB
0 ,y) ≤ ϵi, ∀i ≤ N,

−zi − b(xS
0 ,y)

′ξ̂i − c(xB
0 ,y) ≤ ϵi, ∀i ≤ N,

a′ξ̂i −K ≥ zi, ∀i ≤ N,

z ≥ 0.

(2.6)

Proof It is easy to derive problem (2.6) by introducing the epigraphical auxiliary variables ϵ

and z ≥ 0 for problem (2.5). 2
3. Wasserstein distributionally robust options price model

Problem (2.4) is a stochastic optimization problem that is dependent on the probability

distribution Q of the random cumulative returns ξ̃ of the underlying stock. In practice, however,

Q is only indirectly observable through the historical stock price information, i.e., the sample set

{ξ̂1, ξ̂2, . . . , ξ̂N}. Thus, the probability distribution Q is itself uncertain, which motivates us to

address problem (2.4) from a distributionally robust optimization perspective. This means that

we use the sample set {ξ̂1, ξ̂2, . . . , ξ̂N} to construct a DUS P, that is, a family of distributions that

contains the unknown distribution Q with high confidence. Then we solve the distributionally

robust optimization problem which minimizes the worst-case expected replication error function.

In this paper we propose to use the Wasserstein metric to construct P as a ball in the space of

probability distributions.

Definition 3.1 The Wasserstein metric dW : M(Ξ)×M(Ξ) → R+ is defined via

dW (Q,P) := inf

{ ∫
Ξ2

∥ξ − ξ′∥Π(dξ,dξ′) :
Π is a joint distribution of ξ and ξ′

with marginals Q and P, respectively

}
,

where Ξ ⊆ Rm is the support set of ξ and ∥ · ∥ represents an arbitrary norm on Ξ.

We denote by Bρ(P̂N ) := {Q : dW (Q, P̂N ) ≤ ρ} the ball of radius ρ centered at P̂N with

respect to the Wasserstein metric in what follows. The center of the Wasserstein ball is the



Wasserstein distributionally robust option pricing 103

empirical distribution P̂N = 1
N

∑N
i=1 δξ̂i , where δξ̂i denotes the Dirac function at ξ̂i. Thus, the

following distributionally robust optimization problem based the Wasserstein ball can be derived:

min
xS
0 ,xB

0 ,y
max

Q∈Bρ(P̂N )
EQ[|[a′ξ̃ −K]+ + b(xS

0 ,y)
′ξ̃ + c(xB

0 ,y)|]. (3.1)

The following theorem presents a tractable reformulation of the distributionally robust opti-

mization problem (3.1) and thus constitutes the main result of this paper.

Theorem 3.2 Let Ξ = {ξ : Cξ ≤ d}. Then problem (3.1) is equivalent to the following convex

optimization problem:

min ϵ

s.t. λρ+ 1
N

N∑
i=1

si ≤ ϵ,

µρ+ 1
N

N∑
i=1

ti ≤ ϵ,

(d− Cξ̂i)′γi1 −K + c(xB
0 ,y) + (a+ b(xS

0 ,y))
′ξ̂i ≤ si, ∀i ≤ N,

(d− Cξ̂i)′γi2 + c(xB
0 ,y) + b(xS

0 ,y)
′ξ̂i ≤ si, ∀i ≤ N,

Kα+ d′β − c(xB
0 ,y) + z′

iξ̂
i ≤ ti, ∀i ≤ N,

αa+ b(xS
0 ,y) + zi + C ′β = 0, ∀i ≤ N,

∥a+ b(xS
0 ,y)− C ′γi1∥∗ ≤ λ, ∀i ≤ N,

∥b(xS
0 ,y)− C ′γi2∥∗ ≤ λ, ∀i ≤ N,

γi1 ≥ 0,γi2 ≥ 0, ∀i ≤ N,

λ ≥ 0, µ ≥ 0, 0 ≤ α ≤ 1,β ≥ 0,

(3.2)

where ∥ · ∥∗ is the dual norm of ∥ · ∥.

Proof Introducing the epigraphical auxiliary variable ϵ, problem (3.1) can be formulated as

min
xS
0 ,xB

0 ,y,ϵ
ϵ

s.t. EQ[[a′ξ̃ −K]+ + b(xS
0 ,y)

′ξ̃ + c(xB
0 ,y)] ≤ ϵ, ∀Q ∈ Bτ (P̂N ),

EQ[−[a′ξ̃ −K]+ − b(xS
0 ,y)

′ξ̃ − c(xB
0 ,y)] ≤ ϵ, ∀Q ∈ Bτ (P̂N ),

which is rewritten further as

min
xS
0 ,xB

0 ,y,ϵ
ϵ

s.t. EQ[max{(a+ b(xS
0 ,y))

′ξ̃ −K + c(xB
0 ,y), b(x

S
0 ,y)

′ξ̃ + c(xB
0 ,y)}] ≤ ϵ,

∀Q ∈ Bτ (P̂N ),

EQ[min{(−a− b(xS
0 ,y))

′ξ̃ +K − c(xB
0 ,y),−b(xS

0 ,y)
′ξ̃ − c(xB

0 ,y)}] ≤ ϵ,

∀Q ∈ Bτ (P̂N ).

(3.3)
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It is easy to derive that problem (3.3) is equivalent to the following optimization problem:

min
xS
0 ,xB

0 ,y,ϵ
ϵ

s.t. max
Q∈Bρ(P̂N )

EQ[max{(a+ b(xS
0 ,y))

′ξ̃ −K + c(xB
0 ,y), b(x

S
0 ,y)

′ξ̃ + c(xB
0 ,y)}] ≤ ϵ,

max
Q∈Bρ(P̂N )

EQ[min{(−a− b(xS
0 ,y))

′ξ̃ +K − c(xB
0 ,y),−b(xS

0 ,y)
′ξ̃ − c(xB

0 ,y)}] ≤ ϵ.

(3.4)

For ease of notation, we suppress the dependence on the decision variable xS
0 , xB

0 and y in

the constraints of problem (3.4), and denote l1(ξ̃) = (a + b(xS
0 ,y))

′ξ̃ − K + c(xB
0 ,y), l2(ξ̃) =

b(xS
0 ,y)

′ξ̃+c(xB
0 ,y), Lmax(ξ̃) = maxi=1,2{li(ξ̃)} and Lmin(ξ̃) = mini=1,2{−li(ξ̃)}. Thus problem

(3.4) can be represented as follows:

min ϵ

s.t. max
Q∈Bρ(P̂N )

EQ[Lmax(ξ̃)] ≤ ϵ,

max
Q∈Bρ(P̂N )

EQ[Lmin(ξ̃)] ≤ ϵ.

(3.5)

Firstly, we consider the following worst-case expectation problem in the left-hand side of the first

constraint of problem (3.5), that is,

max
Q∈Bρ(P̂N )

{EQ[Lmax(ξ̃)]}. (3.6)

By using Definition 3.1, problem (3.6) can be rewritten as

max
Q∈Bρ(P̂N )

{EQ[Lmax(ξ̃)]}

=



max
Π,Q

EQ[Lmax(ξ̃)]

s.t.
∫
Ξ2 ∥ξ − ξ′∥Π(dξ, dξ′) ≤ ρ{
Π is a joint distribution of ξ and ξ′

with marginals Q and P̂N , respectively

=


max
Π,Q

∫
Ξ
Lmax(ξ)Q(dξ)

s.t.
∫
Ξ2 ∥ξ − ξ′∥Π(dξ, dξ′) ≤ ρ{
Π is a joint distribution of ξ and ξ′

with marginals Q and P̂N , respectively

=


max

Qi∈M(Ξ)

1
N

∑N
i=1

∫
Ξ
Lmax(ξ)Qi(dξ)

s.t. 1
N

∑N
i=1

∫
Ξ
∥ξ − ξ̂i∥Qi(dξ) ≤ ρ,

Qi ∈ M(Ξ), ∀i ≤ N,

(3.7)

where the last equality follows from the law of total probability. The Lagrangian function of

problem (3.7) can be obtained L(Q1, . . . ,QN ;λ) = λρ+ 1
N

∑N
i=1

∫
Ξ
(Lmax(ξ)−λ∥ξ− ξ̂i∥)Qi(dξ).
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Using a standard duality argument, we obtain

max
Q1,...,QN∈M(Ξ)

min
λ≥0

L(Q1, . . . ,QN ;λ)

= min
λ≥0

max
Qi∈M(Ξ)

λρ+
1

N

N∑
i=1

∫
Ξ

(Lmax(ξ)− λ∥ξ − ξ̂i∥)Qi(dξ)

=


inf
λ,si

λρ+ 1
N

∑N
i=1 si

s.t. sup
ξ∈Ξ

{Lmax(ξ)− λ∥ξ − ξ̂i∥} ≤ si, ∀i ≤ N,

λ ≥ 0.

=



inf
λ,si

λρ+ 1
N

∑N
i=1 si

s.t. sup
ξ∈Ξ

{l1(ξ)− max
∥zi1∥∗≤λ

z′
i1(ξ − ξ̂i)} ≤ si, ∀i ≤ N,

sup
ξ∈Ξ

{l2(ξ)− max
∥zi2∥∗≤λ

z′
i2(ξ − ξ̂i)} ≤ si, ∀i ≤ N,

λ ≥ 0.

=



inf
λ,si

λρ+ 1
N

∑N
i=1 si

s.t. min
∥zi1∥∗≤λ

sup
ξ∈Ξ

{l1(ξ)− z′
i1(ξ − ξ̂i)} ≤ si ∀i ≤ N,

min
∥zi2∥∗≤λ

sup
ξ∈Ξ

{l2(ξ)− z′
i2(ξ − ξ̂i)} ≤ si ∀i ≤ N,

λ ≥ 0,

(3.8)

where the second equality follows from the fact that M(Ξ) contains all the Dirac distributions

supported on M(Ξ) and the third equality follows from the definition of the dual norm. For ease

of notation, we suppress the dependence on the decision variable αS
0 , α

B
0 and y in the functions

b(xS
0 ,y)) and c(xB

0 ,y), then denote l1(ξ) = a+ b′ξ−K + c and l2(ξ) = b′ξ+ c in what follows.

Thus problem (3.8) can be simplified as follows:

inf
λ,si

λρ+ 1
N

∑N
i=1 si

s.t. min
∥zi1∥∗≤λ

sup
ξ∈Ξ

{(a+ b− zi1)
′ξ −K + c+ z′

i1ξ̂
i} ≤ si, ∀i ≤ N,

min
∥zi2∥∗≤λ

sup
ξ∈Ξ

{(b− zi2)
′ξ + c+ z′

i2ξ̂
i} ≤ si, ∀i ≤ N,

λ ≥ 0.

=



inf
λ,si

λρ+ 1
N

∑N
i=1 si

s.t. sup
ξ∈Ξ

{(a+ b− zi1)
′ξ −K + c+ z′

i1ξ̂
i} ≤ si, ∀i ≤ N,

sup
ξ∈Ξ

{(b− zi2)
′ξ + c+ z′

i2ξ̂
i} ≤ si, ∀i ≤ N,

λ ≥ 0, ∥zi1∥∗ ≤ λ, ∥zi2∥∗ ≤ λ, ∀i ≤ N.

(3.9)

Due to the fact that the maximization problems of the left-hand side of the two groups of

constraints in problem (3.9) are the linear optimization problems, where Ξ = {ξ : Cξ ≤ d}, by
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using strong linear programming duality, we obtain

inf
λ,s

λρ+
1

N

N∑
i=1

si

s.t.(d− Cξ̂i)′γi1 −K + c+ (a+ b)′ξ̂i ≤ si, ∀i ≤ N,

(d− Cξ̂i)′γi2 + c+ b′ξ̂i ≤ si, ∀i ≤ N, (3.10)

∥a+ b− C ′γi1∥∗ ≤ λ, ∥b− C ′γi2∥∗ ≤ λ, ∀i ≤ N,

λ ≥ 0,γi1 ≥ 0,γi2 ≥ 0, ∀i ≤ N.

Secondly, we consider the following worst-case expectation problem in the left-hand side of

the first constraint of problem (3.5), that is,

max
Q∈Bρ(P̂N )

{EQ[Lmin(ξ̃)]}. (3.11)

Similarly, problem (3.11) can be reformulated as follows:

inf
α,β,

µρ+ 1
N

∑N
i=1 ti

s.t. Kα+ d′β − c+ z′
iξ̂

i ≤ ti, ∀i ≤ N,

αa+ b+ zi + C ′β = 0, ∀i ≤ N,

µ ≥ 0, 0 ≤ α ≤ 1,β ≥ 0.

(3.12)

By combining problem (3.10) and problem (3.12), problem (3.5) can be reformulated as follows:

inf ϵ

s.t. λρ+ 1
N

N∑
i=1

si ≤ ϵ,

µρ+ 1
N

N∑
i=1

ti ≤ ϵ,

(d− Cξ̂i)′γi1 −K + c+ (a+ b)′ξ̂i ≤ si, ∀i ≤ N,

(d− Cξ̂i)′γi2 + c+ b′ξ̂i ≤ si, ∀i ≤ N,

Kα+ d′β − c+ z′
iξ̂

i ≤ ti, ∀i ≤ N,

αa+ b+ zi + C ′β = 0, ∀i ≤ N,

∥a+ b− C ′γi1∥∗ ≤ λ, ∀i ≤ N,

∥b− C ′γi2∥∗ ≤ λ, ∀i ≤ N,

γi1 ≥ 0,γi2 ≥ 0, ∀i ≤ N,

λ ≥ 0, µ ≥ 0, 0 ≤ α ≤ 1,β ≥ 0,

that is,

min ϵ

s.t. λρ+
1

N

N∑
i=1

si ≤ ϵ,

µρ+
1

N

N∑
i=1

ti ≤ ϵ,
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(d− Cξ̂i)′γi1 −K + c(xB
0 ,y) + (a+ b(xS

0 ,y))
′ξ̂i ≤ si, ∀i ≤ N,

(d− Cξ̂i)′γi2 + c(xB
0 ,y) + b(xS

0 ,y)
′ξ̂i ≤ si, ∀i ≤ N,

Kα+ d′β − c(xB
0 ,y) + z′

iξ̂
i ≤ ti, ∀i ≤ N,

αa+ b(xS
0 ,y) + zi + C ′β = 0, ∀i ≤ N,

∥a+ b(xS
0 ,y)− C ′γi1∥∗ ≤ λ, ∀i ≤ N,

∥b(xS
0 ,y)− C ′γi2∥∗ ≤ λ, ∀i ≤ N,

γi1 ≥ 0,γi2 ≥ 0, ∀i ≤ N,

λ ≥ 0, µ ≥ 0, 0 ≤ α ≤ 1,β ≥ 0,

thus the conclusion holds. 2
Remark 3.3 When ∥ · ∥ is taken as 1-norm and ∞-norm, ∥ · ∥∗ is ∞-norm and 1-norm,

respectively. Thus problem (3.2) can be reduced to the linear optimization problem. When ∥ · ∥
is taken as 2-norm, problem (3.2) can be reduced to an SOCP problem [35], which can be solved

efficiently by CVX software package [36].

4. Numerical results

We now present the power of Wasserstein distributionally robust option pricing model in

three empirical experiments.

• In the first experiment, we aim to price SSE 50 ETF 42 days European call options with

spot price U3.0210 for various strikes in the range U2.7−U3.4.

• In the second experiment, we aim to price SSE 50 ETF 35 days European call options with

spot price U2.9870 for various strikes in the range U2.7−U3.4.

• In the last experiment, we aim to price SSE 50 ETF 29 days European call options with

spot price U2.9810 for various strikes in the range U2.7−U3.4

No. K/S ρ Mkt price Model price Erro

1 0.894 0.038 0.3216 0.3220 0.0004

2 0.927 0.032 0.2266 0.2267 0.0001

3 0.960 0.032 0.1462 0.1450 -0.0012

4 0.993 0.036 0.0845 0.0839 -0.0006

5 1.026 0.042 0.0451 0.0440 -0.0011

6 1.059 0.060 0.0233 0.0225 -0.0008

7 1.092 0.076 0.0120 0.0117 -0.0003

8 1.125 0.087 0.0068 0.0074 0.0006

Table 1 SSE 50 ETF 42 days European call options

All optimization problems are implemented in MATLAB R⃝2014b via the modeling language

CVX [36] and solved with the second-order cone programming solver SDPT3. All experiments

are run on a PC (Inter R⃝CoreTMi5-4590, 3.30GHz, 4.00GB). The three experiment results are
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displayed in Tables 1–3, respectively. The experiment results show that our approach produces

prices that are close to those observed in the options market.

No. K/S ρ Mkt price Model price Erro

1 0.904 0.0010 0.3088 0.3072 -0.0016

2 0.937 0.0005 0.2131 0.2133 0.0002

3 0.971 0.0004 0.1281 0.1272 -0.0009

4 1.004 0.0005 0.0649 0.0636 -0.0013

5 1.038 0.0011 0.0283 0.0278 -0.0005

6 1.071 0.0015 0.0115 0.0122 0.0007

7 1.105 0.0023 0.0053 0.0061 0.0008

8 1.138 0.0033 0.0029 0.0025 -0.0004

Table 2 SSE 50 ETF 35 days European call options

No. K/S ρ Mkt price Model price Erro

1 0.906 0.0062 0.2930 0.2925 -0.0005

2 0.939 0.0034 0.1960 0.1970 0.0010

3 0.973 0.0025 0.1081 0.1071 -0.0010

4 1.006 0.0045 0.0464 0.0454 -0.0010

5 1.040 0.0072 0.0169 0.0164 -0.0005

6 1.073 0.0088 0.0063 0.0064 0.0001

7 1.107 0.0150 0.0031 0.0039 0.0008

8 1.141 0.0251 0.0019 0.0020 0.0001

Table 3 SSE 50 ETF 29 days European call options
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Figure 1 ρ vs K/S -SSE 50 ETF 42 days European call options

In addition, for each of the experiments, we fit a quadratic function to these values of “K/S”

and “ρ” in Tables 1–3, and observe that the quadratic dependence of the ρ’s on “K/S”, that

is, capture the phenomenon of “implied volatility smile” that characterizes the classical Black-

Scholes-Merton model (see Figures 1–3).
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Figure 2 ρ vs K/S -SSE 50 ETF 35 days European call options
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Figure 3 ρ vs K/S -SSE 50 ETF 29 days European call options

5. Conclusion

In this paper, the distributionally robust optimization is applied to the option pricing prob-

lem, which seeks to minimize the worst case replication error for the Wasserstein DUS. We obtain

the corresponding computational tractable reformulation. The experiment results show that our

approach produces prices that are close to those observed in the options market and capture the

phenomenon of “implied volatility smile” that characterizes the classical Black-Scholes-Merton

model. Applying our approach to price Asian, Lookback, American and Index options will be

our future work.
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