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Abstract In this paper, we consider the global well-posedness of smooth solutions for the

Cauchy problem of a sixth order convective Cahn-Hilliard equation with small initial data. We

first construct a local smooth solution, then by combining some a priori estimates, continuity

argument, the local smooth solution is extended step by step to all t > 0 provided that the L1

norm of initial data is suitably small and the smooth nonlinear functions f(u) and g(u) satisfy

certain local growth conditions at some fixed point ū ∈ R.
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problem; local existence
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1. Introduction

Consider the Cauchy problem of the sixth order convective Cahn-Hilliard equation [1–4]{
∂u
∂t − δg(u)x − (uxx − f(u))xxxx = 0, x ∈ R, t > 0,

u(x, 0) = u0(x), x ∈ R,
(1.1)

where u(t, x) = hx(t, x) is the slope of a 1 + 1D (one dimension in space, one in time) surface

h(t, x), δ is proportional to the deposition strength of an atomic flux and the overall convective

term δg(u)x stems from the normal impingement of the deposited atoms [2]. Moreover, the sixth

order linear term results from a curvature dependent regularization, and all other terms represent

the anisotropy of the surface energy under surface diffusion. In this paper, for convenience, we

set δ = 1.

The sixth order convective Cahn-Hilliard equation can be used to describe the faceting of a

growing surface with small slopes. There are many papers devoted to the well-posedness theory

of the initial boundary value problem for it. In [5], by an extension of the method of matched

asymptotic expansions that retains exponentially small terms, Korzec, Evans, Münch andWagner

derived new types of stationary solutions for the sixth order convective Cahn-Hilliard equation.
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Moreover, by using Galerkin techniques, Korzec and Rybka [2] investigated the existence and

uniqueness of weak solutions of the sixth order convective Cahn-Hilliard equation with periodic

boundary conditions. The authors also used numerical methods to study how the long-time

behavior of solutions depends on the parameter δ, and they presented numerical evidence that

typical solutions stop coarsening before reaching a trivial state. Latterly, Korzec, Nayar and

Rybka [1] established the existence of global-in-time weak solutions and exponential-in-time a

priori estimates on the H2 norm of solutions for the 2D sixth order convective Cahn-Hilliard

equation together with periodic boundary conditions. Very recently, the long time behavior of

solutions for the 1D and 2D sixth order convective Cahn-Hilliard equation was studied by Korzec,

Nayar and Rybka [3]. Applying the ideas from the theory of infinite dimensional dynamical

systems combined with the available results on convective Cahn-Hilliard equation, the authors

proved the existence of global attractor for such equations with periodic boundary conditions.

The goal of this paper is to investigate the global well-posedness for the Cauchy problem

of one-dimensional sixth order convective Cahn-Hilliard equation. We prove the existence and

uniqueness of global smooth solutions for problem (1.1) by using Hoff and Smoller’s method [6–9]

with a slight modification. More precisely, the result can be stated as follows.

Theorem 1.1 Let r > 0 be any given constant. Suppose that ū ∈ R is some fixed constant.

Assume that u0(x) − ū ∈ L1(R,R) with ∥u0(x) − ū∥L∞ ≤ r and ∥u0(x) − ū∥L1 sufficiently

small and the nonlinear functions f(u), g(u) ∈ C7(B̄(ū, 2r),R) satisfy f(u) = O(1)|u − ū|3 and

g(u) = O(1)|u− ū|6 as u → ū. Then, there exists a unique global smooth solution u(t, x) for the

Cauchy problem (1.1) such that

∥u(t, x)− ū∥L∞ ≤ 2r, t ≥ 0. (1.2)

We remark that the proof of Theorem 1.1 is greatly inspired from the work of Liu, Wang

and Zhao [10] for the fourth order Cahn-Hilliard equaton. In [10], the authors used the Hoff and

Smoller’s method with a slight modification to prove the existence of global smooth solutions

for the Cauchy problem of Cahn-Hilliard equation. Comparing with Liu, Wang and Zhao [10],

our main difficulty is how to deal with the relation between the convective term g(u)x and the

term f(u)xx. In this paper, under the assumptions g(u) = O(1)u6 and f(u) = O(1)u3, we prove

the local existence of smooth solution, establish the L1-norm estimate for the problem (1.1), and

extend up the local solution to all t > 0 by induction. In fact, a simple calculation shows that

the relation between the dimension N and the orders of f(u) and g(u) are:

g(u) = O(1)u1+ 5
N and f(u) = O(1)u1+ 2

N .

In other words, Theorem 1.1 can be generalized to the N -dimensional case if f(u) and g(u)

satisfy the above equalities. However, because of the physically relevant (the equation we consider

models behavior of a crystal surface, thus even three dimensional model does not have any

physical content), we only consider one-dimensional in this paper.

Remark 1.2 On the basis of Lemma 2.4, for problem (1.1), we can easily obtain ∥u− ū∥L1 ≤ C
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and ∥u− ū∥L6 ≤ Ct−
5
36 . By using Sobolev’s embedding theorem, we easily obtain

∥u− ū∥L2 ≤ ∥u− ū∥
2
5

L1∥u− ū∥
3
5

L6 ,

hence ∥u−ū∥L2 ≤ Ct−
1
12 . Comparing with Miao, Yuan and Zhang [11]’s result on the generalized

heat equations, we found that this decay rate is optimal.

The rest of this paper is organized as follows. In the next section, we introduce some prelim-

inary results. The proof of Theorem 1.1 is postponed in the final section of this paper.

2. Preliminaries

The following three lemmas will be used in this section.

Lemma 2.1 ([12]) If 1 ≤ p ≤ r ≤ q ≤ ∞ and u ∈ Lp(RN )
∩
Lq(RN ), then u ∈ Lr(RN ) with

∥u∥Lr ≤ ∥u∥αLp∥u∥1−α
Lq , where

1

r
=

α

p
+

1− α

q
.

Lemma 2.2 ([8]) Suppose that M(t) is a nonnegative continuous function of t. M(t) satisfies

M(t) ≤ d1 + d2M(t)r

in some interval containing 0, where d1 and d2 are positive constants and r > 1. If M(0) ≤ d1

and

d1d2 < (1− r−1)r−(r−1)−1

,

then in the same interval

M(t) ≤ d1
1− r−1

.

Lemma 2.3 ([10]) Assume that g(t) is a nonnegative continuous function defined on [s, T ] and

satisfies

g(t) ≤ N1(t− b)(t− a)−α +N2(t− b)

∫ t

a

(t− s)−αg(s)ds,

where s, α, a and b are positive constants satisfying

0 < α < 1, s > max{a, b},

and Ni(t− b) (i = 1, 2) are continuous increasing functions of t. Then,

g(t) ≤ (t− a)−αN(t− a, t− b) < ∞, s ≤ t ≤ T

with

N(t− a, t− b) = N1(t− b)
{
1 +

∞∑
j=1

Γ(1− α)

Γ((j + 1)(1− α))
× [Γ(1− α)N2(t− b)(t− a)1−α]j

}
.

It is easy to see that N(t− a, t− b) is a continuous increasing function of t.

In order to prove Theorem 1.1, we give the Lp(RN ,R)-estimate on the fundamental solution

to the sixth order convective Cahn-Hilliard equations.

Lemma 2.4 Suppose that cp and cp,k are positive constants with c1 = 0 and F−1 is the inverse
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Fourier transformation with respect to ξ. Assume that k(t, x) = F−1(e−|ξ|6t), where ξ, x ∈ R
and t > 0, then

∥k(t)∥Lp ≤ cpt
−N

6 (1− 1
p ), (2.1)

∥Dsk(t)∥Lp ≤ cs,pt
−N

6 (1− 1
p )−

s
6 , s = 1, 2, . . . . (2.2)

Proof We set ξ = ηt−
1
6 . Hence

k(t, x) =

∫
R3

e−|ξ|6teix·ξdξ = t−
N
6

∫
R3

e−|η|6eix·ηt
− 1

6 dη.

Let G(y) =
∫
R3 e

−|η|6eiy·ηdη. Clearly, G(y) is a rapidly decreasing function. Then(∫
R3

|k(t, x)|pdx
) 1

p

=t−
N
6

(∫
R3

|G(xt−
1
6 |pdx

) 1
p

=t−
N
6 t

N
6p

(∫
R3

|G(z)|pdz
) 1

p

= Cpt
−N

6 (1− 1
p ).

We complete the proof of (2.1). Moreover, the following equality holds:

Dkk(t, x) = t−
N+k

6 Dk
yG(xt−

1
6 ).

By simple calculations, we obtain (2.2). The proof is completed. 2
3. Proof of Theorem 1.1

In this section, we consider the global existence of smooth solutions for the Cauchy problem

of the sixth order convective Cahn-Hilliard equation.

We first give the local existence result.

Lemma 3.1 Suppose that maxu∈B̄(ū,2r)

∑7
k=1(|Dkf(u)| + |Dkg(u)|) = b and the conditions

listed in Theorem 1.1 are satisfied. Then, there exists a unique smooth solution u(t, x) on the

strip Πt1 = {(t, x) : 0 < t ≤ t1, x ∈ R} which satisfies

∥u(t, x)− ū∥L∞ ≤ 2r, 0 ≤ t ≤ t1, (3.1)

where t1 = min{1, 1
1728b3c31,4

, ( 5
24bc1,1

)
6
5 }. Moreover, for each 0 < s′1 < s′2 < · · · < s′7 < t ≤ t1, we

have

∥Dku(t, x)∥L∞ ≤ (t− s′k)
− k

6 Ck(r, s
′
k − s′1, t− s′k), k = 1, 2, . . . , 7, (3.2)

where Ck is a continuous increasing function of t− s′k.

Proof Since u(t, x) is a smooth solution of problem (1.1), it should satisfy

u(t, x) =

∫
k(t, x− y)u0dy −

∫ t

0

ds

∫
D4k(x− y, t− s)f(u(s, y))dy+∫ t

0

ds

∫
Dk(x− y, t− s)g(u(s, y))dy. (3.3)

In order to prove Lemma 3.1, we first prove that there is a sufficiently small t1 > 0 such that

there exists a unique continuous solution u(t, x) for (3.3) on the strip Πt1 . Then, if we can show



154 Xiaopeng ZHAO, Fengnan LIU and Haichao MENG

that the solution obtained above is a smooth solution, such a u(t, x) is indeed a local smooth

solution to problem (1.1). Suppose that T (t)u = k(t, x) ∗ u(t, x). Hence, (3.3) is equivalent to

u(t, x) = T (t)u0 −
∫ t

0

D4T (t− s)f(u(s))ds+

∫ t

0

DT (t− s)g(u(s))ds. (3.4)

Since T (t)1 = 1, to prove that there exists a local smooth solution for (3.3), we also need to show

that there exists a local smooth solution

u(t, x)− ū = T (t)(u0 − ū)−
∫ t

0

D4T (t− s)f(u(s))ds+

∫ t

0

DT (t− s)g(u(s))ds. (3.5)

By using the standard method of successive approximations [9, 10]: Set u(0)(t, x) = u0(x) and

for n ≥ 1,

u(n)(t, x)−ū = T (t)(u(0)−ū)−
∫ t

0

D4T (t−s)f(u(n−1)(s))ds+

∫ t

0

DT (t−s)g(u(n−1)(s))ds. (3.6)

It is easy to see that u(n)(t, x) is well defined on [0,∞) × R for each n ≥ 0. Set v(n)(t, x) =

u(n)(t, x)− ū and

¶χ¶ = sup
(t,x)∈Πt1

|χ(t, x)|.

By induction, we prove that if t1 = min{1, 1
1728b3c31,4

, ( 5
24bc1,1

)
6
5 }, then

¶v(n)¶ ≤ 2r. (3.7)

For the case n = 0, (3.7) holds from the assumption we imposed on the initial data. As to the

case n = 1, applying Hausdorff-Young’s inequality and the assumptions on the initial data, we

derive that ∣∣∣ ∫ k(t, x− y)(u0(y)− ū)dy
∣∣∣ ≤ ∥u0 − ū∥L∞ ≤ r. (3.8)

It then follows from (3.6) and (3.8) that

|v(1)(t, x)| ≤r + bc1,4

∫ t

0

(t− s)−
2
3¶v(0)¶ds+ bc1,1

∫ t

0

(t− s)−
1
6¶v(0)¶ds

≤r + 6rbc1,4(t1)
1
3 +

12

5
rbc1,1(t1)

5
6 ≤ 2r. (3.9)

Hence, (3.7) is right for n = 1. In addition, assume that (3.7) holds for n ≤ m− 1, where m ≥ 1

is a positive integer. We now show that (3.7) also holds for n = m. Applying Hausdorff-Young’s

inequality and (3.6), we deduce that

|v(m)| ≤r + b

∫ t

0

∥D4k(t− s)∥L1¶v(m−1)¶ds+ b

∫ t

0

∥Dk(t− s)∥L1¶v(m−1)¶ds

≤r + bc1,4¶v(m−1)¶
∫ t

0

(t− s)−
2
3 ds+ bc1,1¶v(m−1)¶

∫ t

0

(t− s)−
1
6 ds

≤r + 6rbc1,4(t1)
1
3 +

12

5
rbc1,1(t1)

5
6 ≤ 2r. (3.10)

Therefore, (3.7) holds for n = m and by induction, we show that (3.7) is true for any n ≥ 0. In
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the following, we prove that v(n)(t, x) satisfies

¶v(n) − v(n−1)¶ ≤ (C1(t1)
1
3 )n−1

Γ(n−1
2 + 1

2 )
M1 +

(C2(t1)
5
6 )n−1

Γ(n−1
2 + 1

2 )
M2

≤Cn−1
1 M1 + Cn−1

2 M2

Γ(n−1
2 + 1

2 )
, n ≥ 1, (3.11)

where M1 = 3rbc1,4
√
π, C1 = bc1,4

√
π, M2 = 6

5rbc1,1
√
π and C2 = bc1,1

√
π. We show the estimate

(3.11) by induction. For n = 1, we can obtain from (3.6) that

|v(1)(t, x)− v(0)(t, x)|

≤
∫ t

0

∥D4k(t− s)∥L1¶f(u(0) − f(ū)¶ds+
∫ t

0

∥Dk(t− s)∥L1¶g(u(0))− g(ū)¶ds

≤ rbc1,4

∫ t

0

(t− s)−
2
3 ds+ rbc1,1

∫ t

0

(t− s)−
1
6 ds

≤ 4bc1,4(t1)
1
3 +

6

5
rbc1,1(t1)

5
6 ≤ M0 +M1√

π
,

which implies that the estimate (3.11) is right for n = 1. Suppose that (3.11) holds for n ≤ m−1,

where m ≥ 2 is a positive integer. Then, we can get from (3.6) that

|v(m)(t, x)− v(m−1)(t, x)|

≤
∫ t

0

∥D4k(t− s)∥L1¶f(u(m−1))− f(u(m−2))¶ds+∫ t

0

∥Dk(t− s)∥L1¶g(u(m−1))− g(u(m−2))¶ds

≤ bc1,4

∫ t

0

(t− s)−
2
3
(C1s

1
3 )m−2

Γ(m−2
2 + 1

2 )
M1ds+ bc1,1

∫ t

0

(t− s)−
5
6
(C2s

5
6 )m−2

Γ(m−2
2 + 1

2 )
M2ds

≤ bc1,4
√
π
Γ(m−2

2 + 1)

Γ(m−2
2 + 3

2 )
(t1)

m−1
3

(C1)m−2M1

Γ(m−2
2 + 1

2 )
+ bc1,1

√
π
Γ(m−2

2 + 1)

Γ(m−2
2 + 3

2 )
(t1)

5(m−1)
6

(C2)m−2M2

Γ(m−2
2 + 1

2 )

≤ (C1)m−1M1 + (C2)m−1M2

Γ(m−2
2 + 1

2 )
,

which implies that (3.11) is true for n = m. Then, by induction again, we derive that the estimate

(3.11) holds for any n ≥ 1. It is easy to see that
∑∞

n=0
(C1)

m−1M1+(C2)
m−1M2

Γ(m−2
2 + 1

2 )
is convergent. Then,

by (3.11), we obtain v(n)(t, x) converges uniformly to v(t, x) = u(t, x)− ū on the strip Πt1 . It is

clear that the unique limit u(t, x) is a continuous solution of (3.3) on Πt1 . In order to show that

such a u(t, x) obtained above is indeed a smooth solution of problem (1.1) on Πt1 , we also need

to obtain the regularity of u(t, x). To do so, we need to derive the following estimates: For each

1 ≤ k ≤ 7, n ≥ 1, there exists a Ck which is a continuous increasing function of t− s′k such that

∥Dku(n)(t)∥L∞ ≤ (t− s′k)
− k

6 Ck(r, s
′
k − s′1, t− s′k), s′k < t ≤ t1. (3.12)

By (3.6) and the semigroup property of T (t), we derive that

u(n)(t, x)− ū =T (t− t̄)(u(n)(t̄, x)− ū)−
∫ t

t̄

D4T (t− s)f(u(n−1)(s))ds+
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t̄

DT (t− s)g(u(n−1)(s)ds. (3.13)

For k = 1, we have

Du(n)(t, x) =DT (t− s′1)(u
(n)(s′1, x)− ū)−

∫ t

s′1

D5T (t− s)f(u(n−1)(s))ds+∫ t

s′1

D2T (t− s)g(u(n−1)(s)ds.

On the basis of the Hausdorff-Young’s inequality, we deduce that

∥Du(n)(t)∥L∞ ≤c1,1(t− s̄′1)
− 1

6 r + bc1,5

∫ t

a′
1

(t− s)−
5
6¶v(n−1)¶ds+

bc1,2

∫ t

s′1

(t− s)−
1
3¶v(n−1)¶ds

≤(t− s̄′1)
− 1

6C1(r, t− s′1).

For k = 2, note that

D2u(n)(t, x) =D2T (t− s′2)(u
(n)(s′2, x)− ū)−

∫ t

s′2

D5T (t− s)Df(u(n−1)(s))ds+∫ t

s′2

D2T (t− s)Dg(u(n−1))ds.

Then, applying Hausdorff-Young’s inequality and (3.12) with k = 1 that

∥D2u(n)∥L∞ ≤c1,2(t− s′2)
− 1

3¶v(n)¶+ bc1,5

∫ t

s′2

(t− s)−
5
6 (s− s′1)

− 1
6C1(r, s− s′1)ds+

bc1,2

∫ t

s′2

(t− s)−
1
3 (s− s′1)

− 1
6C1(r, s− s′1)ds

≤(t− s′2)
− 1

3C2(r, s
′
2 − s′1, t− s′2),

which implies that (3.12) holds for k = 2 and n ≥ 1. Now, suppose that (3.12) holds for k ≤ m−1

for some 3 ≤ m ≤ 7, i.e.,

∥Dku(n)∥L∞ ≤ (t− s′k)
− k

6 Ck(r, s
′
k − s′1, t− s′k), k = 1, 2, . . . ,m− 1. (3.14)

Therefore, combining (3.7), (3.12) and (3.14) together, applying Hausdorff-Young’s inequality,

we derive that

∥Dmu(n)∥L∞

≤ c1,m(t− s′m)−
m
6 ¶v(n)¶+ bc1,5

∫ t

s′m

(t− s)−
5
6

∑
∑m

i=1 iβi=m

Πm−1
i=1 ∥(Diu(n−1)(s))βi∥L∞ds+

bc1,2

∫ t

s′m

(t− s)−
1
3

∑
∑m

i=1 iβi=m

Πm−1
i=1 ∥(Diu(n−1)(s))βi∥L∞ds

≤ 2rc1,m(t− s′m)−
m
6 + bc1,5

∫ t

s′m

(t− s)−
5
6C1(r, s− s′1) · · ·Cm−1(r, s

′
m−1 − s′1, s− s′m−1)ds+
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bc1,2

∫ t

s′m

(t− s)−
1
3C1(r, s− s′1) · · ·Cm−1(r, s

′
m−1 − s′1, s− s′m−1)ds

≤ (t− s′m)−
m
6 Cm(r, s′m − s′1, t− s′m),

which implies that (3.12) is true for k = m and n ≥ 1. Consequently, by induction, we know that

(3.12) holds for 1 ≤ k ≤ 7, n ≥ 1. Since (3.12) is obtained, it is a routine matter to verify that

for each ς > 0, Dku(n)(t, x) converges uniformly to Dku(t, x) on [ς, t1] × R for k = 1, 2, . . . , 6.

Hence, we obtain u(t, x) ∈ C1,6([ς, t1]×R) and since ς > 0 can be chosen sufficiently small, we get

u(t, x) ∈ C1,6((0, t1] × R). Applying the above regularity result, we can show that the solution

u(t, x) is indeed a smooth solution to problem (1.1) on Πt1 and (3.2) is the direct consequence

of (3.13). Therefore, we complete the proof. 2
In the following, we establish the certain L1(R,R) estimates on u(t, x) on the time interval

on which the smooth solutions exist.

Lemma 3.2 Suppose that the solution u(t, x) obtained in Lemma 3.1 has been extended up to

time T (T ≥ t1 > 0) and the smooth properties and the a priori estimate (3.1) (and hence (3.2))

are kept unchanged. Then, for any 0 < s′1 < s̄′1 < t ≤ T , we have

∥Du∥L1 ≤ (t− s̄′1)
− 1

6 sup
[0,t1]

∥u− ū∥L1M1(r, t− s̄′1), (3.15)

where Mk is a continuous increasing function of t− s̄′1.

Proof Note that

u(t, x)− ū = T (t− s̄′1)(u(s̄
′
1, x)− ū)−

∫ t

s̄′1

D4T (t− s)f(u(s))ds+

∫ t

s̄′1

DT (t− s)g(u(s))ds. (3.16)

Then,

∥Du(t)∥L1 ≤C1,1(t− s̄′1)
− 1

6 ∥u(s̄′1, x)− ū∥L1 + bc1,4

∫ t

s̄′1

(t− s)−
2
3 ∥Du(s)∥L1ds+

bc1,1

∫ t

s̄′1

(t− s)−
1
6 ∥Du(s)∥L1ds.

On the basis of the singular Gronwall’s inequality, we can easily derive that the estimate

(3.15) holds. Then, the proof is completed. 2
We also have the following lemma, which is concerned with the time-independent L1(R,R)-a

priori estimate on the solution u(t, x). This estimate is very important in extending the local

solution step by step to a global one.

Lemma 3.3 Suppose that the assumptions listed in Lemma 3.2 are satisfied, then there exists

a positive constant C1(r) depending only on r such that

∥u− ū∥L1 + t
5
36 ∥u− ū∥L6 ≤ C1(r)∥u0 − ū∥L1 , 0 ≤ t ≤ T, (3.17)

where the constant C1(r) is independent of T .
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Proof Let

X = {u(t, x) : u(t, x)− ū ∈ C(0, T ;L1(R,R), t
5
36 (u(t, x)− ū) ∈ C(0, T ;L6(R,R))},

with its norm defined by

∥u∥X = sup
[0,T ]

{∥u∥L1 + t
5
36 ∥u∥L6}.

Then, it follows from (3.5) that

∥u− ū∥X ≤∥T (t)(u0 − ū)∥X +
∥∥∥ ∫ t

0

D4T (t− s)f(u(s))ds
∥∥∥
X
+
∥∥∥ ∫ t

0

DT (t− s)g(u(s))ds
∥∥∥
X

=I1 + I2 + I3.

On the basis of the Hausdorff-Young’s inequality, we have

I1 = sup
[0,T ]

{∥T (t)(u0 − ū)∥L1 + t
5
36 ∥T (t)(u0 − ū)∥L6}

≤ sup
[0,T ]

{∥k(t)∥L1∥u0 − ū∥L1 + t
5
36 ∥K(t)∥L6∥u0 − ū∥L1}

≤ sup
[0,T ]

{(1 + clt
5
36−

1
6 (1−

1
6 )})∥u0 − ū∥L1}

≤(1 + cl)∥u0 − ū∥L1 .

For I3, by employing a similar argument, we deduce that

I3 ≤ sup
[0,T ]

{∫ t

0

∥DT (t− s)g(u(s))∥L1ds+ t
5
36

∫ t

0

∥DT (t− s)g(u(s))∥L6ds
}

≤C2 sup
[0,T ]

(∫ t

0

(t− s)−
1
6 ∥u(s)− ū∥6L6 + t

5
36

∫ t

0

(t− s)−
1
6 (1−

1
6 )−

1
6 ∥u(s)− ū∥6L6ds

)
≤C2 sup

[0,T ]

(∫ t

0

(t− s)−
1
6 s−

5
6 ds+ t

5
36

∫ t

0

(t− s)−
1
6 (1−

1
6 )−

1
6 s−

5
6 ds

)
∥u(s)− ū∥6X

≤C3∥u− ū∥6X .

As to I2, we have

I2 ≤ sup
[0,T ]

{∫ t

0

∥D4T (t− s)f(u(s))∥L1ds+ t
5
36

∫ t

0

∥D4T (t− s)f(u(s))∥L6ds
}

≤C4 sup
[0,T ]

(∫ t

0

(t− s)−
2
3 ∥u(s)− ū∥3L3 + t

5
36

∫ t

0

(t− s)−
1
6 (1−

1
6 )−

2
3 ∥u(s)− ū∥3L3ds

)
≤C4 sup

[0,T ]

(∫ t

0

(t− s)−
2
3 ∥u(s)− ū∥

3
5

L1∥u(s)− ū∥
12
5

L6+

t
5
36

∫ t

0

(t− s)−
1
6 (1−

1
6 )−

2
3 ∥u(s)− ū∥

3
5

L1∥u(s)− ū∥
12
5

L6ds
)

≤C4 sup
[0,T ]

(∫ t

0

(t− s)−
2
3 s−

1
3 ds+ t

5
36

∫ t

0

(t− s)−
1
6 (1−

1
6 )−

2
3 s−

1
3 ds

)
∥u(s)− ū∥

3
5

L1∥u(s)− ū∥
12
5

L6

≤C4 sup
[0,T ]

(∫ t

0

(t− s)−
2
3 s−

1
3 ds+ t

5
36

∫ t

0

(t− s)−
1
6 (1−

1
6 )−

2
3 s−

1
3 ds

)
∥u(s)− ū∥3X
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≤C5∥u− ū∥3X .

Summing up, we immediately conclude

∥u− ū∥X ≤ (1 + cl)∥u− ū∥L1 + C5∥u− ū∥3X + C3∥u− ū∥6X .

Note that

C5∥u− ū∥3X ≤ 1

2
∥u− ū∥X + C6∥u− ū∥6X .

Combining the above two inequalities together gives

∥u− ū∥X ≤ 2(1 + cl)∥u− ū∥L1 + 2(C3 + C6)∥u− ū∥6X .

If we suppose that ∥u0 − ū∥L1 is sufficiently small, then we can get (3.17), immediately. The

proof is completed. 2
With the above preparations in hand, we now prove Theorem 1.1.

Proof of Theorem 1.1 Let β be a sufficiently small positive constant. Choose 0 < s1 < s̄1 ≤ T

sufficiently small such that s̄1 ≤ t1 and

t1 − s̄1 = s̄1 − s1 = β. (3.18)

It then follows form (3.15) and (3.17) that{
∥u(t)− ū∥L1 ≤ C1(r)∥u0 − ū∥L1 , 0 ≤ t ≤ t1,

∥u(t1)− ū∥W 1,1 ≤ C7(β, r, t1) sup[0,t1] ∥u(t)− ū∥L1 .
(3.19)

Assume that C is the constant in Sobolev’s embedding ∥u(t) − ū∥L∞ ≤ C∥u(t) − ū∥W 1,1 , if we

choose ∥u0 − ū∥L1 sufficiently small such that

CC1(r)C7(β, r, t1)∥u0 − ū∥L1 ≤ ∥u0 − ū∥L∞ . (3.20)

Therefore,

∥u(t1)− ū∥L∞ ≤C∥u(t1)− ū∥W 1,1 ≤ CC7(β, r, t1) sup
[0,t1]

∥u(t)− ū∥L1

≤CC1(r)C7(β, r, t1)∥u0 − ū∥L1 ≤ ∥u0 − ū∥L∞ ≤ r.

On the basis of Lemmas 3.1 and 3.3, the solution u(t, x) can be extended up to 2t1 and

satisfies {
∥u(t)− ū∥L∞ ≤ 2r, 0 ≤ t ≤ 2t1,

∥u(t)− ū∥L1 ≤ C1(r)∥u0 − ū∥L1 , 0 ≤ t ≤ 2t1.
(3.21)

Taking t = 2t1, s
′
1 = s1 + t1 and s̄′1 = s̄1 + t1 in (3.15) and (3.17), we derive that

∥u(2t1)− ū∥W 1,1 ≤ C7(β, r, t1) sup
[0,2t1]

∥u(t)− ū∥L1 . (3.22)

Now, assume that u(t, x) has been defined up to kt1 for some k ∈ Z+ such that{
∥u(t)− ū∥L∞ ≤ 2r, 0 ≤ t ≤ kt1,

∥u(t)− ū∥L1 ≤ C1(r)∥u0 − ū∥L1 , 0 ≤ t ≤ kt1.
(3.23)
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Taking t = kt1, s
′
1 = s1 + (k − 1)t1 and s̄′1 = s̄1 + (k − 1)t1 in (3.15) and (3.17), we get

∥u(kt1)− ū∥W 1,1 ≤ C7(β, r, t1) sup
[0,kt1]

∥u(t)− ū∥L1 . (3.24)

It then follows from (3.20), (3.23) and (3.24) that

∥u(kt1)− ū∥L∞ ≤C∥u(kt1)− ū∥W 1,1 ≤ CC7(β, r, t1) sup
[0,t1]

∥u(t)− ū∥L1

≤CC1(r)C7(β, r, t1)∥u0 − ū∥L1 ≤ ∥u0 − ū∥L∞ ≤ r.

By using Lemmas 3.1 and 3.3 again, the solution u(t, x) can be extended up to (k + 1)t1 and

satisfies {
∥u(t)− ū∥L∞ ≤ 2r, 0 ≤ t ≤ (k + 1)t1,

∥u(t)− ū∥L1 ≤ C1(r)∥u0 − ū∥L1 , 0 ≤ t ≤ (k + 1)t1.
(3.25)

Proceeding inductively, we thus establish the existence of solution u(x, t) in all t > 0. The

proof is completed. 2
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