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Abstract Approximate periodic time series means it has an approximate periodic trend. The

so-called approximate periodicity refers that it looks like having periodicity, however the length of

each period is not constant such as sunspot data. Approximate periodic time series has a wide

application prospect in modelling social economic phenomenon. As for approximate periodic

time series, the key problem is to depict its approximate periodic trend because it can be dealt

as an ordinary time series only if its approximate periodic trend has been depicted. However,

there is little study on depicting approximate periodic trend.

In the paper, the authors first establish some necessary theories, especially bring forward

the concept of shape-retention transformation with lengthwise compression and obtain necessary

and sufficient condition for linear shape-retention transformation with lengthwise compression,

then basing on the theories the authors present a method to estimate scale transformation, which

can model approximate periodic trend very clearly. At last, a simulated example is analyzed by

this presented method. The results show that the presented method is very effective and very

powerful.

Keywords time series; approximate periodicity; scale transformation; shape-retention trans-

formation with lengthwise compression
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1. Introduction

Time series has been used in statistics, econometrics, mathematical finance, signal processing,

weather forecasting and communication engineering [1], such as forecasting the demand for airline

capacity, seasonal telephone demand, the movement of short-term interest rates, etc. Periodicity

of time series is one of its important characters [2]. The earlier work on the periodic time series

can be traced back to Schuster [3], who used the periodic graph model to study the periodic

problem of sunspot series from 1750 to 1900. In recent years, periodic time series is still one of

important research topics, see [4–8] and their references.

In human social life and in nature, there are lots of time series which have no strict periodicity.

For example, the sunspot data during the 20th century looks like having periodicity and its
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period length is about 11 years in Figure 1 (Data source: SILSO data/image, Royal Observatory

of Belgium, Brussels), but the length of adjacent two epochs is not always 11 years.
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Figure 1 Sequential chart of sunspot data during the 20th century

Figure 1 shows that the sunspot peak years during the 20th century include 1905, 1917,

1928, 1937, 1947, 1957, 1968, 1979, 1989 and 2000. The lengths of adjacent two epochs are

12, 11, 9, 10, 10, 11, 11, 10 and 11. That is, the periods of sunspot are not any constant,

which is really not periodic in strictly speaking. In fact, there are lots of time series which seem

to have periodic trend but the length of each epoch is not any constant, such as consumption

credit balance series, money supply M0 series, lithium battery discharge cycle series, syphilis

treatment rate series in China, photovoltaic power series, air temperature series, sunshine series,

rainfall series, crop growth series, agricultural product supply series, epidemic number sequence,

biological membrane potential oscillation series, heart rhythm series, fine cell cycle series, price

series of risk securities, and traffic series on the highway, etc.

In order to analyze time series with non-strict period such as sunspot, mixed period model

was brought forward. The so-called mixed period model is that multiple time series with the same

period are mixed into one time series according to probability. In the last two decades, the mixed

periodic model has developed rapidly. Shao proposed a mixed period autoregressive model [9],

that is, multiple time series with the same period are mixed into one time series according to

probability. Shao gave the robust estimation of multi-dimensional periodic autoregressive model

[10]. Shao proposed a method based on local linear estimation to estimate the trend of periodic

autoregressive model [11]. In order to reduce the problem of too many parameters to be estimated

in the periodic time series model, Lund, Shao and Basawa proposed a reduced (parsimonious)

periodic autoregressive moving average model [12]. Gong, Kiessler and Lund proposed a method

to identify abnormal events in periodic time series based on residual sequence [13]. Bezandry and

Diagana brought forward almost periodic stochastic processes [14], which means the moment of

process has periodicity. In essence, almost periodic stochastic processes still belong to periodic

stochastic processes, merely the periodicity exhibits on their moment. Dehay and Hurd studied

the frequency determination of almost periodic time series [15]. However, all the proposed models

are not very effective in analyzing the time series with non-strict period, such as sunspots in
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Figure 1.

In order to effectively depict the time series with non-strict period, such as sunspots in Fig-

ure 1, Wu, Zhu and Yang brought forward the model of approximate periodic time series [16].

The so-called approximate periodicity refers that it looks like having periodicity, however the

length of each epoch is not any constant such as sunspot data. Approximate periodic time series

has a wide application prospect in modelling social economic phenomenon. In order to increase

readability, we introduce the concept of approximate periodic time series as follows.

Definition 1.1 ([16]) Let {S(t), t ≥ 0} be a real-valued function. If there exist a strictly in-

creasing sequence {Tk|T0 = 0, limk→+∞ Tk = +∞} and a strictly increasing continuous function

{g(t), t ≥ T1} satisfying g(Tk) = Tk−1 for all k = 1, 2, . . . , such that for any t ≥ T1 it follows that

S(t) = S(g(t)),

then S(t) is called an approximate periodic function with scale transformation g, where 0 =

T0 < T1 < · · · < Tk < · · · is called the dividing point series of approximate periodic function

{S(t), t ≥ 0}.

Proposition 1.2 ( [16]) {f(t), t ≥ 0} is an approximate periodic function if and only if

there exists a strictly increasing continuous function {u(t), t ≥ 0} satisfying u(0) = 0 and

limt→+∞ u(t) = +∞ such that {f(u(t)), t ≥ 0} is a periodic function.

Definition 1.3 ([16]) If seasonal trend of a time series is some approximate periodic function

with scale transformation g, then the time series is called an approximate periodic time series

with scale transformation g.

For an approximate periodic time series without long-term trend, that is,

xt = St + εt, t ≥ 0, (1.1)

where {St, t ≥ 0} is the approximate periodic trend of {xt, t ≥ 0} and {εt, t ≥ 0} is a stationary

time series with zero mean. Providing that the scale transformation g was known or could be

estimated, Wu, Zhu and Yang first presented a method to extract approximate periodic trend

for approximate periodic time series (1.1), then they brought forward a generalized difference

operator to eliminate approximate periodic trend [16].

In practice, when we use approximate periodic time series to solve some problem, the scale

transformation g is always unknown and the time series always has long-term trend. For example,

Figure 2 depicts the balance data of personal consumer credit product of Ant Financial Services

Group in China from Feb 1st to Jul 13th, 2015, where g is unknown and the balance data has

both approximate periodicity and long-term trend.

If a time series has long-term trend and approximate periodicity, we could express its model

as follows

xt = f(h(t), S(t), εt), t ≥ 0, (1.2)

where f is a function with three variables, {h(t), t ≥ 0} denotes the long-term trend, {S(t), t ≥ 0}
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denotes the approximate periodic trend with the scale transformation g, and {εt, t ≥ 0} is a

stationary time series with zero mean.

For model (1.2), if we can obtain the scale transformation g, according to Proposition 1.2 there

exists a strictly increasing function u such that {S(u(t)), t ≥ 0} becomes a periodic function, then

the model (1.2) is similar to the ordinary time series model with long-term trend and periodicity,

then we can use the classical method to model them. However, if we cannot obtain the scale

transformation function g, then it is almost impossible to judge the function form of S, and it

is very difficult to model (1.2). Thus, it is very important to estimate the scale transformation

function g.

Figure 2 The balance data of personal consumer credit product

As for approximate periodic time series, the key problem is to depict its approximate periodic

trend because it can be dealt as an ordinary time series only if its approximate periodic trend

has been depicted. However, there is little study on depicting approximate periodic trend.

In the paper, the authors first establish some necessary theories, especially bring forward the

concept of shape-retention transformation with lengthwise compression and obtain necessary and

sufficient condition for linear shape-retention transformation with lengthwise compression, then

basing on the theories the authors present a method to estimate scale transformation, which

can model approximate periodic trend very clearly. At last, a simulated example is analyzed by

this presented method. The results show that the presented method is very effective and very

powerful.

2. Difficulties in estimating scale transformation

For any approximate periodic time series samples {xk, k = 1, 2, . . . , n}, we cannot get any

judgement on scale transformation g from the sequence chart of {xk, k = 1, 2, . . . , n}. Thus, it is

very difficult to estimate g.

In fact, the difficulty in estimating scale transformation g mainly comes from two factors. In

order to explain them clearly, we consider a continuous function f as follows

f(t) =

{

cos( t4π), 0 ≤ t < 8,

cos( t−8
7 π), 8 ≤ t ≤ 22,

(2.1)
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whose graph is presented in Figure 3 and the scale transformation g(t) = t−8
7 , 8 ≤ t ≤ 22,

which has been given by (2.1). Of course, we can estimate g from Figure 3 by establishing the

correspondence between t and g(t).
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Figure 3 The graph of {f(t), 0 ≤ t ≤ 22}

In practice, {f(t), 0 ≤ t ≤ 22} may be effected by some random disturbance, and we only

obtain discrete observed values. That is, what we observed is like {f(t) + ε(t), t = 0, 1, . . . , 22},

where the function form of f is unknown and {ε(t), t = 0, 1, . . . , 22} is independent identically

distributed normal distribution with mean zero and variance σ2, i.e., {ε(t)}
i.i.d.
∼ N(0, σ2), here

σ2 > 0 is also unknown.
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Figure 4 The sequence chart of {S(t) + ε(t), t = 0, 1, . . . , 22}

We present a sample of {f(t) + ε(t), t = 0, 1, . . . , 22} in Table 1, and plot its sequence chart

in Figure 4. From Figure 4 we find it is very difficult to estimate scale transformation g because

we cannot establish the relation between t and g(t).

t 0 1 2 3 4 5 6 7

S(t) + ε(t) 1.0124 0.8508 -0.1961 -0.7269 -1.1208 -0.4163 0.0825 0.8450

t 8 9 10 11 12 13 14 15

S(t) + ε(t) 0.8942 0.8541 0.5962 0.3324 -0.2503 -0.5533 -1.1062 -1.0354

t 16 17 18 19 20 21 22

S(t) + ε(t) -0.9833 -0.7812 -0.1717 0.2507 0.6268 0.7676 1.1127

Table 1 Samples from {S(t) + ε(t), t = 0, 1, . . . , 22}, where ε
i.i.d.
∼ N(0, 0.12)
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3. Necessary theories

In the previous section we have pointed out the most difficulty in estimating scale trans-

formation g is that we hardly find the relation between t and g(t). In order to estimate scale

transformation g, we present some necessary theoretical results in this section.

3.1. Properties of scale transformation g

For any t ≥ 0, denote

nt = max{m ≥ 0 : t ≥ Tm}.

Obviously, t ∈ [Tnt
, Tnt+1) holds for all t ≥ 0.

Theorem 3.1 For any t ≥ T1, it follows that g
(nt−k) is increasing and

g(nt−k)(t) ∈ [Tk, Tk+1) (3.1)

holds for all k = 0, 1, . . . , nt−1, where g(k) is the k-time composite function of g and we stipulate

g(1) = g.

Proof Noting that g(nt−k) is the (nt − k)-time composite function of g and g is increasing, we

easily obtain that g(nt−k) is increasing. In the following, we will only show (3.1) holds for all

k = 0, 1, . . . , nt − 1.

When t ∈ [T1, T2), it yields nt = 1. Noting that g is strictly increasing, g(T2) = g(T1) and

g(T1) = g(T0), we have

g(1)(t) = g(t) ∈ [T0, T1)

holds for all t ∈ [T1, T2).

Assume the statement of Theorem 3.1 holds when t ∈ [Tm, Tm+1), m ≥ 1, that is,

g(m−k)(t) ∈ [Tk, Tk+1) (3.2)

holds for all k = 0, 1, . . . ,m−1. Further, for any t ∈ [Tm+1, Tm+2), it follows nt = m+1. Noting

that g is strictly increasing, g(Tm+2) = g(Tm+1) and g(Tm+1) = g(Tm), we have

g(1)(t) = g(t) ∈ [Tm, Tm+1) (3.3)

holds for all t ∈ [Tm+1, Tm+2). It yields from (3.2) that

g(m−k)(g(t)) ∈ [Tk, Tk+1)

holds for all k = 0, 1, . . . ,m− 1. That is,

g(m+1−k)(t) ∈ [Tk, Tk+1) (3.4)

holds for all k = 0, 1, . . . ,m− 1. It follows from (3.3) and (3.4) that

g(nt−k)(t) ∈ [Tk, Tk+1)

holds for all k = 0, 1, . . . , nt − 1.

Using the mathematical induction, we know the statement of Theorem 3.1 holds for all

t ≥ T1. 2
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Denote

Lj = g(j) for all j = 1, 2, . . . , (3.5)

where g(1) = g. That is, Lj is the j-time compound function of g. It follows from Theorem 3.1

that

Lj : (Tj, Tj+1] → (T0, T1] for all j = 1, 2, . . . .

Theorem 3.2 {Lj, j = 1, 2, . . .} and g are mutually determined from each other.

Proof It yields from (3.5) that {Lj, j = 1, 2, . . .} is determined by g. On the other hand,

it follows from (3.5) that, for any j = 1, 2, . . . , Lj is strictly increasing because g is strictly

increasing. Furthermore,

g(t) = L1(t) for all t ∈ (T1, T2] (3.6)

and for any j = 2, 3, . . . it follows that

Lj(t) = g(j)(t) = g(j−1)(g(t)) = Lj−1(g(t)) for all t ∈ (Tj, Tj+1],

thus,

g(t) = L−1
j−1(Lj(t)) for all t ∈ (Tj , Tj+1]. (3.7)

We obtain from (3.6) and (3.7) that

g(t) = L−1
j−1(Lj(t)) for all t ∈ (Tj , Tj+1] (3.8)

holds for all j = 1, 2, . . . , where we stipulate L0 is the identify transformation on (T0, T1].

It yields from (3.5) that g is determined by {Lj, j = 1, 2, . . .}. 2

Remark 3.3 In the proof of Theorem 3.2, we obtain Lj+1(t) = Lj(g(t)), however, we cannot

obtain Lj+1(t) = g(Lj(t)). Obviously, the domain of Lj is different from that of Lj+1.

Remark 3.4 When we want to estimate g, we usually estimate {L1, L2, . . .} first, then use (3.8)

to work out g. Thus, in the following we will also call {L1, L2, . . .} as scale transformation and

mainly consider how to estimate {L1, L2, . . .}.

3.2. A shape-retention transformation with lengthwise compression

In order to estimate scale transformation {L1, L2, . . .}, we need introduce a conception on

shape-retention transformation with lengthwise compression.

Definition 3.5 For any a0, a1, v0, v1 ∈ R and b > 0, let f(t) be a continuous function on

[a0, a0 + b], if there exist a transformation h and δ > 0 such that

u(t) = h(t, f(t− a1 + a0)), t ∈ [a1, a1 + b]

satisfying that u(a1) = v0, u(a1 + b) = v1 and

u(t)− ℓu(a1,b)
(t) = δ(f(t− a1 + a0)− ℓ

f

(a0,b)
(t− a1 + a0))
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hold for all t ∈ [a1, a1 + b], where ℓ
f

(a0,b)
(t) denotes the value of the line through (a0, f(a0))

and (a0 + b, f(a0 + b)) at t, then h is called a shape-retention transformation with lengthwise

compression of f with compression proportion δ.

Figure 5 exhibits shape-retention transformation clearly, which means the length of blue line

segment always equals to that of red line segment δ for all t ∈ [0, b].
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Figure 5 Shape-retention transformation with lengthwise compression

Remark 3.6 Shape-retention transformation with lengthwise compression is a very complex

transformation, which blends translation process, rotation process and compression process.

However, shape-retention transformation with lengthwise compression is very important for es-

timating scale transformation {L1, L2, . . .}.

Theorem 3.7 For any a0, a1, v0, v1 ∈ R and b > 0, h is a linear shape-retention transformation

with lengthwise compression proportion δ of {f(t), a0 ≤ t ≤ a0 + b} into [a1, a1 + b] satisfying

u(a1) = v0 and u(a1 + b) = v1, where u(t) ≡ h(t, f(t− a1 + a0)), if and only if

u(t) =v0 +
(v1 − v0)(t− a1)

b
+ δf(t− a1 + a0)−

δ

b
[(t− a1)f(a0 + b) + (a1 + b− t)f(a0)], t ∈ [a1, a1 + b]. (3.9)

Proof Sufficiency. If h is defined by (3.9), then h is obviously linear on t and f and satisfies

u(a1) = v0 and u(a1 + b) = v1. (3.10)

Furthermore,

ℓ
f

(a0,b)
(t) = f(a0) +

f(a0 + b)− f(a0)

b
(t− a0), a0 ≤ t ≤ a0 + b (3.11)

and

ℓu(a1,b)
(t) = v0 +

v1 − v0

b
(t− a1), a1 ≤ t ≤ a1 + b. (3.12)

It follows from (3.9), (3.12) and (3.11) that, for any a1 ≤ t ≤ a1 + b, we have

u(t)− ℓu(a1,b)
(t) = δ[f(t− a1 + a0)−

(t− a1)f(a0 + b) + (a1 + b− t)f(a0)

b
]

= δ[f(t− a1 + a0)− ℓ
f

(a0,b)
(t− a1 + a0)]. (3.13)



246 Shujin WU

It yields from (3.10) and (3.13) that the sufficiency of Theorem 3.7 is proved.

Necessity. If h is a linear shape-retention transformation with lengthwise compression pro-

portion δ of {f(t), a0 ≤ t ≤ a0 + b} into [a1, a1 + b], then we can denote

u(t) ≡ h(t, f(t− a1 + a0)) = c0 + c1t+ c2f(t− a1 + a0), a1 ≤ t ≤ a1 + b. (3.14)

It yields from u(a1) = v0, u(a1 + b) = v1 and (3.14) that

c0 + c1a1 + c2f(a0) = v0, c0 + c1(a1 + b) + c2f(a0 + b) = v1. (3.15)

Solving (3.15), we obtain

c0 = v0 − c1a1 − c2f(a0), c1 =
v1 − v0

b
− c2

f(a0 + b)− f(a0)

b
. (3.16)

It follows from (3.14) and (3.16) that

u(t) = v0 + c1(t− a1) + c2[f(t− a1 + a0)− f(a0)]

= v0 +
v1 − v0

b
(t− a1) + c2[f(t− a1 + a0)−

(t− a1)f(a0 + b) + (a1 + b− t)f(a0)

b
] (3.17)

for all a1 ≤ t ≤ a1 + b.

Noting that

ℓ
f

(a0,b)
(t) = f(a0) +

f(a0 + b)− f(a0)

b
(t− a0), a0 ≤ t ≤ a0 + b

and

ℓu(a1,b)
(t) = v0 +

v1 − v0

b
(t− a1), a1 ≤ t ≤ a1 + b,

we obtain from (3.17) that

u(t)− ℓu(a1,b)
(t) = c2[f(t− a1 + a0)− ℓ

f

(a0,b)
(t− a1 + a0)].

Owing to lengthwise compression proportion δ, we have c2 = δ. Thus, it follows from (3.17)

that, for all a1 ≤ t ≤ a1 + b,

u(t) = v0 +
v1 − v0

b
(t− a1) + δ[f(t− a1 + a0)−

(t− a1)f(a0 + b) + (a1 + b− t)f(a0)

b
].

The necessity of Theorem 3.7 is proved. 2

Corollary 3.8 For any a, b, v0, v1 ∈ R satisfying b > a, h is a linear shape-retention transforma-

tion with lengthwise compression proportion δ of {f(t), a ≤ t ≤ b} into [a, b] satisfying u(a) = v0

and u(b) = v1, where u(t) ≡ h(t, f(t)), if and only if

u(t) = v0 +
v1 − v0

b− a
(t− a) + δf(t)− δ

(t− a)f(b) + (b− t)f(a)

b− a
, t ∈ [a, b].

Theorem 3.9 For any a0, a1 ∈ R and b > 0, h is a linear shape-retention transformation

with lengthwise compression proportion δ of {f(t), a0 ≤ t ≤ a0 + b} into [a1, a1 + b], u(t) ≡

h(t, f(t− a1 + a0)), then it follows that

u(t)− ℓu(a1,s)
(t) = δ[f(t− a1 + a0)− ℓ

f

(a0,s)
(t− a1 + a0)]

holds for all a1 ≤ t ≤ a1 + b and 0 < s ≤ b.
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Proof For any 0 < s ≤ b, because ℓ
f

(a0,s)
(z) is the value at z of line through (a0, f(a0)) and

(a0 + s, f(a0 + s)), we have

ℓ
f

(a0,s)
(z) = f(a0) +

f(a0 + s)− f(a0)

s
(z − a0).

Thus, for any a1 ≤ t ≤ a1 + b it follows that

ℓ
f

(a0,s)
(t− a1 + a0) = f(a0) +

f(a0 + s)− f(a0)

s
(t− a1). (3.18)

Analogously, we have

ℓu(a1,s)
(t) = u(a1) +

u(a1 + s)− u(a1)

s
(t− a1). (3.19)

It yields from (3.19), (3.9) and (3.18) that

u(t)− ℓu(a1,s)
(t) = (u(t)− u(a1))−

u(a1 + s)− u(a1)

s
(t− a1)

=
u(a1 + b)− u(a1)

b
(t− a1) + δ[f(t− a1 + a0)−

(t− a1)f(a0 + b) + (a1 + b− t)f(a0)

b
]

{
u(a1 + b)− u(a1)

b
+

δ

s
[f(a0 + s)−

sf(a0 + b) + (b− s)f(a0)

b
]}(t− a1)

= δ[f(t− a1 + a0)− f(a0)−
f(a0 + s)− f(a0)

s
(t− a1)]

= δ[f(t− a1 + a0)− ℓ
f

(a0,s)
(t− a1 + a0)]

holds for all a1 ≤ t ≤ a1 + b and 0 < s ≤ b. 2

Corollary 3.10 For any a, b ∈ R satisfying b > a, h is a linear shape-retention transformation

with lengthwise compression proportion δ of {f(t), a ≤ t ≤ b} into [a, b], u(t) ≡ h(t, f(t)), then

it follows that

u(t)− ℓu(a,s)(t) = δ[f(t)− ℓ
f

(a,s)(t)]

holds for all a ≤ t ≤ b and 0 < s ≤ b − a.

Remark 3.11 When we estimate scale transformation {Lj, j = 1, 2, . . .}, we mainly base on

Corollaries 3.8 and 3.10.

4. Estimation method of scale transformation

In the previous section we have prepared some theories for estimating scale transformation.

In this section, we will present a method to estimate g, where g is the scale transformation

changing the jth epoch into the ith epoch. Thus, “g” in this section may be different from “g”

in Definition 1.1. We know, if we can obtain mapping relation of t → g(t) from two different

epochs, then we can obtain all mapping relation of t → g(t) from all epochs for a time series.

Thus, we only present the method to estimate g from two different epochs in this section.

Assume x1, x2, . . . , xn is a sample from a time series X(0) = {xt = f(h(t), S(t), ε(t)), t ≥ 0}

defined by (1.2), and assume 0 = T0 < T1 < · · · < Tk < · · · is the dividing point series of

approximate periodic function {S(t), t ≥ 0}. In order to explain the method to estimate scale
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transformation g clearly and comprehensibly, we assume there are two groups of samples X and

Y from the ith and jth two different epochs, where i 6= j, and we denote them by

X = (XTi+1, XTi+2, . . . , XTi+1
), Y = (YTj+1, YTj+2, . . . , YTj+1

).

In order to estimate g, we need to establish the relation between t and g(t). The detail

method to estimate scale transformation g includes four steps:

Step 1. Eliminate the long-term trend

Fit the data {(Tk, xTk
), k = 1, 2, . . .} by a polynomial Q(t), where xTk

is the k-th dividing

point of X(0), k = 1, 2, . . . . Then we take

X̃ = (XTi+1 −Q(Ti + 1), XTi+2 −Q(Ti + 2), . . . , XTi+1
−Q(Ti+1)) (4.1)

and

Ỹ = (YTj+1 −Q(Tj + 1), YTj+2 −Q(Tj + 2), . . . , YTj+1
−Q(Tj+1)). (4.2)

Step 2. Compress Ỹ into the size of X̃ .

Denote

δ =
max{|Xt −Q(t)|, t = Ti + 1, Ti + 2, . . . , Ti+1}

max{|Yt −Q(t)|, t = Tj + 1, Tj + 2, . . . , Tj+1}

and

Z = δỸ . (4.3)

Remark 4.1 For the convenience of reference, we denote

X̃t = Xt −Q(t),

where t = Ti + 1, Ti + 2, . . . , Ti+1, and

X̃ = (X̃Ti+1, X̃Ti+2, . . . , X̃Ti+1
).

Step 3. Generate the mapping g0 from {Tj +1, Tj +2, . . . , Tj+1} to {Ti+1, Ti+2, . . . , Ti+1}.

First, we take

g0(Tj + 1) = Ti + 1 and g0(Tj+1) = Ti+1. (4.4)

Then, for any t = Tj + 2, . . . , Tj+1 − 1, we denote

g0(t− 1) ∈ [Ti + ℓ, Ti + ℓ+ 1],

where ℓ = 1, 2, . . . , Ti+1 − Ti − 1. Further, we compare Zt with {X̃Ti+ℓ, X̃Ti+ℓ+1, . . . , X̃Ti+1
}.

If Zt < mins=ℓ,ℓ+1,...,Ti+1−Ti−1{X̃Ti+s} or Zt > maxs=ℓ,ℓ+1,...,Ti+1−Ti−1{X̃Ti+s}, then we

take

g0(t) = min{t̂+ 0.5, Ti+1}, (4.5)

where t̂ = argmins=ℓ,ℓ+1,...,Ti+1−Ti−1{X̃Ti+s} or t̂ = argmaxs=ℓ,ℓ+1,...,Ti+1−Ti−1{X̃Ti+s}, respec-

tively. Otherwise, there exists s = ℓ, ℓ+ 1, . . . , Ti+1 − Ti − 1 satisfying

Zt ∈ [min{X̃Ti+s, X̃Ti+s+1}, max{X̃Ti+s, X̃Ti+s+1}], (4.6)
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then

g0(t) ∈ [Ti + s, Ti + s+ 1], (4.7)

where s is the first time satisfying (4.6), and we take

g0(t) = Ti + s+ 0.5. (4.8)

According to (4.4), (4.5) and (4.8) we can obtain the data set

{(Tj + 1, Ti + 1); (t, g0(t)), t = Tj + 2, . . . , Tj+1 − 1; (Tj+1, Ti+1)}. (4.9)

Step 4. Estimate the scale transformation g.

After proceeding Steps 1–3, we can obtain final data pairs (4.9), then using the final data

pairs of (4.9) we can estimate the scale transformation g by statistical methods and techniques.

Remark 4.2 In practice, we always estimate {Lj, j = 1, 2, . . .} first, then we work out g by

Theorem 3.2. That is, for any j = 1, 2, . . . ,

g(t) = L−1
j−1(Lj(t)) for all t ∈ (Tj , Tj+1].

• A method to estimate {Lj, j = 1, 2, . . .}.

Using the final data pairs (4.9), Step 4 says we can estimate g by statistical methods and

techniques. However, it does not present any concrete method to estimate g. In the following,

we will present a concrete method to estimate {Lj, j = 1, 2, . . .}, then we work out g by Theorem

3.2. First, we restate Weierstrass Approximation Theorem in algebra.

Weierstrass Approximation Theorem ([17]) Suppose f is a continuous real-valued function

defined on the real interval [a, b]. For every ε > 0, there exists a polynomial p such that

|f(x)− p(x)| < ε holds for all x ∈ [a, b].

Suppose the final data pairs proceeded by Steps 1–3 as follows

{(Tj + 1, Ti + 1); (t, g0(t)), t = Tj + 2, . . . , Tj+1 − 1; (Tj+1, Ti+1)}.

In order to estimate Lj , we should ensure that

g(Tj + 1) = Ti + 1 and g(Tj+1) = Ti+1. (4.10)

According to Weierstrass Approximation Theorem, we can use a polynomial to estimate the

scale transformation Lj. Without loss of generality, assume

Lj(t) = c0 +

q
∑

k=1

ck[t− (Tj + 1)]k, Tj + 1 ≤ t ≤ Tj+1,

where q ∈ N is the order number of polynomial Lj. It yields from (4.10) that

c0 = Ti + 1, c1 =
Ti+1 − (Ti + 1)

Tj+1 − (Tj + 1)
−

q
∑

k=2

ck[Tj+1 − (Tj + 1)]k−1.

Thus,

Lj(t) =(Ti + 1) +
Ti+1 − (Ti + 1)

Tj+1 − (Tj + 1)
· [t− (Tj + 1)]+
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q
∑

k=2

ck{[t− (Tj + 1)]k−1 − [Tj+1 − (Tj + 1)]k−1} · [t− (Tj + 1)]. (4.11)

In the following, we will estimate the unknown parameters c2, c3, . . . , cq using the data pairs

{

(t, g0(t)), t = Tj + 2, . . . , Tj+1 − 1
}

.

According to the least square method, we can obtain the following result.

Result 4.3 Assume we use a q-order polynomial to fit Lj with the data pairs (4.9), then Lj is

given by (4.11), where C = (c2, c3, . . . , cq)
T is determined by

C = Γ−1B,

where Γ = (Γuv)(q−1)×(q−1) and B = (Bu)(q−1)×1, here

Γuv =

Tj+1−(Tj+1)
∑

s=2

[Tj + s− (Tj + 1)]2 · {[Tj + s− (Tj + 1)]u − [Tj+1 − (Tj + 1)]u}·

{[Tj + s− (Tj + 1)]v − [Tj+1 − (Tj + 1)]v}

and

Bu =

Tj+1−(Tj+1)
∑

s=2

{[g0(Tj + s)− (Ti + 1)]−
Ti+1 − (Ti + 1)

Tj+1 − (Tj + 1)
· [Tj + s− (Tj + 1)]}·

[Tj + s− (Tj + 1)] · {[Tj + s− (Tj + 1)]u − [Tj+1 − (Tj + 1)]u}.

Remark 4.4 If the forms of scale transformation g and approximate periodic function S are

known, then we can combine Steps 3 and 4 as a step, that is, we can estimate parameters of g

and S by directly minimizing some distance of Zt − S(g(t)).

5. Test for fitting effect of scale transformation

In the previous section, we mainly present estimation method of scale transformation g or

{Lj, j = 1, 2, . . .}. How to measure the fitting effect of scale transformation g is an unsolved

problem.

Note that the effect of Lj is to change Z into {S(t), T0 < t ≤ T1}, where Z is changed from

Y by (4.2) and (4.3), so a “good” Lj should change Z very like {S(t), T0 < t ≤ T1}. That

is, {Zt − S(Lj(t)), t = Tj + 1, Tj + 2, . . . , Tj+1} should be a stationary process with mean zero.

Thus, we can check whether Lj is a “good” transformation by testing whether {Zt−S(Lj(t)), t =

Tj + 1, Tj + 2, . . . , Tj+1} is a stationary process with mean zero.

According to Theorem 3.2, {Lj, j = 1, 2, . . .} and g are mutually determined from each

other, so we can test whether g is a “good” scale transformation by testing whether L1, L2, . . .

are all “good” scale transformations. However, it is still very difficult to directly test whether

L1, L2, . . . are all “good” scale transformations. Fortunately, we can indirectly test whether

L1, L2, . . . are all “good” scale transformations by testing fitting effect of all L1, L2, . . . . That

is, we can check whether L1, L2, . . . are all “good” scale transformations by testing whether
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{Wt, t = T1 + 1, T1 + 2, . . . , Tj + 1, Tj + 2, . . .} is a stationary process with mean zero, where

Wt = Zt − S(Lj(t)), t = Tj + 1, Tj + 2, . . . , Tj+1, j = 1, 2, . . . .

Result 5.1 For a given significance level α > 0, if {Wt, t = T1+1, T1+2, . . . , Tj +1, Tj +2, . . .}

is accepted as a stationary process with mean zero, where

Wt = Zt − S(Lj(t)), t = Tj + 1, Tj + 2, . . . , Tj+1, j = 1, 2, . . . , (5.1)

then {g(t), t > T1} is accepted as a “good” scale transformation under the significance level α.

6. Example of estimating scale transformation

In this section, we will present an example to show the process of estimating scale transfor-

mation g with a simulated time series, which also shows that our method is very powerful.

6.1. Generate an approximate periodic time series with long-term trend

Consider a time series as follows

x(t) = 5 + 0.5t+ 10 sin(
2(t− Tk − 1)π

3(Tk+1 − Tk − 1)
) + εt, t = Tk + 1, . . . , Tk+1, k = 0, 1, 2, 3, 4, 5, (6.1)

where T0 = 0, T1 = 8, T2 = 17, T3 = 28, T4 = 38, T5 = 47, T6 = 55. In order to exactly repeat our

computation, we set the initial state for generating random number {εt, 1 ≤ t ≤ 55} as rng(1)

using matlab R2018b software.

We first plot the sequence chart of {x(t), 1 ≤ t ≤ 55} in Figure 6 (a), where the starts, “ ∗ ”,

are the minimum value points of each approximate periodicity.
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(a) The sequence chart of {x(t)} (b) The sequence chart of {x̃(t)}

Figure 6 The sequence charts of {x(t)} and {x̃(t)}

6.2. Estimate the long-term trend of {x(t)}

According to Step 1, we fit the long-term trend of {x(t)} with its minimum value points of

each approximate periodicity

{(1, x(1)), (9, x(9)), (18, x(18)), (29, x(29)), (39, x(39)), (48, x(48))}
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by a linear function h and obtain

h(t) = 5.46832 + 0.49336t, t ≥ 1. (6.2)

Then we obtain the time series with eliminated long-term trend as follows

x̃(t) = x(t)− h(t), t = 1, 2, . . . , 55 (6.3)

and we plot the sequence chart of {x̃(t), 1 ≤ t ≤ 55} in Figure 6 (b).

6.3. Generate the mapping g0 from {9, 10, . . . , 55} to [1, 8]

It follows from the sequence chart of {x̃(t)} in Figure 6 (b) that δ in Step 2 approximately

equals one, so we skip Step 2 and directly generate the mapping g0 from {9, 10, . . . , 55} to [1, 8]

by Step 3. The results are shown in Table 2.

2nd epoch

t 9 10 11 12 13 14 15 16 17

g0d(t) 1 1 2 3 4 5 6 7 8

g0u(t) 1 2 3 4 5 6 7 8 8

3rd epoch

t 18 19 20 21 22 23 24 25 26 27 28

g0d(t) 1 1 2 3 3 4 5 5 6 7 8

g0u(t) 1 2 3 4 4 5 6 6 6 8 8

4th epoch

t 29 30 31 32 33 34 35 36 37 38

g0d(t) 1 1 2 3 4 4 5 6 7 8

g0u(t) 1 2 3 4 5 5 6 7 8 8

5th epoch

t 39 40 41 42 43 44 45 46 47

g0d(t) 1 1 2 3 4 5 6 7 8

g0u(t) 1 2 3 4 5 6 7 8 8

6th epoch

t 48 49 50 51 52 53 54 55

g0d(t) 1 2 3 4 5 6 7 8

g0u(t) 1 2 3 4 5 6 7 8

Table 2 The mapping g0 from {9, 10, . . . , 55} to [1, 8]

In Table 2, g0d(t) is the lower bound of interval and g0u(t) is the upper bound of interval, i.e.,

g0(t) ∈ [g0d(t), g0u(t)]. Particularly, if g0d(t) = g0u(t), then g0(t) = g0d(t) = g0u(t). For example,

the mapping relation g0 on the third approximate period {18, 19, . . . , 28} follows as Table 3 and

we draw its chart in Figure 7 (a). It is obvious that the mapping relation g0 on the third epoch

is linear.

t 18 19 20 21 22 23 24 25 26 27 28

g0(t) 1 [1,2] [2,3] [3,4] [3,4] [4,5] [5,6] [5,6] 6 [7,8] 8

Table 3 The mapping g0 from {18, 19, . . . , 28} to [1, 8]
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(a) The mapping relation g0 in the 3rd epoch (b) The fitting scale transformation g in the 3rd epoch

Figure 7 The mapping relation from {18, 19, . . . , 28} to [1, 8]

6.4. Estimate the scale transformation g from {9, 10, . . . , 55} to [1, 8]

The previous subsection has shown that the mapping relation g0 on the third epoch is linear.

Thus, we use a linear function to estimate the scale transformation g on the third epoch. The

estimated scale transformation g on the third epoch is given as follows

g(t) = −11.6 + 0.7t, 18 ≤ t ≤ 28

and its fitting effect is shown in Figure 7 (b).

Analogically, for any i = 1, 2, 3, 4, 5, it follows that

g(t) = 1 +
7

Ti+1 − Ti − 1
(t− Ti − 1), t ∈ {Ti + 1, Ti + 2, . . . , Ti+1}, (6.4)

where T0 = 0, T1 = 8, T2 = 17, T3 = 28, T4 = 38, T5 = 47, T6 = 55. That is, the scale transforma-

tion g follows as

g(t) =











































t, t ∈ {1, 2, . . . , 8},

1 + 7
8 (t− 9), t ∈ {9, 10, . . . , 17},

1 + 7
10 (t− 18), t ∈ {18, 19, . . . , 28},

1 + 7
9 (t− 29), t ∈ {29, 30, . . . , 38},

1 + 7
8 (t− 39), t ∈ {39, 40, . . . , 47},

t− 47, t ∈ {48, 49, . . . , 55}.

(6.5)

6.5. Estimate the approximate periodic function {S(t), 1 ≤ t ≤ 8}

It yields from (6.3) and (6.5) that the adjusted data are as follows

D =
{(

g(t), x̃(t)
)

, t = 1, 2, . . . , 55
}

. (6.6)

Basing on the adjusted data D in (6.6), we estimate the function {S(t), 1 ≤ t ≤ 8} with a cubic

polynomial and obtain

S(t) = −3.3544 + 3.4166t− 0.11827t2 − 0.01556t3, 1 ≤ t ≤ 8. (6.7)
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Then, we plot the sequence chart of adjusted data D and its fitting curve of {S(t), 1 ≤ t ≤ 8} in

Figure 8.
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Figure 8 The sequence chart of D and the fitting curve of {S(t), 1 ≤ t ≤ 8}

6.6. Estimation effect comparison of different methods

In the subsection, we will show the estimation effect of our method. In order to distinguish

it from traditional periodic method, we call it the approximate periodic method.

6.6.1. Estimation effect of approximate periodic method

It yields from (6.2), (6.7) and (6.5) that, for any t = 1, 2, . . . , 55, the estimation value of x(t)

is given as follows

x̂(t) = h(t) + S(g(t)),

i.e.,

x̂(t) = 5.46832+ 0.49336t+ (−3.3544 + 3.4166g(t)− 0.11827g2(t)− 0.01556g3(t)), (6.8)

where

g(t) =











































t, t ∈ {1, 2, . . . , 8},

1 + 7
8 (t− 9), t ∈ {9, 10, . . . , 17},

1 + 7
10 (t− 18), t ∈ {18, 19, . . . , 28},

1 + 7
9 (t− 29), t ∈ {29, 30, . . . , 38},

1 + 7
8 (t− 39), t ∈ {39, 40, . . . , 47},

t− 47, t ∈ {48, 49, . . . , 55}.

We draw {x(t), t = 1, 2, . . . , 55} and its fitting values {x̂(t), t = 1, 2, . . . , 55} by the approxi-

mate periodic method in Figure 9 (a).

6.6.2. Estimation effect of traditional periodic method

In order to compare our method (i.e., approximate periodic method) with traditional periodic

methods, we will estimate {x(t), t = 1, 2, . . . , 55} by traditional periodic methods. Because the
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average period length of {x(t), t = 1, 2, . . . , 55} approximately equals nine, we take the period

length τ = 8, 9 and 10 for the traditional periodic methods, respectively.

Step 1. Compute the τ -step difference of x(t) by

∆τx(t) = x(t)− x(t− τ), t = τ + 1, τ + 2, . . . , 55,

where ∆τ is the τ -step difference operator.

Step 2. Stationarity test and pure randomness test for {∆τx(t), t = τ + 1, τ + 2, . . . , 55}

Using the augmented Dickey-Fuller test (i.e., “adftest” function in Matlab R2018b) and

the Ljung-Box Q-test (i.e., “lbqtest” function in Matlab R2018b) to test stationarity and pure

randomness, respectively. The test results are presented in Table 4, which indicates that the

residual {∆τx(t), t = τ + 1, τ + 2, . . . , 55} is stationary and not pure random for τ = 8 and 9,

and stationary and pure random for τ = 10.

τ
Augmented Dickey-Fuller test Ljung-Box Q-test

Test result
Statistic p-Value h Statistic p-Value h

8 -2.8149 0.0062 1 101.08 8.0524 × e−13 1 stationary, not pure random

9 -2.1476 0.0319 1 33.451 0.030089 1 stationary, not pure random

10 -2.3986 0.0176 1 24.124 0.23701 0 stationary, pure random

Table 4 Stationarity test and pure randomness test for {∆τx(t), t = τ + 1, τ + 2, . . . , 55}

Step 3. Establish ARMA models of {∆τx(t), t = τ + 1, τ + 2, . . .}

It yields from Table 4 that {∆τx(t), t = τ + 1, τ + 2, . . .} is a white noise while τ = 10, and

a stationary & not pure random series while τ = 8 or 9. Thus, we will establish ARMA models

of {∆τx(t), t = τ +1, τ +2, . . .} while τ = 8 or 9, and white noise model while τ = 10 as follows

Φ(B)∆τx(t) = Θ(B)εt, (6.9)

where B is the delay operator that Bmx(t) = x(t −m) holds for all m = 1, 2, . . . , and {εt, t =

τ + 1, τ + 2, . . .} is a white noise series.

τ Model Φ(B) Θ(B) σ2

ε

8 ARMA(2,1) 1− 1.491B + 0.4851B2 1− 0.9613B 3.7412

9 ARMA(2,1) 1− 1.291B + 0.299B2 1−B 2.4488

10 white noise 0 1 2.7322

Table 5 ARMA models of {∆τx(t), t = τ + 1, τ + 2, . . .}

Step 4. Estimation effect of traditional periodic methods

It yields from Steps 1–3 that, for any ℓ > 0,

x(t) = x(t − τ) + ∆τx(t),

so

x̂t(ℓ) = x̃t(ℓ− τ) + Ỹt(ℓ), t = τ + 1, τ + 2, . . . , 55, (6.10)
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where x̂t(ℓ) denotes the ℓ-step estimation about x(t+ ℓ) at time t, Y (t) = ∆τx(t),

x̃t(k) =

{

x(t+ k), k ≤ 0

x̂t(k), k > 0
and Ỹt(k) =

{

Y (t+ k), k ≤ 0

Ŷt(k), k > 0
.

We draw {x(t), t = 1, 2, . . . , 55} and its fitting values {x̂(t), t = 1, 2, . . . , 55} by traditional

periodic methods with τ = 8, 9 and 10 in Figures 9 (b), 9 (c) and 9(d), respectively. It follows

from comparing Figure 9 (a) with Figures 9 (b)–(d) that approximate periodic method is far

better than traditional periodic methods in the sense of fitting effect.
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(a) Fitting effect by approximate periodic method (b) Fitting effect by traditional periodic method

(τ = 8)
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(c) Fitting effect by traditional periodic method (d) Fitting effect by traditional periodic

(τ = 9) method (τ = 10)

Figure 9 Fitting effect of {x(t), t = 1, 2, . . . , 55} by different methods

6.6.3. Residual comparison of different methods

According to the previous calculation, we obtain the residual by approximate periodic method

and the residuals by traditional periodic methods with τ = 8, 9 and 10 in Table 6 and draw

their charts in Figure 10, which shows approximate periodic method is far more powerful than

traditional periodic methods in fitting effect.



Estimation of scale transformation for approximate periodic time series with long-term trend 257

Method type Mean STD Maximum absolute deviation

Approximate periodic method 0.0254 0.3102 0.6571

Traditional periodic method

τ = 8 -0.1708 3.7412 9.4254

τ = 9 −5.5625 × e−8 2.4488 8.9452

τ = 10 0.0044 2.6363 9.1144

Table 6 Residual comparison of different methods
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(a) Residual by approximate periodic method (b) Residual comparison of traditional periodic method

(τ = 8) and approximate periodic method
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Figure 10 Residual comparison by different methods

7. Conclusions

In the paper, shape-retention transformation with lengthwise compression is first brought

forward, and some necessary and sufficient conditions for the transformations are obtained.

Then, basing on the linear shape-retention transformation with lengthwise compression we bring

forward a method to estimate the scale transformation of approximate periodic time series with

long-term trend. At last, a simulated example is analyzed by our method and traditional periodic
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methods. The results show that our method is far effective and very powerful.
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