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Abstract R. Witula et al obtained a stronger version of the second mean value theorem for

integral with some restrictions. In this paper, the stronger version theorem is proved without any

restriction. The result is first restricted to the Riemann integrable functions and can be easily

generalized to Lp integrable functions by using the well-known result that continuous functions

are dense in the Banach space Lp[a, b] for any p ≥ 1.
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1. Introduction

The classical form of the second mean value theorem for integral is as follows.

Theorem 1.1 (Second mean value theorem for integrals) Let f be Riemann integrable on [a, b]

and g be monotone on [a, b]. Then, there exists c, being an inner point of [a, b], such that

∫ b

a

f(x)g(x)dx = g(a+)

∫ c

a

f(x)dx + g(b−)

∫ c

b

f(x)dx,

where g(a+) = limx→a+ g(x) and g(b−) = limx→b− g(x).

In [1], the following result is obtained.

Theorem 1.2 Let g ≥ 0 with domain [a, b] be a monotonic function and f with domain [a, b]

be a real Lebesgue integrable function.

(1) (standard version) If for every c ∈ (a, b), we have

0 6=

∫ c

a

f(x)dx 6=

∫ b

a

f(x)dx,
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then for any A ≤ min{g(a+), g(b−)} and B ≥ max{g(a+), g(b−)} there exists ξ = ξ(A,B) ∈

[a, b] such that
∫ b

a

f(x)g(x)dx = A

∫ ξ

a

f(x)dx+B

∫ b

ξ

f(x)dx if g(a+) < g(b−),

∫ b

a

f(x)g(x)dx = B

∫ ξ

a

f(x)dx+A

∫ b

ξ

f(x)dx if g(a+) > g(b−).

(2) (generalization) Let A0,B0 be real numbers, ξ0 ∈ (a, b] and
∫ b

a

f(x)g(x)dx = A0

∫ ξ0

a

f(x)dx +B0

∫ b

ξ0

f(x)dx.

If A0 < B0 and
∫ ξ0

a
f(x)dx 6= 0, then for any A < A0, there exists ξ = ξ(A) ∈ (a, ξ0) such that

∫ b

a

f(x)g(x)dx = A

∫ ξ

a

f(x)dx+B0

∫ b

ξ

f(x)dx.

If A0 > B0 and
∫ b

ξ0
f(x)dx 6= 0, then for any B > B0 there exists η = η(B) ∈ (ξ0, b] such that

∫ b

a

f(x)g(x)dx = A0

∫ η

a

f(x)dx+B

∫ b

η

f(x)dx.

2. Main result

The main result of this paper is to prove Theorem 1.2 without any restriction, restated as

follows.

Theorem 2.1 Let g with domain [a, b] be a monotonic function and f with domain [a, b] be a

real Riemann integrable function.

(1) If g(a+) < g(b−), then for any A ≤ g(a+) and B ≥ g(b−) there exists c = c(A,B) ∈ [a, b],

such that
∫ b

a

f(x)g(x)dx = A

∫ c

a

f(x)dx +B

∫ b

c

f(x)dx. (2.1)

(2) If g(a+) > g(b−), then for any A ≥ g(a+) and B ≤ g(b−) there exists d = d(A,B) ∈

[a, b], such that
∫ b

a

f(x)g(x)dx = A

∫ d

a

f(x)dx +B

∫ b

d

f(x)dx. (2.2)

Proof We only prove (2.1), since (2.2) can be proved similarly. Let

h(a) = A, h(b) = B , h(x) = g(x) for a < x < b.

Then, h is also an increasing function and we only need to prove
∫ b

a

f(x)h(x)dx =

∫ b

a

f(x)g(x)dx = h(a)

∫ c

a

f(x)dx + h(b)

∫ b

c

f(x)dx. (2.3)

It is easy to check that (2.3) is equivalent to
∫ b

a

f(x)u(x)dx = u(b)

∫ b

c

f(x)dx, (2.4)
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where u(x) = h(x)−h(a) ≥ 0. For any natural number n, denote xi = a+ i(b−a)
n

, 0 ≤ i ≤ n, and

F (x) =

∫ x

a

f(s)ds, a ≤ x ≤ b.

Let t1 = a, tn = b, ti ∈ [xi−1, xi] for 2 ≤ i ≤ n−1. We also denotemi = inf{f(x) : xi−1 ≤ x ≤ xi}

and Mi = sup{f(x) : xi−1 ≤ x ≤ xi} being the infimum and supremum of f on the interval

[xi−1, xi], respectively. Since u(x) ≥ 0, we have

n
∑

i=1

miu(ti)∆xi ≤

n
∑

i=1

f(ti)u(ti)∆xi ≤

n
∑

i=1

Miu(ti)∆xi, (2.5)

n
∑

i=1

miu(ti)∆xi ≤

n
∑

i=1

u(ti)

∫ xi

xi−1

f(x)dx ≤

n
∑

i=1

Miu(ti)∆xi, (2.6)

where ∆xi = xi − xi−1. Denote

En =
n
∑

i=1

f(ti)u(ti)∆xi −
n
∑

i=1

u(ti)

∫ xi

xi−1

f(x)dx.

Since u(x) ≥ 0 is increasing, (2.5) and (2.6) show that

|En| ≤

n
∑

i=1

[Mi −mi]u(ti)∆xi ≤ u(b)

n
∑

i=1

[Mi −mi]∆xi → 0, as n → ∞, (2.7)

since f is Riemann integrable and ∆xi =
b−a
n

→ 0, as n → ∞. Thus, using Abel’s summation

formula, we obtain

n
∑

i=1

f(ti)u(ti)∆xi =
n
∑

i=1

u(ti)

∫ xi

xi−1

f(x)dx + En

=

n
∑

i=1

u(ti)[F (xi)− F (xi−1)] + En

= u(tn)F (xn)−

n−1
∑

i=1

[u(ti+1)− u(ti)]F (xi)− u(t1)F (x0) + En. (2.8)

Let m and M be the minimum and maximum values of F , respectively. Noting that u(ti+1) −

u(ti) ≥ 0, it holds that

m

n−1
∑

i=1

[u(ti+1)− u(ti)] ≤

n−1
∑

i=1

[u(ti+1)− u(ti)]F (xi) ≤ M

n−1
∑

i=1

[u(ti+1)− u(ti)].

That is,

m[u(tn)− u(t1)] ≤

n−1
∑

i=1

[u(ti+1)− u(ti)]F (xi) ≤ M [u(tn)− u(t1)]. (2.9)

Noting that u(tn) = u(b), u(t1) = u(a) = 0 and the assumption g(b−) > g(a+) implies u(b) ≥

g(b−)− g(a+) > 0. According to (2.9), we obtain

m ≤

∑n−1
i=1 [u(ti+1)− u(ti)]F (xi)

u(b)
≤ M.
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According to the intermediate value theorem for continuous function, there exists cn ∈ [a, b] such

that
n−1
∑

i=1

[u(ti+1)− u(ti)]F (xi) = u(b)F (cn) = u(b)

∫ cn

a

f(s)ds. (2.10)

According to (2.8) and (2.10), and noting that u(tn) = u(b), F (x0) = 0 and F (xn) =
∫ b

a
f(s)ds,

it holds that
n−1
∑

i=1

f(ti)u(ti)∆xi = u(b)

∫ b

cn

f(s)ds+ En. (2.11)

Since cn ∈ [a, b], according to Bolzano-Weierstrass theorem, the sequence (cn) has a convergent

subsequence, say limk→∞ cnk
= c. Replacing n by nk in (2.11) and asking k → ∞, we have

lim
k→∞

nk
∑

i=1

f(ti)u(ti)∆xi =

∫ b

a

f(x)u(x)dx, (2.12)

lim
k→∞

[u(b)

∫ b

cnk

f(s)ds+ Enk
] = u(b)

∫ b

c

f(s)ds. (2.13)

(2.4) can be obtained from Eqs. (2.11)–(2.13). Theorem 2.1 is thus proved. 2

Theorem 2.1 can be easily generalized to the Banach space Lp[a, b] for any p ≥ 1 as follows.

Theorem 2.2 Theorem 2.1 holds also for a function f ∈ Lp[a, b] for any p ≥ 1.

The proof of Theorem 2.2 depends on the following Lusin’s Theorem and Tietze’s Extension

Theorem.

Lusin’s Theorem Let f be a real-valued measurable function with domain [a, b]. Then, for

any ε > 0, there is a compact set K ⊂ [a, b] with the measure m([a, b] \K) < ε such that the

restriction of f to K is continuous.

Tietze’s Extension Theorem Let K ⊂ [a, b] be a compact set and f be continuous on K.

Then f can be extended to a continuous function g defined on [a, b] such that g|K = f |K with

max{|g(x)|; a ≤ x ≤ b} = max{|f(x)|;x ∈ K}.

Using the Lusin’s Theorem and Tietze’s Extension Theorem, we can prove that continuous

functions are dense in the Banach space Lp[a, b] (p ≥ 1). That is, if f ∈ Lp[a, b] (p ≥ 1), then,

for any ε > 0 there exists a continuous function fε such that

‖fε − f‖p < ε. (2.14)

To prove (2.14), we define

fN(x) =

{

f(x), |f(x)| < N ,

N, otherwise.

For any ε > 0, there exists an N , such that

‖fN − f‖p <
ε

2
. (2.15)

According to the Lusin’s Theorem, for 2−p εp

(2N)p , there is a compact set K ⊂ [a, b] with the

measure m([a, b]\K) < 2−p εp

(2N)p such that the restriction of fN to K is continuous.
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According to the Tietze’s Extension Theorem, the restriction of fN to K can be extended to

a continuous function defined on [a, b], say fε, such that fε|K = fN |K with max{|fε(x)|; a ≤ x ≤

b} = max{|fN (x)|;x ∈ K} ≤ N . Therefore, we obtain
∫ b

a

|fN(x) − fε(x)|
pdx =

∫

[a,b]\K

|fN (x)− fε(x)|
pdx

≤

∫

[a,b]\K

2p−1(|fN (x)|p + |fε(x)|
p)dx ≤ (2N)pm([a, b]\K) < 2−pεp, (2.16)

where the following inequality is used.

For any real numbers c, d and p ≥ 1, it holds that

|c+ d|p ≤ 2p−1(|c|p + |d|p).

According to (2.15) and (2.16), we obtain

‖fε − f‖p < ε.

Therefore, there exists a sequence of continuous functions (fn) such that

lim
n→∞

‖fn − f‖p = 0.

Since fn is continuous and therefore is Riemann integrable. If g is monotone, according to

Theorem 2.1, there exists cn ∈ [a, b] such that
∫ b

a

fn(x)g(x)dx = A

∫ cn

a

fn(x)dx +B

∫ b

cn

fn(x)dx. (2.17)

Without loss of generality, assume that limn→∞ cn = c. Asking n → ∞, (2.17) shows that

Theorem 2.1 still works for a function f ∈ Lp[a, b]. Theorem 2.2 is proved.
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