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Abstract Regarding the application of the fusion frames and generalization of them in data

proceeding, their iterative is of particular importance when one of their members is deleted. In

this note, a method for reconstruction of generalized fusion frames and error operator with its

upper bound are presented. Also, the approximation operator for these frames will be introduced

and we study some results about them.
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1. Introduction and preliminaries

Frames which are a general case of basis in vector spaces, have a significant role in both

pure and applied mathematics, and are among the fundamental research area in mathematics,

computer science and quantum information and several new applications have been developed,

e.g., signal processing, image processing, data compression and sampling theory. This topic was

introduced by Duffin and Scheaffer [1], and nowadays frames are studied in seven branches:

(1) Continuous frames (or c-frames): they have been introduced in measure spaces [2];

(2) Generalized frames (or g-frames): they are for bounded operators on Hilbert spaces [3];

(3) Frame of subspaces (or fusion frames): they have been discussed for closed subspaces of

a Hilbert space [4];

(4) Frame of operators (or K-frames): they were presented in [5] while studying about the

atomic systems with respect to a bounded operator K;

(5) Controlled frames: which were introduced to improve the numerical output in relation

to algorithms for inverting the frame operator [6];

(6) Weaving frames (or woven): they were motivated by a question in distributed signal

processing [7];

(7) The combination of each two frames: e.g., c-fusion frames [8], g-fusion frames [9], K-

fusion frames [10], cK-fusion frames [11], continuous weaving fusion frames [12], and etc.

Robustness of Parseval fusion frames under erasure have been employed by Bodmann and et.

al. [13] for optimal transmission of quantum states and packet encoding. Kutyniok et. al. [14]

Received January 8, 2020; Accepted March 11, 2021

E-mail address: vahidsadri57@gmail.com



Robustness and iterative reconstruction of g-fusion frames in Hilbert spaces 271

presented fusion frames which are optimally resilient against noise and erasure for random signals

and further, Casazza and Kutyniok [15] have studied this topic and they presented sufficient

conditions on the robustness of a fusion frame with respect to erasures of subspaces. Afterwards,

Ahmadi [16] continued it by introducing an operator and yielded an iterative reconstruction by

the operator.

In this paper, we focus on the study of those topics on generalized fusion frames and we

will show some new results about these frames and provide some conditions to be deleted yet

still leave a g-fusion frame. This results can be used in signal processing and image processing,

when some data are deleted during the transfer. In Theorem 1.4, we present a new result for

the eigenvalues of the g-fusion frame operator and then, in Theorem 1.6, we show that each

g-fusion frame can produce a different ordinary frame. And we focus on the conditions that we

get a g-fusion frame after deleting some subspaces. Finally, in Theorem 2.7, a useful result about

Parseval g-fusion frames is presented.

Throughout this paper, H and K are separable Hilbert spaces and B(H,K) is the collection

of all the bounded linear operators of H into K. If K = H , then B(H,H) will be denoted by

B(H). Also, πV is the orthogonal projection from H onto a closed subspace V ⊂ H and {Hj}j∈J

is a sequence of Hilbert spaces where J is a subset of Z.

Definition 1.1 Let {fj}j∈J be a sequence of members of H . We say that {fj}j∈J is a frame

for H if there exist 0 < A ≤ B < ∞ such that for each f ∈ H

A‖f‖2 ≤
∑

j∈J

|
〈
f, fj

〉
|2 ≤ B‖f‖2. (1.1)

The constants A and B are called frame bounds. If A = B, we say that {fj}j∈J is a Parseval

frame.

Definition 1.2 A family {Λj ∈ B(H,Hj)}j∈J is called a g-frame for H with respect to {Hj}j∈J,

if there exist 0 < A ≤ B < ∞ such that for every f ∈ H ,

A‖f‖2 ≤
∑

j∈J

‖Λjf‖2 ≤ B‖f‖2. (1.2)

Definition 1.3 ([9]) Let W = {Wj}j∈J be a collection of closed subspaces of H , {vj}j∈J be a

family of weights, i.e., vj > 0 and Λj ∈ B(H,Hj) for each j ∈ J. We say Λ := (Wj ,Λj , vj)j∈J is

a generalized fusion frame (or g-fusion frame) for H if there exist 0 < A ≤ B < ∞ such that for

each f ∈ H ,

A‖f‖2 ≤
∑

j∈J

v2j ‖ΛjπWj
f‖2 ≤ B‖f‖2. (1.3)

Throughout this paper, Λ denotes a triple (Wj ,Λj , vj) with j ∈ J unless otherwise noted. If

A = B, then we say Λ is a tight g-fusion frame and we say Λ is a Parseval g-fusion frame

whenever A = B = 1. When the right hand side of (1.3) holds, Λ is called a g-fusion Bessel

sequence for H with bound B. If Λ is a g-fusion Bessel sequence, then the synthesis and the
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analysis operators of the g-fusion frames are defined by (for more details, we refer to [9])

TΛ : H2 −→ H, TΛ({fj}j∈J) =
∑

j∈J

vjπWj
Λ∗
jfj ,

T ∗
Λ : H −→ H2, T ∗

Λ(f) = {vjΛjπWj
f}j∈J,

where

H2 =
{
{fj}j∈J : fj ∈ Hj ,

∑

j∈J

‖fj‖2 < ∞
}
,

with the inner product defined by 〈{fj}, {gj}〉 =
∑

j∈J
〈fj , gj〉. It is clear that H2 is a Hilbert

space with pointwise operations. Thus, the g-fusion frame operator is given by

SΛf = TΛT
∗
Λf =

∑

j∈J

v2jπWj
Λ∗
jΛjπWj

f.

Therefore,

A IdH ≤ SΛ ≤ B IdH .

This means that SΛ is a bounded, positive and invertible operator (with adjoint inverse). The

next result gives a new identity about the eigenvalues of the operator SΛ which is general case

in [17, Theorem 1.1.12].

Theorem 1.4 Let Λ be a g-fusion frame for H where dimH = n and |J| < ∞, and also {λj}nj=1

be the eigenvalues of the operator SΛ. Then, there exists an orthonormal basis {ek}nk=1 for H

such that
n∑

k=1

λk =

n∑

k=1

∑

j∈J

v2j ‖ΛjπWj
ek‖2.

Proof Since SΛ is self-adjoint, there exists an orthonormal basis {ek}nk=1 for H such that

SΛek = λkek for each 1 ≤ k ≤ n. Hence,

n∑

k=1

λk =
n∑

k=1

λk〈ek, ek〉 =
n∑

k=1

〈SΛek, ek〉 =
n∑

k=1

∑

j∈J

v2j ‖ΛjπWj
ek‖2.

Now, if Λ is a Parseval g-fusion frame, then SΛ = IdH and therefore,

n∑

k=1

∑

j∈J

v2j ‖ΛjπWj
ek‖2 = n.

The following shows an interesting property between TΛ and T ∗
Θ. For this, we need the concept

of a trace-class operator: an operator U on H is called a trace-class operator if

tr(|U |) :=
∑

j∈J

〈|U |ej , ej〉 < ∞,

where {ej}j∈J is an orthonormal basis for E and |U | = (U∗U)
1

2 . 2

Theorem 1.5 Let |J| < ∞, also Λ = (Wj ,Λj, vj) and Θ = (Wj ,Θj, wj) be two g-fusion Bessel

sequence for H , where Λj,Θj ∈ B(H,Hj). Let φ := TΛT
∗
Θ. Then φ is a trace class operator.

Proof Suppose that φ = u|φ| is a polar decomposition of the operator φ, where u ∈ B(H) is a
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partial isometry, therefore, |φ| = u∗TΛT
∗
Θ. Assume that {ej}j∈J is an orthonormal basis for H ,

then

tr(|φ|) =
∑

j∈J

〈|φ|ej , ej〉 =
∑

j∈J

〈T ∗
Θej , T

∗
Λuej〉

=
∑

j∈J

〈
{wkΘkπWk

ej}k∈J, {vkΛkπWk
uej}k∈J

〉

=
∑

j∈J

∑

k∈J

〈wkΘkπWk
ej , vkΛkπWk

uej〉

≤
∑

j∈J

∑

k∈J

‖wkΘkπWk
ej‖.‖vkΛkπWk

uej‖

≤
∑

j∈J

(∑

k∈J

‖wkΘkπWk
ej‖2

) 1

2

(∑

k∈J

‖vkΛkπWk
uej‖2

) 1

2

≤
∑

j∈J

√
BΛBΘ‖uej‖ =

√
BΛBΘ |J| < ∞. 2

In the next theorem, we show a relation between ordinary frames and g-fusion frames.

Theorem 1.6 For each j ∈ J let Λj ∈ B(H,Hj) and vj > 0. Let {fij}i∈Ij be a frame for Hj

with bounds Aj and Bj . Define a sequence of subspaces Wj = span{Λ∗
jfij}i∈Ij for each j ∈ J

and suppose that

0 < A := inf
j∈J

Aj ≤ B := sup
j∈J

Bj < ∞.

The following assertions are equivalent:

(1) {vjΛ∗
jfij}j∈J,i∈Ij is a frame for H .

(2) Λj(Wj) are closed subspaces of Hj for every j ∈ J and {eij}j∈J,i∈Ij are orthonormal

bases for them such that {vjπWj
Λ∗
jeij}j∈J,i∈Ij is a frame for H .

(3) Λ = (Wj ,Λj , vj)j∈J is a g-fusion frame for H .

Proof First, we prove that (1) and (3) are equivalent. Suppose that {vjΛ∗
jfij}j∈J,i∈Ij is a frame

for H with frame bounds C and D. For each f ∈ H , we have

A
∑

j∈J

v2j ‖ΛjπWj
f‖2 ≤

∑

j∈J

Ajv
2
j ‖ΛjπWj

f‖2

≤
∑

j∈J

∑

i∈Ij

|〈vjΛjπWj
f, fij〉|2

=
∑

j∈J

∑

i∈Ij

|〈πWj
f, vjΛ

∗
jfij〉|2

=
∑

j∈J

∑

i∈Ij

|〈f, vjΛ∗
jfij〉|2 ≤ D‖f‖2.

This means that Λ is a g-fusion Bessel sequence for H with a bound D
A
. With the same method,

we can show that C
B

is a lower frame bound for Λ. For the opposite case, assume that Λ is a
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g-fusion frame with bounds C and D. For each f ∈ H we have
∑

j∈J

∑

i∈Ij

|〈f, vjΛ∗
jfij〉|2 =

∑

j∈J

∑

i∈Ij

|〈πWj
f, vjΛ

∗
jfij〉|2

=
∑

j∈J

∑

i∈Ij

v2j |〈ΛjπWj
f, fij〉|2

≤
∑

j∈J

Bjv
2
j ‖ΛjπWj

f‖2 ≤ BD‖f‖2,

and it is easy to check that AC is a lower frame bound.

Now, according to the following:

v2j ‖ΛjπWj
f‖2 = v2j

∥∥∥
∑

i∈Ij

〈ΛjπWj
f, eij〉eij

∥∥∥
2

=
∑

i∈Ij

|〈f, vjπWj
Λ∗
jeij〉|2,

we aim that (2) and (3) are equivalent. 2

2. Main results

Suppose that {Wj}j∈J and {Zj}j∈J are two closed subspaces of H and {vj}j∈J is a set of

weights. Also, Λj and Θj are bounded operators in B(H,Hj). We define the approximation

operator with respect to Λ and Θ := (Zj ,Θj, vj)j∈J as follows:

Ψ : H −→ H, Ψf =
∑

j∈J

vjπZj
Θ∗

j (vjΛjπWj
f).

The following can be found in the text of Banach spaces:

Lemma 2.1 Let (X, ‖.‖) be a Banach space and U : X → X be a bounded operator such that

‖I − U‖ < 1. Then U is invertible and U−1 =
∑n

k=0(I − U)k. Moreover,

‖U−1‖ ≤ 1

1− ‖I − U‖ .

Theorem 2.2 Let C1, C2 > 0 and 0 ≤ γ < 1 be real numbers such that for each f ∈ H and

{fj}∈J ∈ H2 the following assertions hold:

(1)
∑

j∈J
v2j ‖ΛjπWj

f‖2 ≤ C1‖f‖2;
(2) ‖∑∈J

vjπZj
Θ∗

jfj‖2 ≤ C2‖{fj}‖22;
(3) ‖f −Ψf‖2 ≤ γ‖f‖2.
The Λ is a g-fusion frame for H with bounds C−1

2 (1−γ)2 and C1. Also, Θ is a g-fusion frame

for H with bounds C−1
1 (1− γ)2 and C2.

Proof Assume that f ∈ H , with items (1) and (2) we get

‖Ψf‖2 ≤ C2‖{vjΛjπWj
f}‖22 = C2

∑

j∈J

v2j ‖ΛjπWj
f‖2 ≤ C2C1‖f‖2.

Hence, Ψ is a bounded operator. Via item (3) we have ‖I − Ψ‖ ≤ √
γ < 1. So, by Lemma 2.1,

Ψ is invertible and ‖Ψ−1‖ ≤ (1 − γ)−1. Thus,

‖f‖2 = ‖Ψ−1Ψf‖2 ≤ (1− γ)−2‖Ψf‖
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≤ C2(1− γ)−2
∑

j∈J

v2j ‖ΛjπWj
f‖2

≤ C2C1(1 − γ)−2‖f‖2.

So, we conclude that

C−1
2 (1− γ)2‖f‖2 ≤

∑

j∈J

v2j ‖ΛjπWj
f‖2 ≤ C1‖f‖2,

and the first part is proved. Next, we verify two inequalities which are dual to (1) and (2) for

Θ. Let f ∈ H and we have

(∑

j∈J

v2j ‖ΘjπZj
f‖2

)2
=

(
〈
∑

j∈J

vjπZj
Θ∗

jΘjπZj
f, f〉

)2

≤ ‖
∑

j∈J

vjπZj
Θ∗

jΘjπZj
f‖2‖f‖2

≤ C2‖f‖2
∑

j∈J

v2j ‖ΘjπZj
f‖2.

Therefore, ∑

j∈J

v2j ‖ΘjπZj
f‖2 ≤ C2‖f‖2.

For second inequality, for {fj}j∈J ∈ H2, we can write

‖
∑

j∈J

vjπWj
Λ∗
jfj‖2 =

(
sup

‖f‖=1

∣∣〈∑

j∈J

vjπWj
Λ∗
jfj, f

〉∣∣
)2

≤
(

sup
‖f‖=1

∣∣∑

j∈J

〈
fj, vjΛjπWj

f
〉∣∣
)2

≤ ‖{fj}‖22
(

sup
‖f‖=1

∑

j∈J

v2j ‖ΛjπWj
f‖2

)

≤ C1‖{fj}‖22.

Now by similar argument and applying an approximation operator of the form

Ψ∗f =
∑

j∈J

vjπWj
Λ∗
j (vjΘjπZj

f),

we can establish Θ has required properties. 2

The next result is a generalization of [15, Theorem 3.2] for g-fusion frames.

Theorem 2.3 Let Λ be a g-fusion frame for H with bounds A and B, and also I ⊂ J. Then

the following statements hold.

(1) If {Λj}j∈I is a g-frame for H with the lower frame bound B and we have vj > 1 for each

j ∈ I, then
⋂

j∈I
Wj = {0}.

(2) If {Λj}j∈I is a tight g-frame for H with the lower frame bound B and we have vj = 1

for each j ∈ I, then
⋂

j∈I
Wj ⊥ span{Wj}j∈J\I.

(3) If C :=
∑

j∈I
v2j ‖Λj‖2 < A, then (Wj ,Λj, vj)j∈J\I is a g-fusion frame for H with bounds

A− C and B.
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Proof (1) For every f ∈ ⋂
j∈I

Wj and j ∈ I we have πWj
f = f . So,

B‖f‖2 <
∑

j∈I

v2j ‖Λjf‖2 =
∑

j∈I

v2j ‖ΛjπWj
f‖2 ≤

∑

j∈J

v2j ‖ΛjπWj
f‖2 ≤ B‖f‖2.

Thus, f = 0.

(2) For each f ∈ ⋂
j∈I

Wj , we have

B‖f‖2 =
∑

j∈I

v2j ‖ΛjπWj
f‖2 ≤

∑

j∈I

v2j ‖ΛjπWj
f‖2 +

∑

j∈J\I

v2j ‖ΛjπWj
f‖2 ≤ B‖f‖2.

Therefore,
∑

j∈J\I v
2
j ‖ΛjπWj

f‖2 = 0 and it shows that f ⊥ span{Wj}j∈J\I.

(3) The upper bound is evident. For the lower bound, if f ∈ H we get
∑

j∈J\I

v2j ‖ΛjπWj
f‖2 =

∑

j∈J

v2j ‖ΛjπWj
f‖2 −

∑

j∈I

v2j ‖ΛjπWj
f‖2

≥ A‖f‖2 −
∑

j∈I

v2j ‖Λj‖2‖f‖2

= (A− C)‖f‖2.

When the set I which is introduced in Theorem 2.3 is singleton, then we can get the following

result. 2

Corollary 2.4 Let Λ be a g-fusion frame for H with frame bounds A and B. If there exists

j0 ∈ J such that v2j0‖Λj0‖2 < A, then (Wj ,Λj, vj)j 6=j0 is a g-fusion frame for H with bounds

A− v2j0‖Λj0‖2 and B.

The following is a generalization in [15, Corollary 3.4].

Corollary 2.5 Let Λ be a tight g-fusion frame for H with bound A and j0 ∈ J. Then the

following assertions are equivalent.

(1) v2j0‖Λj0πWj0
‖2 < A.

(2) (Wj ,Λj, vj)j 6=j0 is a g-fusion frame for H .

Proof The proof of (1)⇒ (2) is clear from Corollary 2.4. For the opposite, assume that C is a

lower frame bound of (Wj ,Λj , vj)j 6=j0 . For each 0 6= f ∈ H we have

C‖f‖2 ≤
∑

j 6=j0

v2j ‖ΛjπWj
f‖2

=
∑

j∈J

v2j ‖ΛjπWj
f‖2 − v2j0‖Λj0πWj0

f‖2

= (A‖f‖2 − v2j0‖Λj0πWj0
f‖2).

Hence,

0 < C ≤ A− v2j0
‖Λj0πWj0

f‖2
‖f‖2 .

Therefore, A− v2j0‖Λj0πWj0
‖2 > 0. 2

In next result, we provide a new g-fusion frame for the space H by deleting a number of

members of a Parseval frame for Hj .
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Theorem 2.6 Let Λ be a g-fusion frame for H with bounds A and B. For each j ∈ J, let

{fij}i∈Ij ∈ Λj(Wj) be a Parseval frame for Hj which {fij}i∈Ij\Lj
is a frame for Hj with the

lower frame bound Cj for each finite subset Lj ⊂ Ij and all j ∈ J. If W̃j := span{Λ∗
jfij}i∈Ij\Lj

,

then (W̃j ,Λj, vj)j∈J is a g-fusion frame for H with bounds (minj∈J Cj)A and B.

Proof It is clear that W̃j are closed subspaces of H for each j ∈ J and B is an upper frame

bound of (W̃j ,Λj , vj)j∈J. For each f ∈ H we have
∑

j∈J

v2j ‖ΛjπW̃j
f‖2 =

∑

j∈J

v2j

∑

i∈Ij

|〈ΛjπW̃j
f, fij〉|2

≥
∑

j∈J

v2j

∑

i∈Ij\Lj

|〈π
W̃j

f,Λ∗
jfij〉|2

=
∑

j∈J

v2j

∑

i∈Ij\Lj

|〈ΛjπWj
f, fij〉|2

≥
∑

j∈J

v2jCj‖ΛjπWj
f‖2

≥ (min
j∈J

Cj)
∑

j∈J

v2j ‖ΛjπWj
f‖2

≥ (min
j∈J

Cj)A‖f‖2.

Now, we aim to study the approximation Ψ in finite case similar to the view presented in [15].

Suppose that J = {1, 2, . . . ,m} is finite and Λ is a Parseval g-fusion frame for H . For every

j0 ∈ J, we consider the following operator: Dj0 : H2 −→ H2, Dj0{fj}j∈J = δj,j0fj0 . We define

the associated 1-erasure reconstruction error E1(Λ) to be

E1(Λ) = max
j∈J

‖TΛDjT
∗
Λ‖.

Since

‖TΛDjT
∗
Λ‖ = sup

‖f‖=1

‖TΛDjT
∗
Λf‖ = v2j sup

‖f‖=1

‖πWj
Λ∗
jΛjπWj

f‖ ≤ v2j ‖Λj‖2,

therefore, E1(Λ) = maxj∈J v
2
j ‖Λj‖2. 2

Theorem 2.7 Let Λj(Wj) be closed subspaces, J = {1, 2, . . . ,m} and Λ be a Parseval g-fusion

frame for finite dimensional H and also |Hj | < ∞ for each j ∈ J. Then the following conditions

are equivalent.

(1) Λ satisfies E1(Λ) = minj∈J E1(W̃j ,Λj , ṽj)j∈J, where (W̃j ,Λj, ṽj)j∈J is a Parseval g-fusion

frame for H with dim W̃j = dimWj for each j ∈ J.

(2) For each j ∈ J we have v2j ‖Λj‖2 = dimH
m. dimWj

.

Proof Assume that {eij}i∈Ij is an orthonormal basis for Λj(Wj) for each j ∈ J. Via Theorem

1.6, the sequence {vjπWj
Λ∗
jeij}

m,dimΛj(Wj)
j=1,i=1 is a Parseval frame for H . In [18, Eq. (17)], we can

get

dimH =

m∑

j=1

dimΛj(Wj)∑

i=1

v2j ‖πWj
Λ∗
jeij‖2 ≤

m∑

j=1

dimΛj(Wj)v
2
j ‖Λj‖2.
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So, there exists j such that dimH ≤ m. dimΛj(Wj)v
2
j ‖Λj‖2. Since the dimensions as well as the

number of subspaces are fixed, we conclude that E1(Λ) is minimal if and only if

dimH = m. dimΛj(Wj)v
2
j ‖Λj‖2, ∀j ∈ J. 2
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