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Abstract The purpose of this paper is to study almost cosymplectic p-spheres and almost cosym-

plectic metric bi-structures. Firstly, we show some properties of almost cosymplectic p-spheres.

Then we introduce the notion of almost cosymplectic metric bi-structures and give some results

on three dimensional manifolds admitting almost cosymplectic metric bi-structures. Moreover,

we investigate three dimensional manifolds with almost cosymplectic metric bi-structures when

the (1, 1)-type tensor fields h1 and h2 are being of codazzi type and cyclic parallel.
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1. Introduction

In recent years, after Goldberg and Yano [1] introduced the notion of almost cosymplectic

manifolds, almost cosymplectic manifolds were studied by many authors. In [2], Perrone classified

all simply connected homogeneous almost cosymplectic three-manifolds. In [3–6], the authors

considered three dimensional almost cosymplectic manifolds satisfying certain conditions. Geiges

and Gonzalo [7] introduced the notion of contact circles on three-manifolds in 1995. In 2005,

Zessin [8] studied contact p-spheres, and proved that a contact circle (resp., a contact sphere) is

taut if and only if it is round on a three-manifold. Montano, Nicola and Yudin [9] introduced

almost cosymplectic circles and almost cosymplectic spheres. Moreover, they showed that any

3-Sasakian manifold admits a sphere of Sasakian structures which is both taut and round. In

2017, Perrone [10] introduced a Riemannian approach to the study of taut contact circles on

three-manifolds. The author gave a complete classification of simply complete three-manifolds

which admit a bi-H-contact metric structure.

In this paper, we investigate almost cosymplectic p-spheres and almost cosymplectic metric

bi-structures. In Section 2, we give some properties of almost cosymplectic p-spheres. According

to the notation of bi-contact metric structures in [10], we introduce the definition of almost

cosymplectic metric bi-structures in Section 3. According to the structures of almost cosymplectic

metric bi-structures, we construct a global orthonormal basis on M3. We conclude that if there
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exists a cosymplectic metric bi-structure on M3, then the scalar curvature is zero. Finally, we

study some special conditions on three-manifolds with almost cosymplectic metric bi-structures.

We show that for three-manifolds with almost cosymplectic metric bi-structures, we have the

following results: if tensors {hi}i=1,2 are of Codazzi type, then any almost cosymplectic manifold

(M,ϕi, ξi, ηi) is cosymplectic and locally isometric to the flat Euclidean space R3; if the tensors

{hi}i=1,2 are cyclic parallel, then the scalar curvature of M3 is 0, −4β2 or −4α2.

2. Preliminaries

Let M be a manifold of dimension 2n+1, ϕ a (1, 1)-type tensor field, ξ a global vector field,

called the Reeb vector fileld or the characteristic vector field, η a 1-form dual to ξ. The triplet

(ϕ, ξ, η) is called an almost contact structure if the following relations hold:

ϕ2 = −I + η ⊗ ξ, η ◦ ϕ = 0, ϕ ◦ ξ = 0.

An almost contact structure endowed with an associated metric g such that

g(ϕX,ϕY ) = g(X,Y )− η(X)η(Y )

for any X,Y ∈ X(M) is called an almost contact metric structure. The fundamental 2-form Φ

is defined by Φ(X,Y ) = g(X,ϕY ) for any X,Y ∈ X(M). An almost contact metric structure is

called contact metric structure if dη = Φ and called almost cosymplectic structure if Φ and η are

closed. As a consequence, any almost contact manifold is orientable, and the η ∧ Φn does not

vanish everywhere on M .

An almost cosymplectic metric structure is said to be normal when the Nijenhuis tensor

[ϕ, ϕ] = 0, where [ϕ, ϕ] = ϕ2[X,Y ] + [ϕX,ϕY ]− ϕ[ϕX, Y ]− ϕ[X,ϕY ] for any X,Y ∈ X(M). It

should be noted that an almost contact metric structure (ϕ, ξ, η, g) is cosymplectic if and only if

ϕ is parallel, i.e., ∇ϕ = 0 (see [11, p.95]). Any three dimensional almost contact metric manifold

fulfils |∇ϕ|2 = 2|∇ξ|2, as the consequence of this, we obtain that any three dimensional almost

contact metric manifold is cosymplectic if and only if ∇ξ = 0 (see [12, p.248]). The (1, 1)-type

tensor field h on almost contact metric manifolds is defined by h = 1
2Lξϕ. We also have the

following properties for almost cosymplectic manifolds [2]:

∇ξϕ = 0, ∇ξ = hϕ, hϕ = −ϕh, hξ = 0. (2.1)

Let {(ηλ,Φλ)}λ∈Sp be a pair of the linear combination about the 1-form (η1, η2, . . . , ηp+1) and

the 2-form (Φ1,Φ2, . . . ,Φp+1), where ηλ = λ1η1+ · · ·+λp+1ηp+1, Φλ = λ1Φ1+ · · ·+λp+1Φp+1 for

any λ = (λ1, λ2, . . . , λp+1) ∈ Sp. If the corresponding almost contact structure of pair (ηλ,Φλ) for

any λ ∈ Sp is almost cosymplectic structure, then the {(ηλ,Φλ)}λ∈Sp is called almost cosymplectic

p-sphere. Especially, an almost cosymplectic p-sphere is called an almost cosymplectic circle or

an almost cosymplectic sphere if p = 1 or p = 2, respectively. We also use {(η1,Ω1), (η2,Ω2)} to

indicate {(ηλ,Φλ)}λ∈S1 .

An almost cosymplectic p-sphere is said to be taut if the volume forms are equal to every

λ, λ′ ∈ Sp, i.e., (
∑p+1

i=1 λiηi) ∧ (
∑p+1

i=1 λiΦi)
n = (

∑p+1
i=1 λ′

iηi) ∧ (
∑p+1

i=1 λ′
iΦi)

n. An almost cosym-
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plectic p-sphere is said to be round if the vector field ξλ = λ1ξ1 + · · · + λp+1ξp+1 is the Reeb

vector field of the corresponding almost contact structure, i.e., iξληλ = 1, iξλΦλ = 0. We have

the following properties for almost cosymplectic p-spheres.

Lemma 2.1 ([9]) On (4n + 1)-dimensional manifolds, almost cosymplectic p-spheres do not

exist for p ≥ 1.

Proof We now prove that there is not an almost cosymplectic p-sphere on M of dimension 5.

Assume that {(ηλ,Φλ)}λ∈Sp is an almost cosymplectic p-sphere on M5, then we have

ηλ ∧Φ2
λ =

p+1
∑

i,j,k=1

λiλjλk(ηi ∧ Φj ∧ Φk),

where λ = (λ1, λ2, . . . , λp+1) ∈ Sp. Let {e1, e2, e3, e4, e5} be a basis of TpM , where p is a point

of M . Then we consider the function from Rp+1 to R defined by

f(λ1, λ2, . . . , λp+1) =

p+1
∑

i,j,k=1

λiλjλk(ηi ∧Φj ∧ Φk)(e1, e2, e3, e4, e5).

It is a homogeneous polynomial function of degree 3. We have f(−λ1,−λ2, . . . ,−λp+1) =

−f(λ1, λ2, . . . , λp+1) for any λ = (λ1, λ2, . . . , λp+1) ∈ Sp. If it is positive at some point of

Rp+1, it is negative at its antipode. Therefore, f should have zero in Sp, ηλ ∧Φ2
λ is not a volume

form in this condition. So {(ηλ,Φλ)}λ∈Sp is not an almost cosymplectic p-sphere on M5.

Generally, when the dimension of M is 4n + 1, the degree of polynomial function is 2n +

1, which is odd, so the polynomial function has zero on Sp+1. Thus there is not an almost

cosymplectic p-sphere in dimension 4n+ 1. 2

Note that the degree of polynomial function is 2n when the dimension of M is 4n−1, so there

is no restriction to the existence of almost cosymplectic p-spheres in these dimensions. There is

an example about cosymplectic circles on 7 dimensional manifolds in [9].

Lemma 2.2 Let {(ηλ,Φλ)}λ∈Sp be an almost cosymplectic p-sphere. Then for every fixed i,

there must be a j, such that iξiΦj 6= 0 for i, j ∈ 1, 2, . . . , p+ 1, i 6= j.

Proof Let {(ηλ,Φλ)}λ∈Sp be an almost cosymplectic p-sphere and fix i. Suppose iξiΦj(p) = 0

for all j = 1, . . . , p+ 1 and p ∈ M , then we have

iξiΦλ(p) = λ1iξiΦ1(p) + · · ·+ λp+1iξiΦp+1(p) = 0.

If ηλ(ξi)(p) = 0, then (ηλ ∧ Φn
λ)(ξi, · · · ) vanished at p, and the {(ηλ,Φλ)} cannot be an al-

most cosymplectic p-sphere. We put a = ηλ(ξi)(p) 6= 0, ξ′i = ξi
a
, then we have iξ′

i
Φλ(p) = 0,

ηλ(ξ
′
i)(p) = 1 at p. Thus the Reeb vector field of structure {(ηλ,Φλ)} is ξ′i. The structure

(−ηi,−Φi) is also an almost cosymplectic p-sphere and the Reeb vector field is −ξi. We de-

fine a function f from Sp to R by ξλ(p) = f(λ)ξi(p), f is continuous and f(λ1) = 1 for

λ1 = (0, . . . , 0, 1(ith), 0, . . . , 0), f(λ2) = −1 for λ2 = (0, . . . , 0,−1(ith), 0, . . . , 0). There exist-

s some λ0 ∈ Sp, such that ξλ0
(p) = f(λ0)ξi(p) = 0. Since ξλ(p) = ξ′i 6= 0, we get a contradiction.

So there exists a number j, s.t. iξiΦj(p) 6= 0. 2



282 Jin LI and Ximin LIU

Corollary 2.3 Let {(ηλ,Φλ)}λ∈Sp be an almost cosymplectic p-sphere. If iξiΦj 6= 0 for every

i, j ∈ 1, . . . , p + 1, i 6= j, then the Reeb vector fields ξi of (ηi,Φi) are everywhere linearly inde-

pendent.

Proof Let {(ηλ,Φλ)}λ∈Sp be an almost cosymplectic p-sphere. ξ1, ξ2, . . . , ξp+1 are the corre-

sponding Reeb vector fields, respectively. If there is a set of number a1, a2, . . . , ap+1 on R, s.t.

a1ξ1+a2ξ2+· · ·+ap+1ξp+1 = 0. Then we have ia1ξ1+a2ξ2+···+ap+1ξp+1
Φi = 0 for i = 1, 2, . . . , p+1,

i.e.,


























a1iξ1Φ1 + a2iξ2Φ1 + · · ·+ ap+1iξp+1
Φ1 = 0,

a1iξ1Φ2 + a2iξ2Φ2 + · · ·+ ap+1iξp+1
Φ2 = 0,

· · ·

a1iξ1Φp+1 + a2iξ2Φp+1 + · · ·+ ap+1iξp+1
Φp+1 = 0.

The coefficient matrix is
∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

iξ1Φ1 iξ2Φ1 · · · iξp+1
Φ1

iξ1Φ2 iξ2Φ2 · · · iξp+1
Φ2

...
...

. . .
...

iξ1Φp+1 iξ2Φp+1 · · · iξp+1
Φp+1

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

.

The rank of coefficient matrix must be p + 1 due to iξiΦi = 0 and iξiΦj 6= 0. So the equation

set must have zero solution, we get (a1, a2, . . . , ap+1) = (0, 0, . . . , 0). Thus ξ1, ξ2, . . . , ξp+1 are

linearly independent. 2

Especially, for almost cosymplectic circle, i.e., p = 1, we have the following conclusions:

Corollary 2.4 ([9]) Let {(η1Φ1), (η2,Φ2)} be an almost cosymplectic circle. Then iξ1Φ2 and

iξ2Φ1 never vanish, ξ1 and ξ2 are everywhere linearly independent.

Proposition 2.5 An almost cosymplectic p-sphere is round if and only if the following condi-

tions are satisfied:

(i) ηi(ξj) + ηj(ξi) = 0 for i, j = 1, 2, . . . , p+ 1, i 6= j;

(ii) iξiΦj + iξjΦi = 0 for i, j = 1, 2, . . . , p+ 1.

Proof Let {(ηλ,Φλ)}λ∈Sp be an almost cosymplectic p-sphere. If it is round, then we have

ηλ(ξλ) = 1, iξλΦλ = 0, and they are equivalent to

ηλ(ξλ) =

p+1
∑

i,j=1

λiλjηi(ξj) =

p+1
∑

i=1

λ2
i ηi(ξi) +

∑

i6=j

λiλjηi(ξj) = 1,

iξλΦλ =

p+1
∑

i,j=1

λiλjiξiΦj =

p+1
∑

i=1

λ2
i iξiΦi +

∑

i6=j

λiλjiξiΦj = 0.

Then we get
∑

i6=j

λiλjηi(ξj) = 0,
∑

i6=j

λiλjiξiΦj = 0.
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By substituting λi = λj =
1√
2
, λk = 0, where i, j = 1, . . . , p+ 1, k 6= i, j, we obtain

ηi(ξj) + ηj(ξi) = 0, iξiΦj + iξjΦi = 0. 2 (2.2)

Proposition 2.6 Let {(ηλ,Φλ)}λ∈Sp be an almost cosymplectic p-sphere on M3. Then M is

taut if and only if the following conditions are satisfied:

(i) ηi ∧ Φi = ηj ∧ Φj for i, j = 1, 2, . . . , p+ 1;

(ii) ηi ∧ Φj = −ηj ∧ Φi for i, j = 1, 2, . . . , p+ 1, i 6= j.

Proof If the almost cosymplectic p-sphere is taut, then we have

(

p+1
∑

i=1

λiηi

)

∧
(

p+1
∑

j=1

λjΦj

)

=
(

p+1
∑

i=1

λ′
iηi

)

∧
(

p+1
∑

j=1

λ′
jΦj

)

for any λ = (λ1, . . . , λp+1), λ
′ = (λ′

1, . . . , λ
′
p+1) ∈ Sp. By taking (λ1, . . . , λp+1) = (0, . . . , 1(jth),

. . . , 0) and (λ1, . . . , λp+1) = (0, . . . , 1(ith), . . . , 0), we get

ηi ∧ Φi = ηj ∧ Φj , i, j = 1, 2, . . . , p+ 1. (2.3)

By taking (λ1, . . . , λp+1) = (0, . . . , 1√
2
(ith), . . . , 1√

2
(jth), . . . , 0) and (λ′

1, . . . , λ
′
p+1) = (0, . . . , 1

(ith or jth),. . . , 0), according to (2.3), we obtain

ηi ∧ Φj = −ηj ∧ Φi, i, j = 1, 2, . . . , p+ 1, i 6= j. (2.4)

On the other hand, if (2.3) and (2.4) are fulfilled, we have

(λ1η1 + · · ·λp+1ηp+1) ∧ (λ1Φ1 + · · ·λp+1Φp+1)

=

p+1
∑

i=1

λ2
i ηi ∧ Φi +

∑

i<j

λiλj(ηi ∧ Φj + ηj ∧ Φi)

= ηi ∧ Φi.

Then the almost cosymplectic p-sphere is taut. 2

Proposition 2.7 Let {(η1,Φ1), (η2,Φ2), (η3,Φ3)} be an almost cosymplectic sphere on M3. If

iξiΦj 6= 0 for every i, j = 1, 2, 3, i 6= j, then it is taut if and only if it is round.

Proof Let {(ηλ,Φλ)}λ∈S2 be a taut almost cosymplectic sphere on M3. Then (2.3) and (2.4)

hold. Let ξi be the Reeb vector field of (ηi,Φi), i = 1, 2, 3. We have iξiηi = 1, iξiΦi = 0. Then

according to (2.3), we have

iξjΦi = iξj iξi(ηi ∧ Φi) = iξj iξi(ηj ∧ Φj) = −iξiiξj (ηj ∧Φj) = −iξiΦj . (2.5)

By applying the equation (2.4) on the vector field ξi, we obtain

Φj − ηi ∧ iξiΦj = −iξiηj ∧ Φi. (2.6)

By applying the equation (2.6) on the vector field ξj , we obtain −iξjηi ∧ iξiΦj = −iξiηj ∧ iξjΦi.

Then by using (2.5), we get iξiΦj(ηi(ξj) + ηj(ξi)) = 0. Since iξiΦj 6= 0, we have

ηi(ξj) + ηj(ξi) = 0. (2.7)
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From (2.5), (2.7) and Proposition 2.5, we conclude that the taut almost cosymplectic sphere is

round.

Next we suppose that {(ηλ,Φλ)}λ∈S2 is a round almost cosymplectic sphere on M3 and

iξiΦj 6= 0 for every i, j = 1, 2, 3, i 6= j. According to Proposition 2.5, we have (2.2), and

according to Corollary 2.3, we have that ξ1, ξ2, ξ3 are linearly independent. By straightforward

computation, we prove that

ηλ ∧ Φλ(ξ1, ξ2, ξ3) = Φ1(ξ2, ξ3) = η1 ∧ Φ1(ξ1, ξ2, ξ3).

So the round almost cosymplectic sphere is taut. 2

Remark 2.8 According to Corollary 2.3, the condition of iξiΦj 6= 0 is unnecessary for almost

cosymplectic circle, so we say that roundness is equivalent to tautness for almost cosymplectic

circles on dimension 3.

3. Almost cosymplectic metric bi-structures

In [10], D. Perrone introduced and studied the notion of bi-contact metric structures on

three-manifolds. According to the Lemma 3.2 in [10], we have known that for a pair of almost

contact metric structures {(ϕi, ξi, ηi, g)}i=1,2, the condition g(ξ1, ξ2) = 0 is equivalent to

ϕ1ϕ2 + εη1 ⊗ ξ2 = −(ϕ2ϕ1 + εη2 ⊗ ξ1), (3.1)

where ϕ2ξ1 = εϕ1ξ2, ε = ±1. Now, using this property, we consider the notion of almost

cosymplectic metric bi-structures on M3.

LetM be a three-manifold. A pair of almost cosymplectic metric structures {(ϕi, ξi, ηi, g)}i=1,2

is said to be almost cosymplectic metric bi-structure if the two almost cosymplectic metric struc-

tures satisfy (3.1). Moreover, when ε = +1 (resp., ε = −1), the almost cosymplectic metric

bi-structure is called negative (resp., positive).

After introducing the notions of almost cosymplectic metric bi-structures, we show some re-

sults between almost cosymplectic circles and almost cosymplectic metric bi-structures.

Proposition 3.1 Let {(η1,Φ1), (η2,Φ2)} be an almost cosymplectic circle on M3. Then it is

taut if and only if the corresponding almost cosymplectic metric structures are positive almost

cosymplectic metric bi-structure.

Proof If {(η1,Φ1), (η2,Φ2)} is a taut almost cosymplectic circle, the corresponding two almost

cosymplectic metric structures are (ϕ1, ξ1, η1, g), (ϕ2, ξ2, η2, g). From Remark 2.8 and Propo-

sition 2.5, we have η1(ξ2) + η2(ξ1) = 0 which means g(ξ1, ξ2) = 0, the almost cosymplectic

metric structures satisfy (3.1), therefore {(ϕi, ξi, ηi, g)}i=1,2 is an almost cosymplectic metric

bi-structure. Put ξ3 = ϕ1ξ2 = εϕ2ξ1, then (ξ1, ξ2, ξ3) is a global orthonormal basis on M3. By

computation, we get (η1 ∧ Φ1)(ξ1, ξ2, ξ3) = −1 and (η2 ∧ Φ2)(ξ1, ξ2, ξ3) = ε. Using Proposition

2.6, we get ε = −1, i.e., the almost cosymplectic metric bi-structure is positive.

Conversely, if {(ϕi, ξi, ηi, g)}i=1,2 is a positive almost cosymplectic metric bi-structure, we
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have g(ξ1, ξ2) = η1(ξ2) = η2(ξ1) = 0 and ϕ2ξ1 = −ϕ1ξ2. Then we obtain iξ2Φ1 + iξ1Φ2 = 0.

Thus we conclude that {(ηi,Φi)}i=1,2 is a taut almost cosymplectic circle by applying Proposition

2.5. 2

Let {(ϕi, ξi, ηi, g)}i=1,2 be an almost cosymplectic metric bi-structure on M3. Put

ξ3 = ϕ1ξ2, η3 = −η2 ◦ ϕ1, ϕ3 = ϕ1ϕ2 + εη2 ⊗ ξ1. (3.2)

Then we have that (ξ1, ξ2, ξ3) is a global orthonormal basis and ξ3 = ϕ1ξ2 = εϕ2ξ1. We have the

following properties:

ϕ3ξ1 = (ϕ1ϕ2 + εη2 ⊗ ξ1)ξ1 = ϕ1ϕ2ξ1 = εϕ2
1ξ2 = −εξ2,

ϕ3ξ2 = (ϕ1ϕ2 + εη2 ⊗ ξ1)ξ2 = εξ1,

ϕ3ξ3 = (ϕ1ϕ2 + εη2 ⊗ ξ1)ξ3 = ϕ1ϕ2ξ3 = εϕ1ϕ
2
2ξ1 = 0,

ϕ2
3ξ1 = ϕ3(−εξ2) = −ξ1, ϕ2

3ξ2 = ϕ3(εξ1) = −ξ2, ϕ2
3ξ3 = 0,

η3(ξ1) = η3(ξ2) = 0, η3(ξ3) = 1,

g(ϕ3ξi, ϕ3ξj) = g(ξi, ξj)− η3(ξi)η3(ξj), i, j = 1, 2, 3.

Therefore, we obtain that (ϕ3, ξ3, η3, g) is an almost contact metric structure. Moreover, we have

the following properties for this structure.

Theorem 3.2 If {(ϕi, ξi, ηi, g)}i=1,2 is an almost cosymplectic metric bi-structure on a three-

manifold M , then there exists a global basis of vector fields {ξ1, ξ2, ξ3} such that

[ξ2, ξ3] = αξ3, [ξ3, ξ1] = βξ3, [ξ1, ξ2] = γξ3, (3.3)

where ξ1, ξ2 are the corresponding Reeb vector fields of the two almost cosymplectic structures;

ξ3 ∈ ker η1 ∩ ker η2; α, β and γ are smooth functions satisfying ξ3(γ) + ξ1(α) + ξ2(β) = 0. In

particular, the third almost contact metric structure (ϕ3, ξ3, η3, g) is almost cosymplectic if and

only if α = β = γ = 0.

Proof If {(ϕi, ξi, ηi, g)}i=1,2 is an almost cosymplectic metric bi-structure on M3 and

ξ3 = ϕ1ξ2, η3 = −η2 ◦ ϕ1, ϕ3 = ϕ1ϕ2 + εη2 ⊗ ξ1.

We have known that (ξ1, ξ2, ξ3) is a global orthonormal basis. If we suppose

[ξ1, ξ2] = γ1ξ1 + γ2ξ2 + γξ3,

[ξ2, ξ3] = α1ξ1 + α2ξ2 + αξ3,

[ξ3, ξ1] = β1ξ1 + β2ξ2 + βξ3,

it is known that (ϕ1, ξ1, η1, g) and (ϕ2, ξ2, η2, g) are almost cosmplectic metric structures, so

we have ∇ξ1 = h1ϕ1 and ∇ξ2 = h2ϕ2. Thus ∇ξ1ξ1 = 0, ∇ξ2ξ2 = 0. Therefore, we get

α2 = β1 = γ1 = γ2 = 0. Due to dη1(ξ2, ξ3) = 0 and dη2(ξ1, ξ3) = 0, we obtain α1 = β2 = 0.

Then

[ξ2, ξ3] = αξ3, [ξ3, ξ1] = βξ3, [ξ1, ξ2] = γξ3.
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Thus we have

dΦ3(ξ1, ξ2, ξ3) = −Φ3([ξ1, ξ2], ξ3) + Φ3([ξ1, ξ3], ξ2)− Φ3([ξ2, ξ3], ξ1) = 0. (3.4)

Furthermore, from Jacobi identity, we get

[[ξ1, ξ2], ξ3] + [[ξ2, ξ3], ξ1] + [[ξ3, ξ1], ξ2] = −[ξ3(γ) + ξ1(α) + ξ2(β)]ξ3 = 0,

which means that ξ3(γ) + ξ1(α) + ξ2(β) = 0.

We also obtain

2dη3(ξ1, ξ2) = −η3([ξ1, ξ2]) = −γ,

2dη3(ξ2, ξ3) = −η3([ξ2, ξ3]) = −α,

2dη3(ξ3, ξ1) = −η3([ξ3, ξ1]) = −β.

According to (3.4), if (ϕ3, ξ3, η3, g) is almost cosymplectic metric structure, we must have γ =

α = β = 0. 2

Corollary 3.3 If {(ϕi, ξi, ηi, g)}i=1,2 is a cosymplectic metric bi-structure on M3, then there

exists a third almost contact metric structure (ϕ3, ξ3, η3, g) which satisfies (3.2) and is cosym-

plectic metric structure.

Proof According to Theorem 3.2, we find the tensor h1 = 1
2Lξ1ϕ1 and h2 = 1

2Lξ2ϕ2 satisfying:

2h1ξ2 = (Lξ1ϕ1)ξ2 = [ξ1, ϕ1ξ2]− ϕ1[ξ1, ξ2] = γξ2 − βξ3,

2h1ξ3 = (Lξ1ϕ1)ξ3 = [ξ1, ϕ1ξ3]− ϕ1[ξ1, ξ3] = −βξ2 − γξ3,

2h2ξ1 = (Lξ2ϕ2)ξ1 = [ξ2, ϕ2ξ1]− ϕ2[ξ2, ξ1] = −εγξ1 + εαξ3,

2h2ξ3 = (Lξ2ϕ2)ξ3 = [ξ2, ϕ2ξ3]− ϕ2[ξ2, ξ3] = εαξ1 + εγξ3.

(3.5)

Then we get

2h1 =







0 0 0

0 γ −β

0 −β −γ






, 2h2 =







−εγ 0 εα

0 0 0

εα 0 εγ






.

So if (ϕi, ξi, ηi, g)i=1,2 are cosymplectic manifolds, we have ∇ξi = hiϕi = 0, which means

ϕihiX = 0 for any vector field X ∈ X(M). By applying ϕi on ϕihi, we get hi = 0 which

means α = β = γ = 0. About the tensor h3 = 1
2Lξ3ϕ3, we have

2h3ξ1 = (Lξ3ϕ3)ξ1 = [ξ3, ϕ3ξ1]− ϕ3[ξ3, ξ1] = εαξ3,

2h3ξ2 = (Lξ3ϕ3)ξ2 = [ξ3, ϕ3ξ2]− ϕ3[ξ3, ξ2] = εβξ3.

Therefore, according to Theorem 3.2, we get if these two almost cosymplectic metric structures

are cosymplectic, the third almost contact metric structure is almost cosymplectic. Moreover,

due to h3 = 0 it is cosymplectic. 2

According to the above results, on a three dimensional Riemannian manifold M3 admitting

almost cosymplectic metric bi-structures, there exists a global basis of vector fields {ξ1, ξ2, ξ3}
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satisfying (3.3). Using (3.3) and the Levi-Civita equation, we get

(∇ξiξj) =







0 γ
2 ξ3 − γ

2 ξ2

− γ
2 ξ3 0 γ

2 ξ1

− γ
2 ξ2 + βξ3

γ
2 ξ1 − αξ3 −βξ1 + αξ2






. (3.6)

Then according to (3.3) and (3.6), we calculate the following Riemannian curvature tensor

which is defined by R(X,Y )Z = ∇X∇Y Z −∇Y ∇XZ −∇[X,Y ]Z for any X, Y, Z ∈ X(M):

R(ξ2, ξ1)ξ1 = −
3

4
γ2ξ2 + (

1

2
ξ1(γ) + βγ)ξ3,

R(ξ2, ξ1)ξ3 = (−
1

2
ξ1(γ)− βγ)ξ1 + (−

1

2
ξ2(γ) + αγ)ξ2,

R(ξ2, ξ3)ξ1 = (−
1

2
ξ2(γ) + αγ)ξ2 + (

1

2
ξ3(γ) + ξ2(β)− αβ)ξ3,

R(ξ3, ξ1)ξ1 = (
1

2
ξ1(γ) + βγ)ξ2 + (−ξ1(β) +

1

4
γ2 − β2)ξ3,

R(ξ3, ξ1)ξ2 = (−
1

2
ξ1(γ)− βγ)ξ1 + (ξ1(α) +

1

2
ξ3(γ) + αβ)ξ3,

R(ξ3, ξ2)ξ2 = (−
1

2
ξ2(γ) + αγ)ξ1 + (ξ2(α) +

1

4
γ2 − α2)ξ3.

(3.7)

Then we obtain

Qξ1 = (−ξ1(β)−
γ2

2
− β2)ξ1 + (

ξ1(α) + ξ3(γ)

2
+ αβ)ξ2 + (−

ξ2(γ)

2
+ αγ)ξ3,

Qξ2 = (ξ1(α) +
ξ3(γ)

2
+ αβ)ξ1 + (ξ2(α)−

γ2

2
− α2)ξ2 + (

ξ1(γ)

2
+ γβ)ξ3,

Qξ3 = (−
ξ2(γ)

2
+ αγ)ξ1 + (

ξ1(γ)

2
+ βγ)ξ2 + (−ξ1(β) + ξ2(α) +

γ2

2
− α2 − β2)ξ3.

(3.8)

If {(ϕi, ξi, ηi, g)}i=1,2 is a cosymplectic metric bi-structure, we have α = β = γ = 0. There-

fore, we have the following results:

Theorem 3.4 If {(ϕi, ξi, ηi, g)}i=1,2 is a cosymplectic metric bi-structure on M3, then the

scalar curvature scal = 0.

4. Some results of hi satisfying certain conditions

In this section, we discuss some special properties of Riemannian manifold M3 with almost

cosymplectic metric bi-structures. Let {ξ1, ξ2, ξ3 = ϕ1ξ2 = εϕ2ξ1} be the global orthonormal

basis satisfying (3.2). First of all, using Eqs. (3.3) and (3.6), we compute the following formulas,

for the tensor h1, we have

(∇ξ1h1)ξ2 = (
1

2
ξ1(γ) +

1

2
βγ)ξ2 + (−

1

2
ξ1(β) +

1

2
γ2)ξ3,

(∇ξ1h1)ξ3 = (−
1

2
ξ1(β) +

1

2
γ2)ξ2 + (−

1

2
ξ1(γ)−

1

2
βγ)ξ3,

(∇ξ2h1)ξ1 = (−
1

4
βγ)ξ2 + (−

1

4
γ2)ξ3,

(∇ξ2h1)ξ2 = −
1

4
βγξ1 +

1

2
ξ2(γ)ξ2 −

1

2
ξ2(β)ξ3, (4.1)



288 Jin LI and Ximin LIU

(∇ξ2h1)ξ3 = −
1

4
γ2ξ1 −

1

2
ξ2(β)ξ2 −

1

2
ξ2(γ)ξ3,

(∇ξ3h1)ξ1 = (
1

4
γ2 +

1

2
β2)ξ2 +

1

4
βγξ3,

(∇ξ3h1)ξ2 = (
1

4
γ2 +

1

2
β2)ξ1 + (

1

2
ξ3(γ)− αβ)ξ2 + (−

1

2
ξ3(β)− αγ)ξ3,

(∇ξ3h1)ξ3 =
1

4
βγξ1 + (−

1

2
ξ3(β)− αγ)ξ2 + (−

1

2
ξ3(γ) + αβ)ξ3;

for the tensor h2, we have

(∇ξ1h2)ξ1 = −
ε

2
ξ1(γ)ξ1 −

ε

4
αγξ2 +

ε

2
ξ1(α)ξ3,

(∇ξ1h2)ξ2 = −
ε

4
αγξ1 −

ε

4
γ2ξ3,

(∇ξ1h2)ξ3 =
ε

2
ξ1(α)ξ1 −

ε

4
γ2ξ2 +

ε

2
ξ1(γ)ξ3,

(∇ξ2h2)ξ1 = (−
ε

2
ξ2(γ) +

ε

2
αγ)ξ1 + (

ε

2
ξ2(α) +

ε

2
γ2)ξ3, (4.2)

(∇ξ2h2)ξ3 = (
ε

2
ξ2(α) +

ε

2
γ2)ξ1 + (

ε

2
ξ2(γ)−

ε

2
αγ)ξ3,

(∇ξ3h2)ξ1 = (−
ε

2
ξ3(γ)− εαβ)ξ1 + (

ε

4
γ2 +

ε

2
α2)ξ2 + (

ε

2
ξ3(α)− εβγ)ξ3,

(∇ξ3h2)ξ2 = (
ε

4
γ2 +

ε

2
α2)ξ1 +

ε

4
αγξ3,

t(∇ξ3h2)ξ3 = (
ε

2
ξ3(α)− εβγ)ξ1 +

ε

4
αγξ2 + (

ε

2
ξ3(γ) + εαβ)ξ3.

On a Riemannian manifold, a (1, 1)-type tensor T is said to be of Codazzi type if it satisfies

(∇XT )Y = (∇Y T )X for any vector field X, Y . By the previous calculations, we obtain:

Theorem 4.1 Let M be a three-manifold with almost cosymplectic metric bi-structures.

If the tensor {hi}i=1,2 are being of Codazzi type, then the any almost cosymplectic manifold

(M,ϕi, ξi, ηi) is cosymplectic and locally isometric to the flat Euclidean space R3.

Proof LetM be a three-manifold with almost cosymplectic metric bi-structures {(ϕi, ξi, ηi, g)}i=1,2.

If h1 is being of codazzi type, i.e., (∇Xh1)Y = (∇Y h1)X for any vector field X, Y , replace X

and Y by ξ1 and ξ2, respectively. Then using (4.1), we get











1

2
ξ1(γ) +

3

4
βγ = 0,

1

2
ξ1(β)−

3

4
γ2 = 0.

(4.3)

Then replacing X and Y by ξ1 and ξ3, respectively, we obtain











−
1

2
ξ1(β)−

1

2
β2 +

1

4
γ2 = 0,

−
1

2
ξ1(γ)−

3

4
βγ = 0.

(4.4)

Applying the formula 1
2ξ1(β) = 3

4γ
2 in the first term of (4.4), we obtain γ2 + β2 = 0, which

means γ = 0 and β = 0.
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Similarly, using the same way for h2, we get










ε

2
ξ2(γ)−

3ε

4
αγ = 0,

ε

2
ξ2(α) +

3ε

4
γ2 = 0.

(4.5)











ε

2
ξ2(α) −

ε

2
α2 +

ε

4
γ2 = 0,

ε

2
ξ2(γ)−

3ε

4
αγ = 0.

(4.6)

Using ε
2ξ2(α) = − 3ε

4 γ
2 in the first term of (4.6), we get γ2 + α2 = 0, which means α = 0 and

γ = 0. So we have α = β = γ = 0. Therefore, we have that (M,ϕi, ξi, ηi)i=1,2,3 are cosymplectic.

According to [2], any of them is locally isometric to the flat Euclidean space R3. 2

On a Riemannian manifold, we say a symmetric (1, 1)-type tensor field T is cyclic parallel if

it satisfies

g((∇XT )Y, Z) + g((∇Y T )Z,X) + g((∇ZT )X,Y ) = 0 (4.7)

for any vector field X, Y, Z. We have the following result:

Theorem 4.2 Let M be a three-manifold with almost cosymplectic metric bi-structure. Sup-

pose that the tensors {hi}i=1,2 are cyclic parallel, then the scalar curvature of M3 is 0, −4β2 or

−4α2.

Proof According to (4.1), (4.2) and (4.7), we obtain










g((∇ξ3h1)ξ3, ξ3) = −
1

2
ξ3(γ) + αβ = 0,

g((∇ξ3h2)ξ3, ξ3) =
ε

2
ξ3(γ) + εαβ = 0.

From this, we have ξ3(γ) = αβ = 0. Replacing X = ξ1, Y = Z = ξ2 and X = Y = Z = ξ2 in

(4.7) for h1 respectively, we get ξ1(γ) = ξ2(γ) = 0. Then we conclude that γ is a constant.

By replacing (X,Y, Z) = (ξ1, ξ2, ξ3), (ξ2, ξ2, ξ3), (ξ2, ξ3, ξ3) in (4.7) for h1 respectively, we

have the following relationships:


















− ξ1(β) + γ2 + β2 = 0,

ξ3(γ)− 2ξ2(β)− 2αβ = 0,

1

2
ξ2(γ) + ξ3(β) + 2αγ = 0.

(4.8)

By replacing (X,Y, Z) = (ξ1, ξ1, ξ3), (ξ1, ξ2, ξ3), (ξ1, ξ3, ξ3) in (4.7) for h2 respectively, we have

the following relationships:






















ξ1(α)−
1

2
ξ3(γ)− αβ = 0,

ξ2(α) + γ2 + α2 = 0,

1

2
ξ1(γ) + ξ3(α)− 2βγ = 0.

(4.9)

According to αβ = 0, we have three conditions.
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If α = 0 and β = 0, from the first term of (4.8) and the second term of (4.9), we get that

γ = 0. In this case, the scalar curvature is 0.

If α = 0 and β 6= 0, by the second term of (4.9), we conclude that γ = 0 and (4.8) is equivalent

to ξ1(β) = γ2, ξ2(β) = 0, ξ3(β) = 0. Applying these in (3.8), we obtain Qξ1 = −2β2ξ1, Qξ2 = 0,

Qξ3 = −2β2ξ3. It follows that the scalar curvature is −4β2.

If α 6= 0 and β = 0, according to the first term of (4.8), we get that γ = 0 and (4.9) is

equivalent to ξ1(α) = 0, ξ2(α) = −α2, ξ3(α) = 0. In this context, we obtain

Qξ1 = 0, Qξ2 = −2α2ξ2, Qξ3 = −2α2ξ3.

It follows that the scalar curvature is −4α2. This completes the proof. 2
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