# Almost Cosymplectic $p$-Spheres and Almost Cosymplectic Metric Bi-Structures on Three-Manifolds 

Jin LI* ${ }^{*}$ Ximin LIU<br>School of Mathematical Sciences, Dalian University of Technology, Liaoning 116024, P. R. China


#### Abstract

The purpose of this paper is to study almost cosymplectic $p$-spheres and almost cosymplectic metric bi-structures. Firstly, we show some properties of almost cosymplectic $p$-spheres. Then we introduce the notion of almost cosymplectic metric bi-structures and give some results on three dimensional manifolds admitting almost cosymplectic metric bi-structures. Moreover, we investigate three dimensional manifolds with almost cosymplectic metric bi-structures when the $(1,1)$-type tensor fields $h_{1}$ and $h_{2}$ are being of codazzi type and cyclic parallel.


Keywords almost cosymplectic circles; almost cosymplectic spheres; almost cosymplectic metric bi-structures

MR(2020) Subject Classification 53D15; 53C25

## 1. Introduction

In recent years, after Goldberg and Yano [1] introduced the notion of almost cosymplectic manifolds, almost cosymplectic manifolds were studied by many authors. In [2], Perrone classified all simply connected homogeneous almost cosymplectic three-manifolds. In [3-6], the authors considered three dimensional almost cosymplectic manifolds satisfying certain conditions. Geiges and Gonzalo [7] introduced the notion of contact circles on three-manifolds in 1995. In 2005, Zessin [8] studied contact $p$-spheres, and proved that a contact circle (resp., a contact sphere) is taut if and only if it is round on a three-manifold. Montano, Nicola and Yudin [9] introduced almost cosymplectic circles and almost cosymplectic spheres. Moreover, they showed that any 3-Sasakian manifold admits a sphere of Sasakian structures which is both taut and round. In 2017, Perrone [10] introduced a Riemannian approach to the study of taut contact circles on three-manifolds. The author gave a complete classification of simply complete three-manifolds which admit a bi-H-contact metric structure.

In this paper, we investigate almost cosymplectic $p$-spheres and almost cosymplectic metric bi-structures. In Section 2, we give some properties of almost cosymplectic $p$-spheres. According to the notation of bi-contact metric structures in [10], we introduce the definition of almost cosymplectic metric bi-structures in Section 3. According to the structures of almost cosymplectic metric bi-structures, we construct a global orthonormal basis on $M^{3}$. We conclude that if there

Received February 25, 2020; Accepted May 24, 2020
Supported by the National Natural Science Foundation of China (Grant No. 11431009).

* Corresponding author

E-mail address: janelee0907@163.com (Jin LI); ximinliu@dlut.edu.cn (Ximin LIU)
exists a cosymplectic metric bi-structure on $M^{3}$, then the scalar curvature is zero. Finally, we study some special conditions on three-manifolds with almost cosymplectic metric bi-structures. We show that for three-manifolds with almost cosymplectic metric bi-structures, we have the following results: if tensors $\left\{h_{i}\right\}_{i=1,2}$ are of Codazzi type, then any almost cosymplectic manifold $\left(M, \varphi_{i}, \xi_{i}, \eta_{i}\right)$ is cosymplectic and locally isometric to the flat Euclidean space $\mathbb{R}^{3}$; if the tensors $\left\{h_{i}\right\}_{i=1,2}$ are cyclic parallel, then the scalar curvature of $M^{3}$ is $0,-4 \beta^{2}$ or $-4 \alpha^{2}$.

## 2. Preliminaries

Let $M$ be a manifold of dimension $2 n+1, \varphi$ a $(1,1)$-type tensor field, $\xi$ a global vector field, called the Reeb vector fileld or the characteristic vector field, $\eta$ a 1 -form dual to $\xi$. The triplet ( $\varphi, \xi, \eta$ ) is called an almost contact structure if the following relations hold:

$$
\varphi^{2}=-I+\eta \otimes \xi, \eta \circ \varphi=0, \varphi \circ \xi=0
$$

An almost contact structure endowed with an associated metric $g$ such that

$$
g(\varphi X, \varphi Y)=g(X, Y)-\eta(X) \eta(Y)
$$

for any $X, Y \in \mathfrak{X}(M)$ is called an almost contact metric structure. The fundamental 2-form $\Phi$ is defined by $\Phi(X, Y)=g(X, \varphi Y)$ for any $X, Y \in \mathfrak{X}(M)$. An almost contact metric structure is called contact metric structure if $d \eta=\Phi$ and called almost cosymplectic structure if $\Phi$ and $\eta$ are closed. As a consequence, any almost contact manifold is orientable, and the $\eta \wedge \Phi^{n}$ does not vanish everywhere on $M$.

An almost cosymplectic metric structure is said to be normal when the Nijenhuis tensor $[\varphi, \varphi]=0$, where $[\varphi, \varphi]=\varphi^{2}[X, Y]+[\varphi X, \varphi Y]-\varphi[\varphi X, Y]-\varphi[X, \varphi Y]$ for any $X, Y \in \mathfrak{X}(M)$. It should be noted that an almost contact metric structure $(\varphi, \xi, \eta, g)$ is cosymplectic if and only if $\varphi$ is parallel, i.e., $\nabla \varphi=0$ (see [11, p.95]). Any three dimensional almost contact metric manifold fulfils $|\nabla \varphi|^{2}=2|\nabla \xi|^{2}$, as the consequence of this, we obtain that any three dimensional almost contact metric manifold is cosymplectic if and only if $\nabla \xi=0$ (see [12, p.248]). The ( 1,1 )-type tensor field $h$ on almost contact metric manifolds is defined by $h=\frac{1}{2} \mathfrak{L}_{\xi} \varphi$. We also have the following properties for almost cosymplectic manifolds [2]:

$$
\begin{equation*}
\nabla_{\xi} \varphi=0, \nabla \xi=h \varphi, h \varphi=-\varphi h, h \xi=0 \tag{2.1}
\end{equation*}
$$

Let $\left\{\left(\eta_{\lambda}, \Phi_{\lambda}\right)\right\}_{\lambda \in \mathbb{S}^{p}}$ be a pair of the linear combination about the 1 -form $\left(\eta_{1}, \eta_{2}, \ldots, \eta_{p+1}\right)$ and the 2 -form $\left(\Phi_{1}, \Phi_{2}, \ldots, \Phi_{p+1}\right)$, where $\eta_{\lambda}=\lambda_{1} \eta_{1}+\cdots+\lambda_{p+1} \eta_{p+1}, \Phi_{\lambda}=\lambda_{1} \Phi_{1}+\cdots+\lambda_{p+1} \Phi_{p+1}$ for any $\lambda=\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{p+1}\right) \in \mathbb{S}^{p}$. If the corresponding almost contact structure of pair $\left(\eta_{\lambda}, \Phi_{\lambda}\right)$ for any $\lambda \in \mathbb{S}^{p}$ is almost cosymplectic structure, then the $\left\{\left(\eta_{\lambda}, \Phi_{\lambda}\right)\right\}_{\lambda \in \mathbb{S}^{p}}$ is called almost cosymplectic $p$-sphere. Especially, an almost cosymplectic $p$-sphere is called an almost cosymplectic circle or an almost cosymplectic sphere if $p=1$ or $p=2$, respectively. We also use $\left\{\left(\eta_{1}, \Omega_{1}\right),\left(\eta_{2}, \Omega_{2}\right)\right\}$ to indicate $\left\{\left(\eta_{\lambda}, \Phi_{\lambda}\right)\right\}_{\lambda \in \mathbb{S}^{1}}$.

An almost cosymplectic $p$-sphere is said to be taut if the volume forms are equal to every $\lambda, \lambda^{\prime} \in \mathbb{S}^{p}$, i.e., $\left(\sum_{i=1}^{p+1} \lambda_{i} \eta_{i}\right) \wedge\left(\sum_{i=1}^{p+1} \lambda_{i} \Phi_{i}\right)^{n}=\left(\sum_{i=1}^{p+1} \lambda_{i}^{\prime} \eta_{i}\right) \wedge\left(\sum_{i=1}^{p+1} \lambda_{i}^{\prime} \Phi_{i}\right)^{n}$. An almost cosym-
plectic $p$-sphere is said to be round if the vector field $\xi_{\lambda}=\lambda_{1} \xi_{1}+\cdots+\lambda_{p+1} \xi_{p+1}$ is the Reeb vector field of the corresponding almost contact structure, i.e., $i_{\xi_{\lambda}} \eta_{\lambda}=1, i_{\xi_{\lambda}} \Phi_{\lambda}=0$. We have the following properties for almost cosymplectic $p$-spheres.

Lemma 2.1 ([9]) On (4n+1)-dimensional manifolds, almost cosymplectic p-spheres do not exist for $p \geq 1$.

Proof We now prove that there is not an almost cosymplectic $p$-sphere on $M$ of dimension 5 . Assume that $\left\{\left(\eta_{\lambda}, \Phi_{\lambda}\right)\right\}_{\lambda \in \mathbb{S}^{p}}$ is an almost cosymplectic $p$-sphere on $M^{5}$, then we have

$$
\eta_{\lambda} \wedge \Phi_{\lambda}^{2}=\sum_{i, j, k=1}^{p+1} \lambda_{i} \lambda_{j} \lambda_{k}\left(\eta_{i} \wedge \Phi_{j} \wedge \Phi_{k}\right)
$$

where $\lambda=\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{p+1}\right) \in \mathbb{S}^{p}$. Let $\left\{e_{1}, e_{2}, e_{3}, e_{4}, e_{5}\right\}$ be a basis of $T_{p} M$, where $p$ is a point of $M$. Then we consider the function from $\mathbb{R}^{p+1}$ to $\mathbb{R}$ defined by

$$
f\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{p+1}\right)=\sum_{i, j, k=1}^{p+1} \lambda_{i} \lambda_{j} \lambda_{k}\left(\eta_{i} \wedge \Phi_{j} \wedge \Phi_{k}\right)\left(e_{1}, e_{2}, e_{3}, e_{4}, e_{5}\right)
$$

It is a homogeneous polynomial function of degree 3 . We have $f\left(-\lambda_{1},-\lambda_{2}, \ldots,-\lambda_{p+1}\right)=$ $-f\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{p+1}\right)$ for any $\lambda=\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{p+1}\right) \in \mathbb{S}^{p}$. If it is positive at some point of $\mathbb{R}^{p+1}$, it is negative at its antipode. Therefore, $f$ should have zero in $\mathbb{S}^{p}, \eta_{\lambda} \wedge \Phi_{\lambda}^{2}$ is not a volume form in this condition. So $\left\{\left(\eta_{\lambda}, \Phi_{\lambda}\right)\right\}_{\lambda \in \mathbb{S}^{p}}$ is not an almost cosymplectic $p$-sphere on $M^{5}$.

Generally, when the dimension of $M$ is $4 n+1$, the degree of polynomial function is $2 n+$ 1 , which is odd, so the polynomial function has zero on $\mathbb{S}^{p+1}$. Thus there is not an almost cosymplectic $p$-sphere in dimension $4 n+1$.

Note that the degree of polynomial function is $2 n$ when the dimension of $M$ is $4 n-1$, so there is no restriction to the existence of almost cosymplectic $p$-spheres in these dimensions. There is an example about cosymplectic circles on 7 dimensional manifolds in [9].

Lemma 2.2 Let $\left\{\left(\eta_{\lambda}, \Phi_{\lambda}\right)\right\}_{\lambda \in \mathbb{S}^{p}}$ be an almost cosymplectic $p$-sphere. Then for every fixed $i$, there must be a $j$, such that $i_{\xi_{i}} \Phi_{j} \neq 0$ for $i, j \in 1,2, \ldots, p+1, i \neq j$.

Proof Let $\left\{\left(\eta_{\lambda}, \Phi_{\lambda}\right)\right\}_{\lambda \in \mathbb{S}^{p}}$ be an almost cosymplectic $p$-sphere and fix $i$. Suppose $i_{\xi_{i}} \Phi_{j}(p)=0$ for all $j=1, \ldots, p+1$ and $p \in M$, then we have

$$
i_{\xi_{i}} \Phi_{\lambda}(p)=\lambda_{1} i_{\xi_{i}} \Phi_{1}(p)+\cdots+\lambda_{p+1} i_{\xi_{i}} \Phi_{p+1}(p)=0 .
$$

If $\eta_{\lambda}\left(\xi_{i}\right)(p)=0$, then $\left(\eta_{\lambda} \wedge \Phi_{\lambda}^{n}\right)\left(\xi_{i}, \cdots\right)$ vanished at $p$, and the $\left\{\left(\eta_{\lambda}, \Phi_{\lambda}\right)\right\}$ cannot be an almost cosymplectic $p$-sphere. We put $a=\eta_{\lambda}\left(\xi_{i}\right)(p) \neq 0, \xi_{i}^{\prime}=\frac{\xi_{i}}{a}$, then we have $i_{\xi_{i}^{\prime}} \Phi_{\lambda}(p)=0$, $\eta_{\lambda}\left(\xi_{i}^{\prime}\right)(p)=1$ at $p$. Thus the Reeb vector field of structure $\left\{\left(\eta_{\lambda}, \Phi_{\lambda}\right)\right\}$ is $\xi_{i}^{\prime}$. The structure $\left(-\eta_{i},-\Phi_{i}\right)$ is also an almost cosymplectic $p$-sphere and the Reeb vector field is $-\xi_{i}$. We define a function $f$ from $\mathbb{S}^{p}$ to $\mathbb{R}$ by $\xi_{\lambda}(p)=f(\lambda) \xi_{i}(p), f$ is continuous and $f\left(\lambda_{1}\right)=1$ for $\lambda_{1}=(0, \ldots, 0,1(i \mathrm{th}), 0, \ldots, 0), f\left(\lambda_{2}\right)=-1$ for $\lambda_{2}=(0, \ldots, 0,-1(i$ th $), 0, \ldots, 0)$. There exists some $\lambda_{0} \in \mathbb{S}^{p}$, such that $\xi_{\lambda_{0}}(p)=f\left(\lambda_{0}\right) \xi_{i}(p)=0$. Since $\xi_{\lambda}(p)=\xi_{i}^{\prime} \neq 0$, we get a contradiction. So there exists a number $j$, s.t. $i_{\xi_{i}} \Phi_{j}(p) \neq 0$.

Corollary 2.3 Let $\left\{\left(\eta_{\lambda}, \Phi_{\lambda}\right)\right\}_{\lambda \in \mathbb{S}^{p}}$ be an almost cosymplectic $p$-sphere. If $i_{\xi_{i}} \Phi_{j} \neq 0$ for every $i, j \in 1, \ldots, p+1, i \neq j$, then the Reeb vector fields $\xi_{i}$ of $\left(\eta_{i}, \Phi_{i}\right)$ are everywhere linearly independent.

Proof Let $\left\{\left(\eta_{\lambda}, \Phi_{\lambda}\right)\right\}_{\lambda \in \mathbb{S}^{p}}$ be an almost cosymplectic $p$-sphere. $\xi_{1}, \xi_{2}, \ldots, \xi_{p+1}$ are the corresponding Reeb vector fields, respectively. If there is a set of number $a_{1}, a_{2}, \ldots, a_{p+1}$ on $\mathbb{R}$, s.t. $a_{1} \xi_{1}+a_{2} \xi_{2}+\cdots+a_{p+1} \xi_{p+1}=0$. Then we have $i_{a_{1} \xi_{1}+a_{2} \xi_{2}+\cdots+a_{p+1} \xi_{p+1}} \Phi_{i}=0$ for $i=1,2, \ldots, p+1$, i.e.,

$$
\left\{\begin{array}{c}
a_{1} i_{\xi_{1}} \Phi_{1}+a_{2} i_{\xi_{2}} \Phi_{1}+\cdots+a_{p+1} i_{\xi_{p+1}} \Phi_{1}=0 \\
a_{1} i_{\xi_{1}} \Phi_{2}+a_{2} i_{\xi_{2}} \Phi_{2}+\cdots+a_{p+1} i_{\xi_{p+1}} \Phi_{2}=0 \\
\cdots \\
a_{1} i_{\xi_{1}} \Phi_{p+1}+a_{2} i_{\xi_{2}} \Phi_{p+1}+\cdots+a_{p+1} i_{\xi_{p+1}} \Phi_{p+1}=0
\end{array}\right.
$$

The coefficient matrix is

$$
\left|\begin{array}{cccc}
i_{\xi_{1}} \Phi_{1} & i_{\xi_{2}} \Phi_{1} & \cdots & i_{\xi_{p+1}} \Phi_{1} \\
i_{\xi_{1}} \Phi_{2} & i_{\xi_{2}} \Phi_{2} & \cdots & i_{\xi_{p+1}} \Phi_{2} \\
\vdots & \vdots & \ddots & \vdots \\
i_{\xi_{1}} \Phi_{p+1} & i_{\xi_{2}} \Phi_{p+1} & \cdots & i_{\xi_{p+1}} \Phi_{p+1}
\end{array}\right|
$$

The rank of coefficient matrix must be $p+1$ due to $i_{\xi_{i}} \Phi_{i}=0$ and $i_{\xi_{i}} \Phi_{j} \neq 0$. So the equation set must have zero solution, we get $\left(a_{1}, a_{2}, \ldots, a_{p+1}\right)=(0,0, \ldots, 0)$. Thus $\xi_{1}, \xi_{2}, \ldots, \xi_{p+1}$ are linearly independent.

Especially, for almost cosymplectic circle, i.e., $p=1$, we have the following conclusions:
Corollary $2.4([9])$ Let $\left\{\left(\eta_{1} \Phi_{1}\right),\left(\eta_{2}, \Phi_{2}\right)\right\}$ be an almost cosymplectic circle. Then $i_{\xi_{1}} \Phi_{2}$ and $i_{\xi_{2}} \Phi_{1}$ never vanish, $\xi_{1}$ and $\xi_{2}$ are everywhere linearly independent.

Proposition 2.5 An almost cosymplectic p-sphere is round if and only if the following conditions are satisfied:
(i) $\eta_{i}\left(\xi_{j}\right)+\eta_{j}\left(\xi_{i}\right)=0$ for $i, j=1,2, \ldots, p+1, i \neq j$;
(ii) $i_{\xi_{i}} \Phi_{j}+i_{\xi_{j}} \Phi_{i}=0$ for $i, j=1,2, \ldots, p+1$.

Proof Let $\left\{\left(\eta_{\lambda}, \Phi_{\lambda}\right)\right\}_{\lambda \in \mathbb{S}^{p}}$ be an almost cosymplectic $p$-sphere. If it is round, then we have $\eta_{\lambda}\left(\xi_{\lambda}\right)=1, i_{\xi_{\lambda}} \Phi_{\lambda}=0$, and they are equivalent to

$$
\begin{aligned}
\eta_{\lambda}\left(\xi_{\lambda}\right) & =\sum_{i, j=1}^{p+1} \lambda_{i} \lambda_{j} \eta_{i}\left(\xi_{j}\right)=\sum_{i=1}^{p+1} \lambda_{i}^{2} \eta_{i}\left(\xi_{i}\right)+\sum_{i \neq j} \lambda_{i} \lambda_{j} \eta_{i}\left(\xi_{j}\right)=1 \\
i_{\xi_{\lambda}} \Phi_{\lambda} & =\sum_{i, j=1}^{p+1} \lambda_{i} \lambda_{j} i_{\xi_{i}} \Phi_{j}=\sum_{i=1}^{p+1} \lambda_{i}^{2} i_{\xi_{i}} \Phi_{i}+\sum_{i \neq j} \lambda_{i} \lambda_{j} i_{\xi_{i}} \Phi_{j}=0
\end{aligned}
$$

Then we get

$$
\sum_{i \neq j} \lambda_{i} \lambda_{j} \eta_{i}\left(\xi_{j}\right)=0, \quad \sum_{i \neq j} \lambda_{i} \lambda_{j} i_{\xi_{i}} \Phi_{j}=0
$$

By substituting $\lambda_{i}=\lambda_{j}=\frac{1}{\sqrt{2}}, \lambda_{k}=0$, where $i, j=1, \ldots, p+1, k \neq i, j$, we obtain

$$
\begin{equation*}
\eta_{i}\left(\xi_{j}\right)+\eta_{j}\left(\xi_{i}\right)=0, \quad i_{\xi_{i}} \Phi_{j}+i_{\xi_{j}} \Phi_{i}=0 \tag{2.2}
\end{equation*}
$$

Proposition 2.6 Let $\left\{\left(\eta_{\lambda}, \Phi_{\lambda}\right)\right\}_{\lambda \in \mathbb{S}^{p}}$ be an almost cosymplectic $p$-sphere on $M^{3}$. Then $M$ is taut if and only if the following conditions are satisfied:
(i) $\eta_{i} \wedge \Phi_{i}=\eta_{j} \wedge \Phi_{j}$ for $i, j=1,2, \ldots, p+1$;
(ii) $\eta_{i} \wedge \Phi_{j}=-\eta_{j} \wedge \Phi_{i}$ for $i, j=1,2, \ldots, p+1, i \neq j$.

Proof If the almost cosymplectic $p$-sphere is taut, then we have

$$
\left(\sum_{i=1}^{p+1} \lambda_{i} \eta_{i}\right) \wedge\left(\sum_{j=1}^{p+1} \lambda_{j} \Phi_{j}\right)=\left(\sum_{i=1}^{p+1} \lambda_{i}^{\prime} \eta_{i}\right) \wedge\left(\sum_{j=1}^{p+1} \lambda_{j}^{\prime} \Phi_{j}\right)
$$

for any $\lambda=\left(\lambda_{1}, \ldots, \lambda_{p+1}\right), \lambda^{\prime}=\left(\lambda_{1}^{\prime}, \ldots, \lambda_{p+1}^{\prime}\right) \in \mathbb{S}^{p}$. By taking $\left(\lambda_{1}, \ldots, \lambda_{p+1}\right)=(0, \ldots, 1(j$ th $)$, $\ldots, 0)$ and $\left(\lambda_{1}, \ldots, \lambda_{p+1}\right)=(0, \ldots, 1(i$ th $), \ldots, 0)$, we get

$$
\begin{equation*}
\eta_{i} \wedge \Phi_{i}=\eta_{j} \wedge \Phi_{j}, \quad i, j=1,2, \ldots, p+1 . \tag{2.3}
\end{equation*}
$$

By taking $\left(\lambda_{1}, \ldots, \lambda_{p+1}\right)=\left(0, \ldots, \frac{1}{\sqrt{2}}(i\right.$ th $), \ldots, \frac{1}{\sqrt{2}}(j$ th $\left.), \ldots, 0\right)$ and $\left(\lambda_{1}^{\prime}, \ldots, \lambda_{p+1}^{\prime}\right)=(0, \ldots, 1$ ( $i$ th or $j$ th), $\ldots, 0$ ), according to ( 2.3 ), we obtain

$$
\begin{equation*}
\eta_{i} \wedge \Phi_{j}=-\eta_{j} \wedge \Phi_{i}, \quad i, j=1,2, \ldots, p+1, i \neq j . \tag{2.4}
\end{equation*}
$$

On the other hand, if (2.3) and (2.4) are fulfilled, we have

$$
\begin{aligned}
& \left(\lambda_{1} \eta_{1}+\cdots \lambda_{p+1} \eta_{p+1}\right) \wedge\left(\lambda_{1} \Phi_{1}+\cdots \lambda_{p+1} \Phi_{p+1}\right) \\
& \quad=\sum_{i=1}^{p+1} \lambda_{i}^{2} \eta_{i} \wedge \Phi_{i}+\sum_{i<j} \lambda_{i} \lambda_{j}\left(\eta_{i} \wedge \Phi_{j}+\eta_{j} \wedge \Phi_{i}\right) \\
& \quad=\eta_{i} \wedge \Phi_{i} .
\end{aligned}
$$

Then the almost cosymplectic $p$-sphere is taut.
Proposition 2.7 Let $\left\{\left(\eta_{1}, \Phi_{1}\right),\left(\eta_{2}, \Phi_{2}\right),\left(\eta_{3}, \Phi_{3}\right)\right\}$ be an almost cosymplectic sphere on $M^{3}$. If $i_{\xi_{i}} \Phi_{j} \neq 0$ for every $i, j=1,2,3, i \neq j$, then it is taut if and only if it is round.

Proof Let $\left\{\left(\eta_{\lambda}, \Phi_{\lambda}\right)\right\}_{\lambda \in \mathbb{S}^{2}}$ be a taut almost cosymplectic sphere on $M^{3}$. Then (2.3) and (2.4) hold. Let $\xi_{i}$ be the Reeb vector field of $\left(\eta_{i}, \Phi_{i}\right), i=1,2,3$. We have $i_{\xi_{i}} \eta_{i}=1, i_{\xi_{i}} \Phi_{i}=0$. Then according to (2.3), we have

$$
\begin{equation*}
i_{\xi_{j}} \Phi_{i}=i_{\xi_{j}} i_{\xi_{i}}\left(\eta_{i} \wedge \Phi_{i}\right)=i_{\xi_{j}} i_{\xi_{i}}\left(\eta_{j} \wedge \Phi_{j}\right)=-i_{\xi_{i}} i_{\xi_{j}}\left(\eta_{j} \wedge \Phi_{j}\right)=-i_{\xi_{i}} \Phi_{j} . \tag{2.5}
\end{equation*}
$$

By applying the equation (2.4) on the vector field $\xi_{i}$, we obtain

$$
\begin{equation*}
\Phi_{j}-\eta_{i} \wedge i_{\xi_{i}} \Phi_{j}=-i_{\xi_{i}} \eta_{j} \wedge \Phi_{i} \tag{2.6}
\end{equation*}
$$

By applying the equation (2.6) on the vector field $\xi_{j}$, we obtain $-i_{\xi_{j}} \eta_{i} \wedge i_{\xi_{i}} \Phi_{j}=-i \xi_{\xi_{i}} \eta_{j} \wedge i_{\xi_{j}} \Phi_{i}$.
Then by using (2.5), we get $i_{\xi_{i}} \Phi_{j}\left(\eta_{i}\left(\xi_{j}\right)+\eta_{j}\left(\xi_{i}\right)\right)=0$. Since $i_{\xi_{i}} \Phi_{j} \neq 0$, we have

$$
\begin{equation*}
\eta_{i}\left(\xi_{j}\right)+\eta_{j}\left(\xi_{i}\right)=0 . \tag{2.7}
\end{equation*}
$$

From (2.5), (2.7) and Proposition 2.5, we conclude that the taut almost cosymplectic sphere is round.

Next we suppose that $\left\{\left(\eta_{\lambda}, \Phi_{\lambda}\right)\right\}_{\lambda \in \mathbb{S}^{2}}$ is a round almost cosymplectic sphere on $M^{3}$ and $i_{\xi_{i}} \Phi_{j} \neq 0$ for every $i, j=1,2,3, i \neq j$. According to Proposition 2.5, we have (2.2), and according to Corollary 2.3, we have that $\xi_{1}, \xi_{2}, \xi_{3}$ are linearly independent. By straightforward computation, we prove that

$$
\eta_{\lambda} \wedge \Phi_{\lambda}\left(\xi_{1}, \xi_{2}, \xi_{3}\right)=\Phi_{1}\left(\xi_{2}, \xi_{3}\right)=\eta_{1} \wedge \Phi_{1}\left(\xi_{1}, \xi_{2}, \xi_{3}\right)
$$

So the round almost cosymplectic sphere is taut.
Remark 2.8 According to Corollary 2.3, the condition of $i_{\xi_{i}} \Phi_{j} \neq 0$ is unnecessary for almost cosymplectic circle, so we say that roundness is equivalent to tautness for almost cosymplectic circles on dimension 3.

## 3. Almost cosymplectic metric bi-structures

In [10], D. Perrone introduced and studied the notion of bi-contact metric structures on three-manifolds. According to the Lemma 3.2 in [10], we have known that for a pair of almost contact metric structures $\left\{\left(\varphi_{i}, \xi_{i}, \eta_{i}, g\right)\right\}_{i=1,2}$, the condition $g\left(\xi_{1}, \xi_{2}\right)=0$ is equivalent to

$$
\begin{equation*}
\varphi_{1} \varphi_{2}+\varepsilon \eta_{1} \otimes \xi_{2}=-\left(\varphi_{2} \varphi_{1}+\varepsilon \eta_{2} \otimes \xi_{1}\right) \tag{3.1}
\end{equation*}
$$

where $\varphi_{2} \xi_{1}=\varepsilon \varphi_{1} \xi_{2}, \varepsilon= \pm 1$. Now, using this property, we consider the notion of almost cosymplectic metric bi-structures on $M^{3}$.

Let $M$ be a three-manifold. A pair of almost cosymplectic metric structures $\left\{\left(\varphi_{i}, \xi_{i}, \eta_{i}, g\right)\right\}_{i=1,2}$ is said to be almost cosymplectic metric bi-structure if the two almost cosymplectic metric structures satisfy (3.1). Moreover, when $\varepsilon=+1$ (resp., $\varepsilon=-1$ ), the almost cosymplectic metric bi-structure is called negative (resp., positive).

After introducing the notions of almost cosymplectic metric bi-structures, we show some results between almost cosymplectic circles and almost cosymplectic metric bi-structures.

Proposition 3.1 Let $\left\{\left(\eta_{1}, \Phi_{1}\right),\left(\eta_{2}, \Phi_{2}\right)\right\}$ be an almost cosymplectic circle on $M^{3}$. Then it is taut if and only if the corresponding almost cosymplectic metric structures are positive almost cosymplectic metric bi-structure.

Proof If $\left\{\left(\eta_{1}, \Phi_{1}\right),\left(\eta_{2}, \Phi_{2}\right)\right\}$ is a taut almost cosymplectic circle, the corresponding two almost cosymplectic metric structures are $\left(\varphi_{1}, \xi_{1}, \eta_{1}, g\right),\left(\varphi_{2}, \xi_{2}, \eta_{2}, g\right)$. From Remark 2.8 and Proposition 2.5, we have $\eta_{1}\left(\xi_{2}\right)+\eta_{2}\left(\xi_{1}\right)=0$ which means $g\left(\xi_{1}, \xi_{2}\right)=0$, the almost cosymplectic metric structures satisfy (3.1), therefore $\left\{\left(\varphi_{i}, \xi_{i}, \eta_{i}, g\right)\right\}_{i=1,2}$ is an almost cosymplectic metric bi-structure. Put $\xi_{3}=\varphi_{1} \xi_{2}=\varepsilon \varphi_{2} \xi_{1}$, then $\left(\xi_{1}, \xi_{2}, \xi_{3}\right)$ is a global orthonormal basis on $M^{3}$. By computation, we get $\left(\eta_{1} \wedge \Phi_{1}\right)\left(\xi_{1}, \xi_{2}, \xi_{3}\right)=-1$ and $\left(\eta_{2} \wedge \Phi_{2}\right)\left(\xi_{1}, \xi_{2}, \xi_{3}\right)=\varepsilon$. Using Proposition 2.6 , we get $\varepsilon=-1$, i.e., the almost cosymplectic metric bi-structure is positive.

Conversely, if $\left\{\left(\varphi_{i}, \xi_{i}, \eta_{i}, g\right)\right\}_{i=1,2}$ is a positive almost cosymplectic metric bi-structure, we
have $g\left(\xi_{1}, \xi_{2}\right)=\eta_{1}\left(\xi_{2}\right)=\eta_{2}\left(\xi_{1}\right)=0$ and $\varphi_{2} \xi_{1}=-\varphi_{1} \xi_{2}$. Then we obtain $i_{\xi_{2}} \Phi_{1}+i_{\xi_{1}} \Phi_{2}=0$. Thus we conclude that $\left\{\left(\eta_{i}, \Phi_{i}\right)\right\}_{i=1,2}$ is a taut almost cosymplectic circle by applying Proposition 2.5 .

Let $\left\{\left(\varphi_{i}, \xi_{i}, \eta_{i}, g\right)\right\}_{i=1,2}$ be an almost cosymplectic metric bi-structure on $M^{3}$. Put

$$
\begin{equation*}
\xi_{3}=\varphi_{1} \xi_{2}, \eta_{3}=-\eta_{2} \circ \varphi_{1}, \varphi_{3}=\varphi_{1} \varphi_{2}+\varepsilon \eta_{2} \otimes \xi_{1} \tag{3.2}
\end{equation*}
$$

Then we have that $\left(\xi_{1}, \xi_{2}, \xi_{3}\right)$ is a global orthonormal basis and $\xi_{3}=\varphi_{1} \xi_{2}=\varepsilon \varphi_{2} \xi_{1}$. We have the following properties:

$$
\begin{aligned}
& \varphi_{3} \xi_{1}=\left(\varphi_{1} \varphi_{2}+\varepsilon \eta_{2} \otimes \xi_{1}\right) \xi_{1}=\varphi_{1} \varphi_{2} \xi_{1}=\varepsilon \varphi_{1}^{2} \xi_{2}=-\varepsilon \xi_{2} \\
& \varphi_{3} \xi_{2}=\left(\varphi_{1} \varphi_{2}+\varepsilon \eta_{2} \otimes \xi_{1}\right) \xi_{2}=\varepsilon \xi_{1} \\
& \varphi_{3} \xi_{3}=\left(\varphi_{1} \varphi_{2}+\varepsilon \eta_{2} \otimes \xi_{1}\right) \xi_{3}=\varphi_{1} \varphi_{2} \xi_{3}=\varepsilon \varphi_{1} \varphi_{2}^{2} \xi_{1}=0 \\
& \varphi_{3}^{2} \xi_{1}=\varphi_{3}\left(-\varepsilon \xi_{2}\right)=-\xi_{1}, \varphi_{3}^{2} \xi_{2}=\varphi_{3}\left(\varepsilon \xi_{1}\right)=-\xi_{2}, \varphi_{3}^{2} \xi_{3}=0 \\
& \eta_{3}\left(\xi_{1}\right)=\eta_{3}\left(\xi_{2}\right)=0, \eta_{3}\left(\xi_{3}\right)=1, \\
& g\left(\varphi_{3} \xi_{i}, \varphi_{3} \xi_{j}\right)=g\left(\xi_{i}, \xi_{j}\right)-\eta_{3}\left(\xi_{i}\right) \eta_{3}\left(\xi_{j}\right), \quad i, j=1,2,3
\end{aligned}
$$

Therefore, we obtain that $\left(\varphi_{3}, \xi_{3}, \eta_{3}, g\right)$ is an almost contact metric structure. Moreover, we have the following properties for this structure.

Theorem 3.2 If $\left\{\left(\varphi_{i}, \xi_{i}, \eta_{i}, g\right)\right\}_{i=1,2}$ is an almost cosymplectic metric bi-structure on a threemanifold $M$, then there exists a global basis of vector fields $\left\{\xi_{1}, \xi_{2}, \xi_{3}\right\}$ such that

$$
\begin{equation*}
\left[\xi_{2}, \xi_{3}\right]=\alpha \xi_{3},\left[\xi_{3}, \xi_{1}\right]=\beta \xi_{3},\left[\xi_{1}, \xi_{2}\right]=\gamma \xi_{3} \tag{3.3}
\end{equation*}
$$

where $\xi_{1}, \xi_{2}$ are the corresponding Reeb vector fields of the two almost cosymplectic structures; $\xi_{3} \in \operatorname{ker} \eta_{1} \cap \operatorname{ker} \eta_{2} ; \alpha, \beta$ and $\gamma$ are smooth functions satisfying $\xi_{3}(\gamma)+\xi_{1}(\alpha)+\xi_{2}(\beta)=0$. In particular, the third almost contact metric structure $\left(\varphi_{3}, \xi_{3}, \eta_{3}, g\right)$ is almost cosymplectic if and only if $\alpha=\beta=\gamma=0$.

Proof If $\left\{\left(\varphi_{i}, \xi_{i}, \eta_{i}, g\right)\right\}_{i=1,2}$ is an almost cosymplectic metric bi-structure on $M^{3}$ and

$$
\xi_{3}=\varphi_{1} \xi_{2}, \eta_{3}=-\eta_{2} \circ \varphi_{1}, \varphi_{3}=\varphi_{1} \varphi_{2}+\varepsilon \eta_{2} \otimes \xi_{1}
$$

We have known that $\left(\xi_{1}, \xi_{2}, \xi_{3}\right)$ is a global orthonormal basis. If we suppose

$$
\begin{aligned}
& {\left[\xi_{1}, \xi_{2}\right]=\gamma_{1} \xi_{1}+\gamma_{2} \xi_{2}+\gamma \xi_{3},} \\
& {\left[\xi_{2}, \xi_{3}\right]=\alpha_{1} \xi_{1}+\alpha_{2} \xi_{2}+\alpha \xi_{3},} \\
& {\left[\xi_{3}, \xi_{1}\right]=\beta_{1} \xi_{1}+\beta_{2} \xi_{2}+\beta \xi_{3},}
\end{aligned}
$$

it is known that $\left(\varphi_{1}, \xi_{1}, \eta_{1}, g\right)$ and $\left(\varphi_{2}, \xi_{2}, \eta_{2}, g\right)$ are almost cosmplectic metric structures, so we have $\nabla \xi_{1}=h_{1} \varphi_{1}$ and $\nabla \xi_{2}=h_{2} \varphi_{2}$. Thus $\nabla_{\xi_{1}} \xi_{1}=0, \nabla_{\xi_{2}} \xi_{2}=0$. Therefore, we get $\alpha_{2}=\beta_{1}=\gamma_{1}=\gamma_{2}=0$. Due to $d \eta_{1}\left(\xi_{2}, \xi_{3}\right)=0$ and $d \eta_{2}\left(\xi_{1}, \xi_{3}\right)=0$, we obtain $\alpha_{1}=\beta_{2}=0$. Then

$$
\left[\xi_{2}, \xi_{3}\right]=\alpha \xi_{3},\left[\xi_{3}, \xi_{1}\right]=\beta \xi_{3},\left[\xi_{1}, \xi_{2}\right]=\gamma \xi_{3}
$$

Thus we have

$$
\begin{equation*}
d \Phi_{3}\left(\xi_{1}, \xi_{2}, \xi_{3}\right)=-\Phi_{3}\left(\left[\xi_{1}, \xi_{2}\right], \xi_{3}\right)+\Phi_{3}\left(\left[\xi_{1}, \xi_{3}\right], \xi_{2}\right)-\Phi_{3}\left(\left[\xi_{2}, \xi_{3}\right], \xi_{1}\right)=0 \tag{3.4}
\end{equation*}
$$

Furthermore, from Jacobi identity, we get

$$
\left[\left[\xi_{1}, \xi_{2}\right], \xi_{3}\right]+\left[\left[\xi_{2}, \xi_{3}\right], \xi_{1}\right]+\left[\left[\xi_{3}, \xi_{1}\right], \xi_{2}\right]=-\left[\xi_{3}(\gamma)+\xi_{1}(\alpha)+\xi_{2}(\beta)\right] \xi_{3}=0
$$

which means that $\xi_{3}(\gamma)+\xi_{1}(\alpha)+\xi_{2}(\beta)=0$.
We also obtain

$$
\begin{aligned}
& 2 d \eta_{3}\left(\xi_{1}, \xi_{2}\right)=-\eta_{3}\left(\left[\xi_{1}, \xi_{2}\right]\right)=-\gamma \\
& 2 d \eta_{3}\left(\xi_{2}, \xi_{3}\right)=-\eta_{3}\left(\left[\xi_{2}, \xi_{3}\right]\right)=-\alpha \\
& 2 d \eta_{3}\left(\xi_{3}, \xi_{1}\right)=-\eta_{3}\left(\left[\xi_{3}, \xi_{1}\right]\right)=-\beta
\end{aligned}
$$

According to (3.4), if $\left(\varphi_{3}, \xi_{3}, \eta_{3}, g\right)$ is almost cosymplectic metric structure, we must have $\gamma=$ $\alpha=\beta=0$.

Corollary 3.3 If $\left\{\left(\varphi_{i}, \xi_{i}, \eta_{i}, g\right)\right\}_{i=1,2}$ is a cosymplectic metric bi-structure on $M^{3}$, then there exists a third almost contact metric structure $\left(\varphi_{3}, \xi_{3}, \eta_{3}, g\right)$ which satisfies (3.2) and is cosymplectic metric structure.

Proof According to Theorem 3.2, we find the tensor $h_{1}=\frac{1}{2} \mathfrak{L}_{\xi_{1}} \varphi_{1}$ and $h_{2}=\frac{1}{2} \mathfrak{L}_{\xi_{2}} \varphi_{2}$ satisfying:

$$
\begin{align*}
2 h_{1} \xi_{2} & =\left(\mathfrak{L}_{\xi_{1}} \varphi_{1}\right) \xi_{2}=\left[\xi_{1}, \varphi_{1} \xi_{2}\right]-\varphi_{1}\left[\xi_{1}, \xi_{2}\right]=\gamma \xi_{2}-\beta \xi_{3}, \\
2 h_{1} \xi_{3} & =\left(\mathfrak{L}_{\xi_{1}} \varphi_{1}\right) \xi_{3}=\left[\xi_{1}, \varphi_{1} \xi_{3}\right]-\varphi_{1}\left[\xi_{1}, \xi_{3}\right]=-\beta \xi_{2}-\gamma \xi_{3},  \tag{3.5}\\
2 h_{2} \xi_{1} & =\left(\mathfrak{L}_{\xi_{2}} \varphi_{2}\right) \xi_{1}=\left[\xi_{2}, \varphi_{2} \xi_{1}\right]-\varphi_{2}\left[\xi_{2}, \xi_{1}\right]=-\varepsilon \gamma \xi_{1}+\varepsilon \alpha \xi_{3}, \\
2 h_{2} \xi_{3} & =\left(\mathfrak{L}_{\xi_{2}} \varphi_{2}\right) \xi_{3}=\left[\xi_{2}, \varphi_{2} \xi_{3}\right]-\varphi_{2}\left[\xi_{2}, \xi_{3}\right]=\varepsilon \alpha \xi_{1}+\varepsilon \gamma \xi_{3} .
\end{align*}
$$

Then we get

$$
2 h_{1}=\left[\begin{array}{ccc}
0 & 0 & 0 \\
0 & \gamma & -\beta \\
0 & -\beta & -\gamma
\end{array}\right], 2 h_{2}=\left[\begin{array}{ccc}
-\varepsilon \gamma & 0 & \varepsilon \alpha \\
0 & 0 & 0 \\
\varepsilon \alpha & 0 & \varepsilon \gamma
\end{array}\right]
$$

So if $\left(\varphi_{i}, \xi_{i}, \eta_{i}, g\right)_{i=1,2}$ are cosymplectic manifolds, we have $\nabla \xi_{i}=h_{i} \varphi_{i}=0$, which means $\varphi_{i} h_{i} X=0$ for any vector field $X \in \mathfrak{X}(M)$. By applying $\varphi_{i}$ on $\varphi_{i} h_{i}$, we get $h_{i}=0$ which means $\alpha=\beta=\gamma=0$. About the tensor $h_{3}=\frac{1}{2} \mathfrak{L}_{\xi_{3}} \varphi_{3}$, we have

$$
\begin{aligned}
& 2 h_{3} \xi_{1}=\left(\mathfrak{L}_{\xi_{3}} \varphi_{3}\right) \xi_{1}=\left[\xi_{3}, \varphi_{3} \xi_{1}\right]-\varphi_{3}\left[\xi_{3}, \xi_{1}\right]=\varepsilon \alpha \xi_{3} \\
& 2 h_{3} \xi_{2}=\left(\mathfrak{L}_{\xi_{3}} \varphi_{3}\right) \xi_{2}=\left[\xi_{3}, \varphi_{3} \xi_{2}\right]-\varphi_{3}\left[\xi_{3}, \xi_{2}\right]=\varepsilon \beta \xi_{3}
\end{aligned}
$$

Therefore, according to Theorem 3.2, we get if these two almost cosymplectic metric structures are cosymplectic, the third almost contact metric structure is almost cosymplectic. Moreover, due to $h_{3}=0$ it is cosymplectic.

According to the above results, on a three dimensional Riemannian manifold $M^{3}$ admitting almost cosymplectic metric bi-structures, there exists a global basis of vector fields $\left\{\xi_{1}, \xi_{2}, \xi_{3}\right\}$
satisfying (3.3). Using (3.3) and the Levi-Civita equation, we get

$$
\left(\nabla_{\xi_{i}} \xi_{j}\right)=\left(\begin{array}{ccc}
0 & \frac{\gamma}{2} \xi_{3} & -\frac{\gamma}{2} \xi_{2}  \tag{3.6}\\
-\frac{\gamma}{2} \xi_{3} & 0 & \frac{\gamma}{2} \xi_{1} \\
-\frac{\gamma}{2} \xi_{2}+\beta \xi_{3} & \frac{\gamma}{2} \xi_{1}-\alpha \xi_{3} & -\beta \xi_{1}+\alpha \xi_{2}
\end{array}\right)
$$

Then according to (3.3) and (3.6), we calculate the following Riemannian curvature tensor which is defined by $R(X, Y) Z=\nabla_{X} \nabla_{Y} Z-\nabla_{Y} \nabla_{X} Z-\nabla_{[X, Y]} Z$ for any $X, Y, Z \in \mathfrak{X}(M)$ :

$$
\begin{align*}
R\left(\xi_{2}, \xi_{1}\right) \xi_{1} & =-\frac{3}{4} \gamma^{2} \xi_{2}+\left(\frac{1}{2} \xi_{1}(\gamma)+\beta \gamma\right) \xi_{3} \\
R\left(\xi_{2}, \xi_{1}\right) \xi_{3} & =\left(-\frac{1}{2} \xi_{1}(\gamma)-\beta \gamma\right) \xi_{1}+\left(-\frac{1}{2} \xi_{2}(\gamma)+\alpha \gamma\right) \xi_{2} \\
R\left(\xi_{2}, \xi_{3}\right) \xi_{1} & =\left(-\frac{1}{2} \xi_{2}(\gamma)+\alpha \gamma\right) \xi_{2}+\left(\frac{1}{2} \xi_{3}(\gamma)+\xi_{2}(\beta)-\alpha \beta\right) \xi_{3}  \tag{3.7}\\
R\left(\xi_{3}, \xi_{1}\right) \xi_{1} & =\left(\frac{1}{2} \xi_{1}(\gamma)+\beta \gamma\right) \xi_{2}+\left(-\xi_{1}(\beta)+\frac{1}{4} \gamma^{2}-\beta^{2}\right) \xi_{3} \\
R\left(\xi_{3}, \xi_{1}\right) \xi_{2} & =\left(-\frac{1}{2} \xi_{1}(\gamma)-\beta \gamma\right) \xi_{1}+\left(\xi_{1}(\alpha)+\frac{1}{2} \xi_{3}(\gamma)+\alpha \beta\right) \xi_{3} \\
R\left(\xi_{3}, \xi_{2}\right) \xi_{2} & =\left(-\frac{1}{2} \xi_{2}(\gamma)+\alpha \gamma\right) \xi_{1}+\left(\xi_{2}(\alpha)+\frac{1}{4} \gamma^{2}-\alpha^{2}\right) \xi_{3}
\end{align*}
$$

Then we obtain

$$
\begin{align*}
& Q \xi_{1}=\left(-\xi_{1}(\beta)-\frac{\gamma^{2}}{2}-\beta^{2}\right) \xi_{1}+\left(\frac{\xi_{1}(\alpha)+\xi_{3}(\gamma)}{2}+\alpha \beta\right) \xi_{2}+\left(-\frac{\xi_{2}(\gamma)}{2}+\alpha \gamma\right) \xi_{3} \\
& Q \xi_{2}=\left(\xi_{1}(\alpha)+\frac{\xi_{3}(\gamma)}{2}+\alpha \beta\right) \xi_{1}+\left(\xi_{2}(\alpha)-\frac{\gamma^{2}}{2}-\alpha^{2}\right) \xi_{2}+\left(\frac{\xi_{1}(\gamma)}{2}+\gamma \beta\right) \xi_{3}  \tag{3.8}\\
& Q \xi_{3}=\left(-\frac{\xi_{2}(\gamma)}{2}+\alpha \gamma\right) \xi_{1}+\left(\frac{\xi_{1}(\gamma)}{2}+\beta \gamma\right) \xi_{2}+\left(-\xi_{1}(\beta)+\xi_{2}(\alpha)+\frac{\gamma^{2}}{2}-\alpha^{2}-\beta^{2}\right) \xi_{3}
\end{align*}
$$

If $\left\{\left(\varphi_{i}, \xi_{i}, \eta_{i}, g\right)\right\}_{i=1,2}$ is a cosymplectic metric bi-structure, we have $\alpha=\beta=\gamma=0$. Therefore, we have the following results:

Theorem 3.4 If $\left\{\left(\varphi_{i}, \xi_{i}, \eta_{i}, g\right)\right\}_{i=1,2}$ is a cosymplectic metric bi-structure on $M^{3}$, then the scalar curvature scal $=0$.

## 4. Some results of $h_{i}$ satisfying certain conditions

In this section, we discuss some special properties of Riemannian manifold $M^{3}$ with almost cosymplectic metric bi-structures. Let $\left\{\xi_{1}, \xi_{2}, \xi_{3}=\varphi_{1} \xi_{2}=\varepsilon \varphi_{2} \xi_{1}\right\}$ be the global orthonormal basis satisfying (3.2). First of all, using Eqs. (3.3) and (3.6), we compute the following formulas, for the tensor $h_{1}$, we have

$$
\begin{align*}
\left(\nabla_{\xi_{1}} h_{1}\right) \xi_{2} & =\left(\frac{1}{2} \xi_{1}(\gamma)+\frac{1}{2} \beta \gamma\right) \xi_{2}+\left(-\frac{1}{2} \xi_{1}(\beta)+\frac{1}{2} \gamma^{2}\right) \xi_{3} \\
\left(\nabla_{\xi_{1}} h_{1}\right) \xi_{3} & =\left(-\frac{1}{2} \xi_{1}(\beta)+\frac{1}{2} \gamma^{2}\right) \xi_{2}+\left(-\frac{1}{2} \xi_{1}(\gamma)-\frac{1}{2} \beta \gamma\right) \xi_{3} \\
\left(\nabla_{\xi_{2}} h_{1}\right) \xi_{1} & =\left(-\frac{1}{4} \beta \gamma\right) \xi_{2}+\left(-\frac{1}{4} \gamma^{2}\right) \xi_{3} \\
\left(\nabla_{\xi_{2}} h_{1}\right) \xi_{2} & =-\frac{1}{4} \beta \gamma \xi_{1}+\frac{1}{2} \xi_{2}(\gamma) \xi_{2}-\frac{1}{2} \xi_{2}(\beta) \xi_{3} \tag{4.1}
\end{align*}
$$

$$
\begin{aligned}
& \left(\nabla_{\xi_{2}} h_{1}\right) \xi_{3}=-\frac{1}{4} \gamma^{2} \xi_{1}-\frac{1}{2} \xi_{2}(\beta) \xi_{2}-\frac{1}{2} \xi_{2}(\gamma) \xi_{3} \\
& \left(\nabla_{\xi_{3}} h_{1}\right) \xi_{1}=\left(\frac{1}{4} \gamma^{2}+\frac{1}{2} \beta^{2}\right) \xi_{2}+\frac{1}{4} \beta \gamma \xi_{3} \\
& \left(\nabla_{\xi_{3}} h_{1}\right) \xi_{2}=\left(\frac{1}{4} \gamma^{2}+\frac{1}{2} \beta^{2}\right) \xi_{1}+\left(\frac{1}{2} \xi_{3}(\gamma)-\alpha \beta\right) \xi_{2}+\left(-\frac{1}{2} \xi_{3}(\beta)-\alpha \gamma\right) \xi_{3} \\
& \left(\nabla_{\xi_{3}} h_{1}\right) \xi_{3}=\frac{1}{4} \beta \gamma \xi_{1}+\left(-\frac{1}{2} \xi_{3}(\beta)-\alpha \gamma\right) \xi_{2}+\left(-\frac{1}{2} \xi_{3}(\gamma)+\alpha \beta\right) \xi_{3}
\end{aligned}
$$

for the tensor $h_{2}$, we have

$$
\begin{align*}
& \left(\nabla_{\xi_{1}} h_{2}\right) \xi_{1}=-\frac{\varepsilon}{2} \xi_{1}(\gamma) \xi_{1}-\frac{\varepsilon}{4} \alpha \gamma \xi_{2}+\frac{\varepsilon}{2} \xi_{1}(\alpha) \xi_{3} \\
& \left(\nabla_{\xi_{1}} h_{2}\right) \xi_{2}=-\frac{\varepsilon}{4} \alpha \gamma \xi_{1}-\frac{\varepsilon}{4} \gamma^{2} \xi_{3} \\
& \left(\nabla_{\xi_{1}} h_{2}\right) \xi_{3}=\frac{\varepsilon}{2} \xi_{1}(\alpha) \xi_{1}-\frac{\varepsilon}{4} \gamma^{2} \xi_{2}+\frac{\varepsilon}{2} \xi_{1}(\gamma) \xi_{3} \\
& \left(\nabla_{\xi_{2}} h_{2}\right) \xi_{1}=\left(-\frac{\varepsilon}{2} \xi_{2}(\gamma)+\frac{\varepsilon}{2} \alpha \gamma\right) \xi_{1}+\left(\frac{\varepsilon}{2} \xi_{2}(\alpha)+\frac{\varepsilon}{2} \gamma^{2}\right) \xi_{3}  \tag{4.2}\\
& \left(\nabla_{\xi_{2}} h_{2}\right) \xi_{3}=\left(\frac{\varepsilon}{2} \xi_{2}(\alpha)+\frac{\varepsilon}{2} \gamma^{2}\right) \xi_{1}+\left(\frac{\varepsilon}{2} \xi_{2}(\gamma)-\frac{\varepsilon}{2} \alpha \gamma\right) \xi_{3} \\
& \left(\nabla_{\xi_{3}} h_{2}\right) \xi_{1}=\left(-\frac{\varepsilon}{2} \xi_{3}(\gamma)-\varepsilon \alpha \beta\right) \xi_{1}+\left(\frac{\varepsilon}{4} \gamma^{2}+\frac{\varepsilon}{2} \alpha^{2}\right) \xi_{2}+\left(\frac{\varepsilon}{2} \xi_{3}(\alpha)-\varepsilon \beta \gamma\right) \xi_{3} \\
& \left(\nabla_{\xi_{3}} h_{2}\right) \xi_{2}=\left(\frac{\varepsilon}{4} \gamma^{2}+\frac{\varepsilon}{2} \alpha^{2}\right) \xi_{1}+\frac{\varepsilon}{4} \alpha \gamma \xi_{3} \\
& t\left(\nabla_{\xi_{3}} h_{2}\right) \xi_{3}=\left(\frac{\varepsilon}{2} \xi_{3}(\alpha)-\varepsilon \beta \gamma\right) \xi_{1}+\frac{\varepsilon}{4} \alpha \gamma \xi_{2}+\left(\frac{\varepsilon}{2} \xi_{3}(\gamma)+\varepsilon \alpha \beta\right) \xi_{3}
\end{align*}
$$

On a Riemannian manifold, a $(1,1)$-type tensor $T$ is said to be of Codazzi type if it satisfies $\left(\nabla_{X} T\right) Y=\left(\nabla_{Y} T\right) X$ for any vector field $X, Y$. By the previous calculations, we obtain:

Theorem 4.1 Let $M$ be a three-manifold with almost cosymplectic metric bi-structures. If the tensor $\left\{h_{i}\right\}_{i=1,2}$ are being of Codazzi type, then the any almost cosymplectic manifold $\left(M, \varphi_{i}, \xi_{i}, \eta_{i}\right)$ is cosymplectic and locally isometric to the flat Euclidean space $\mathbb{R}^{3}$.

Proof Let $M$ be a three-manifold with almost cosymplectic metric bi-structures $\left\{\left(\varphi_{i}, \xi_{i}, \eta_{i}, g\right)\right\}_{i=1,2}$. If $h_{1}$ is being of codazzi type, i.e., $\left(\nabla_{X} h_{1}\right) Y=\left(\nabla_{Y} h_{1}\right) X$ for any vector field $X, Y$, replace $X$ and $Y$ by $\xi_{1}$ and $\xi_{2}$, respectively. Then using (4.1), we get

$$
\left\{\begin{array}{l}
\frac{1}{2} \xi_{1}(\gamma)+\frac{3}{4} \beta \gamma=0  \tag{4.3}\\
\frac{1}{2} \xi_{1}(\beta)-\frac{3}{4} \gamma^{2}=0
\end{array}\right.
$$

Then replacing $X$ and $Y$ by $\xi_{1}$ and $\xi_{3}$, respectively, we obtain

$$
\left\{\begin{array}{l}
-\frac{1}{2} \xi_{1}(\beta)-\frac{1}{2} \beta^{2}+\frac{1}{4} \gamma^{2}=0  \tag{4.4}\\
-\frac{1}{2} \xi_{1}(\gamma)-\frac{3}{4} \beta \gamma=0
\end{array}\right.
$$

Applying the formula $\frac{1}{2} \xi_{1}(\beta)=\frac{3}{4} \gamma^{2}$ in the first term of (4.4), we obtain $\gamma^{2}+\beta^{2}=0$, which means $\gamma=0$ and $\beta=0$.

Similarly, using the same way for $h_{2}$, we get

$$
\begin{gather*}
\left\{\begin{array}{l}
\frac{\varepsilon}{2} \xi_{2}(\gamma)-\frac{3 \varepsilon}{4} \alpha \gamma=0 \\
\frac{\varepsilon}{2} \xi_{2}(\alpha)+\frac{3 \varepsilon}{4} \gamma^{2}=0
\end{array}\right.  \tag{4.5}\\
\left\{\begin{array}{l}
\frac{\varepsilon}{2} \xi_{2}(\alpha)-\frac{\varepsilon}{2} \alpha^{2}+\frac{\varepsilon}{4} \gamma^{2}=0 \\
\frac{\varepsilon}{2} \xi_{2}(\gamma)-\frac{3 \varepsilon}{4} \alpha \gamma=0
\end{array}\right. \tag{4.6}
\end{gather*}
$$

Using $\frac{\varepsilon}{2} \xi_{2}(\alpha)=-\frac{3 \varepsilon}{4} \gamma^{2}$ in the first term of (4.6), we get $\gamma^{2}+\alpha^{2}=0$, which means $\alpha=0$ and $\gamma=0$. So we have $\alpha=\beta=\gamma=0$. Therefore, we have that $\left(M, \varphi_{i}, \xi_{i}, \eta_{i}\right)_{i=1,2,3}$ are cosymplectic. According to [2], any of them is locally isometric to the flat Euclidean space $\mathbb{R}^{3}$.

On a Riemannian manifold, we say a symmetric ( 1,1 )-type tensor field $T$ is cyclic parallel if it satisfies

$$
\begin{equation*}
g\left(\left(\nabla_{X} T\right) Y, Z\right)+g\left(\left(\nabla_{Y} T\right) Z, X\right)+g\left(\left(\nabla_{Z} T\right) X, Y\right)=0 \tag{4.7}
\end{equation*}
$$

for any vector field $X, Y, Z$. We have the following result:
Theorem 4.2 Let $M$ be a three-manifold with almost cosymplectic metric bi-structure. Suppose that the tensors $\left\{h_{i}\right\}_{i=1,2}$ are cyclic parallel, then the scalar curvature of $M^{3}$ is $0,-4 \beta^{2}$ or $-4 \alpha^{2}$.

Proof According to (4.1), (4.2) and (4.7), we obtain

$$
\left\{\begin{array}{l}
g\left(\left(\nabla_{\xi_{3}} h_{1}\right) \xi_{3}, \xi_{3}\right)=-\frac{1}{2} \xi_{3}(\gamma)+\alpha \beta=0 \\
g\left(\left(\nabla_{\xi_{3}} h_{2}\right) \xi_{3}, \xi_{3}\right)=\frac{\varepsilon}{2} \xi_{3}(\gamma)+\varepsilon \alpha \beta=0
\end{array}\right.
$$

From this, we have $\xi_{3}(\gamma)=\alpha \beta=0$. Replacing $X=\xi_{1}, Y=Z=\xi_{2}$ and $X=Y=Z=\xi_{2}$ in (4.7) for $h_{1}$ respectively, we get $\xi_{1}(\gamma)=\xi_{2}(\gamma)=0$. Then we conclude that $\gamma$ is a constant.

By replacing $(X, Y, Z)=\left(\xi_{1}, \xi_{2}, \xi_{3}\right),\left(\xi_{2}, \xi_{2}, \xi_{3}\right),\left(\xi_{2}, \xi_{3}, \xi_{3}\right)$ in (4.7) for $h_{1}$ respectively, we have the following relationships:

$$
\left\{\begin{array}{l}
-\xi_{1}(\beta)+\gamma^{2}+\beta^{2}=0  \tag{4.8}\\
\xi_{3}(\gamma)-2 \xi_{2}(\beta)-2 \alpha \beta=0 \\
\frac{1}{2} \xi_{2}(\gamma)+\xi_{3}(\beta)+2 \alpha \gamma=0
\end{array}\right.
$$

By replacing $(X, Y, Z)=\left(\xi_{1}, \xi_{1}, \xi_{3}\right),\left(\xi_{1}, \xi_{2}, \xi_{3}\right),\left(\xi_{1}, \xi_{3}, \xi_{3}\right)$ in (4.7) for $h_{2}$ respectively, we have the following relationships:

$$
\left\{\begin{array}{l}
\xi_{1}(\alpha)-\frac{1}{2} \xi_{3}(\gamma)-\alpha \beta=0  \tag{4.9}\\
\xi_{2}(\alpha)+\gamma^{2}+\alpha^{2}=0 \\
\frac{1}{2} \xi_{1}(\gamma)+\xi_{3}(\alpha)-2 \beta \gamma=0
\end{array}\right.
$$

According to $\alpha \beta=0$, we have three conditions.

If $\alpha=0$ and $\beta=0$, from the first term of (4.8) and the second term of (4.9), we get that $\gamma=0$. In this case, the scalar curvature is 0 .

If $\alpha=0$ and $\beta \neq 0$, by the second term of (4.9), we conclude that $\gamma=0$ and (4.8) is equivalent to $\xi_{1}(\beta)=\gamma^{2}, \xi_{2}(\beta)=0, \xi_{3}(\beta)=0$. Applying these in (3.8), we obtain $Q \xi_{1}=-2 \beta^{2} \xi_{1}, Q \xi_{2}=0$, $Q \xi_{3}=-2 \beta^{2} \xi_{3}$. It follows that the scalar curvature is $-4 \beta^{2}$.

If $\alpha \neq 0$ and $\beta=0$, according to the first term of (4.8), we get that $\gamma=0$ and (4.9) is equivalent to $\xi_{1}(\alpha)=0, \xi_{2}(\alpha)=-\alpha^{2}, \xi_{3}(\alpha)=0$. In this context, we obtain

$$
Q \xi_{1}=0, Q \xi_{2}=-2 \alpha^{2} \xi_{2}, Q \xi_{3}=-2 \alpha^{2} \xi_{3}
$$

It follows that the scalar curvature is $-4 \alpha^{2}$. This completes the proof.
Acknowledgements We thank the referees for their time and comments.

## References

[1] S. GOLDBERG, K. YANO. Integrability of almost cosymplectic structures. Pacific J. Math., 1969, 31: 373-382.
[2] D. PERRONE. Classification of homogeneous almost cosymplectic three-manifolds. Differ. Geom. Appl., 2012, 30(1): 49-58.
[3] Wenjie WANG. A class of three dimensional almost cokähler manifolds. Palest. J. Math., 2017, 6(1): 111-118.
[4] Yaning WANG. Almost contact metric manifolds with local Riemannian and Ricci symmetries. Mediterr. J. Math., 2019, 16(4): 81.
[5] Yaning WANG. Almost co-kähler manifolds satisfying some symmetry conditions. Turkish J. Math., 2016, 40(4): 740-752.
[6] Yaning WANG. Curvature homogeneity and ball-homogeneity on almost cokähler 3-manifolds. Bull. Korean Math. Soc., 2019, 56(1): 253-263.
[7] H. GEIGES, J. GONZALO. Contact geometry and complex surfaces. Invent. Math., 1995, 121(1): 147-209.
[8] M. ZESSIN. On contact p-spheres. Ann. Inst. Fourier., 2005, 55(4): 1167-1194.
[9] B. C. MONTANO, A. D. NICOLA, I. YUDIN. Cosymplectic p-spheres. J. Geom. Phys., 2016, 100: 68-79.
[10] D. PERRONE. Taut contact circles and bi-contact metric structures on three-manifolds. Ann. Global Anal. Geom., 2017, 52(2): 213-235.
[11] D. E. BLAIR. Riemannian Geometry of Contact and Symplectic Manifolds. Birkhäuser Boston, Ltd., Boston, MA, 2010.
[12] Z. OLSZAK. On almost cosymplectic manifolds. Kodai Math. J., 1981, 4(2): 239-250.
[13] D. PERRONE. Taut contact circles on H-contact 3-manifolds. Int. Math. Forum, 2006, 1(25-28): 1285-1296.
[14] D. PERRONE. Homogeneous contact Riemannian three-manifolds. Illinois J. Math., 1998, 42(2): 243-256.

