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Abstract The purpose of this paper is to study almost cosymplectic p-spheres and almost cosym-
plectic metric bi-structures. Firstly, we show some properties of almost cosymplectic p-spheres.
Then we introduce the notion of almost cosymplectic metric bi-structures and give some results
on three dimensional manifolds admitting almost cosymplectic metric bi-structures. Moreover,
we investigate three dimensional manifolds with almost cosymplectic metric bi-structures when
the (1, 1)-type tensor fields h1 and hs are being of codazzi type and cyclic parallel.
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1. Introduction

In recent years, after Goldberg and Yano [1] introduced the notion of almost cosymplectic
manifolds, almost cosymplectic manifolds were studied by many authors. In [2], Perrone classified
all simply connected homogeneous almost cosymplectic three-manifolds. In [3-6], the authors
considered three dimensional almost cosymplectic manifolds satisfying certain conditions. Geiges
and Gonzalo [7] introduced the notion of contact circles on three-manifolds in 1995. In 2005,
Zessin [8] studied contact p-spheres, and proved that a contact circle (resp., a contact sphere) is
taut if and only if it is round on a three-manifold. Montano, Nicola and Yudin [9] introduced
almost cosymplectic circles and almost cosymplectic spheres. Moreover, they showed that any
3-Sasakian manifold admits a sphere of Sasakian structures which is both taut and round. In
2017, Perrone [10] introduced a Riemannian approach to the study of taut contact circles on
three-manifolds. The author gave a complete classification of simply complete three-manifolds
which admit a bi-H-contact metric structure.

In this paper, we investigate almost cosymplectic p-spheres and almost cosymplectic metric
bi-structures. In Section 2, we give some properties of almost cosymplectic p-spheres. According
to the notation of bi-contact metric structures in [10], we introduce the definition of almost
cosymplectic metric bi-structures in Section 3. According to the structures of almost cosymplectic

metric bi-structures, we construct a global orthonormal basis on M?2. We conclude that if there
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exists a cosymplectic metric bi-structure on M3, then the scalar curvature is zero. Finally, we
study some special conditions on three-manifolds with almost cosymplectic metric bi-structures.
We show that for three-manifolds with almost cosymplectic metric bi-structures, we have the
following results: if tensors {h;};=12 are of Codazzi type, then any almost cosymplectic manifold
(M, @;,&i,m;) is cosymplectic and locally isometric to the flat Euclidean space R?; if the tensors

{hi}i=12 are cyclic parallel, then the scalar curvature of M3 is 0, —43? or —4a?.

2. Preliminaries

Let M be a manifold of dimension 2n + 1, ¢ a (1, 1)-type tensor field, £ a global vector field,
called the Reeb vector fileld or the characteristic vector field, 7 a 1-form dual to £&. The triplet

(p,&,m) is called an almost contact structure if the following relations hold:

' =—I+n®E& nop=0, pof=0.
An almost contact structure endowed with an associated metric g such that

9(pX,Y) = g(X,Y) = n(X)n(Y)

for any X,Y € X(M) is called an almost contact metric structure. The fundamental 2-form @
is defined by ®(X,Y) = g(X,¢Y) for any X,Y € X(M). An almost contact metric structure is
called contact metric structure if dn = ® and called almost cosymplectic structure if ® and n are
closed. As a consequence, any almost contact manifold is orientable, and the n A ®™ does not
vanish everywhere on M.

An almost cosymplectic metric structure is said to be normal when the Nijenhuis tensor
[0, ¢] = 0, where [p, ] = Q*[X, Y] + [pX, pY] — p[pX, Y] — p[X, ¢Y] for any X,V € X(M). It
should be noted that an almost contact metric structure (p, &, 7, g) is cosymplectic if and only if
 is parallel, i.e., Voo = 0 (see [11, p.95]). Any three dimensional almost contact metric manifold
fulfils |[Vp|? = 2|VE£|?, as the consequence of this, we obtain that any three dimensional almost
contact metric manifold is cosymplectic if and only if V& = 0 (see [12, p.248]). The (1, 1)-type
tensor field kA on almost contact metric manifolds is defined by h = 2£¢p. We also have the

following properties for almost cosymplectic manifolds [2]:
Vep =0, V€ =hy, hp = —ph, h{ =0. (2.1)

Let {(nx, Px) }aesr be a pair of the linear combination about the 1-form (71,72, . .., 7p4+1) and
the 2-form (@1, @o, ..., Ppy1), where ny = A1+ -+ Apr1mp+1, Pa = M P14+ -+ Apy1Pp4q for
any A = (A1, A2, ..., Apr1) € $P. If the corresponding almost contact structure of pair (ny, ®,) for
any A € $? is almost cosymplectic structure, then the {(nx, @)} rese is called almost cosymplectic
p-sphere. Especially, an almost cosymplectic p-sphere is called an almost cosymplectic circle or
an almost cosymplectic sphere if p = 1 or p = 2, respectively. We also use {(n1, 1), (n2,Q2)} to
indicate {(nx, Px)}res:-

An almost cosymplectic p-sphere is said to be taut if the volume forms are equal to every
AN €8P de, (P X)) A (P M@ = (5P Noma) A (2P @)™, An almost cosym-
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plectic p-sphere is said to be round if the vector field £, = A& + -+ 4+ Apr1&p+1 is the Reeb
vector field of the corresponding almost contact structure, i.e., i¢,nx = 1,i¢, ®» = 0. We have

the following properties for almost cosymplectic p-spheres.

Lemma 2.1 ([9]) On (4n + 1)-dimensional manifolds, almost cosymplectic p-spheres do not

exist for p > 1.

Proof We now prove that there is not an almost cosymplectic p-sphere on M of dimension 5.
Assume that {(nx, @)} resr is an almost cosymplectic p-sphere on M®, then we have
p+1
MADY = D NXAr(ni A ;A D),
i,j,k=1
where A = (A1, A2, ..., A\pp1) € $P. Let {e1,e2,€3,€e4,e5} be a basis of T,M, where p is a point
of M. Then we consider the function from RP*! to R defined by

p+1
f(/\l, )\2, ceey )\p+1) = Z >\i)\j)\k(77i A (I)j A fI)k)(el, €2, €3, €4, 65).
i, k=1
It is a homogeneous polynomial function of degree 3. We have f(—Ai,—Ao,...,—App1) =

—f(A1, A2, .., Apgr) for any A = (A1, Ao, ..., Apg1) € SP. If it is positive at some point of
RPT! it is negative at its antipode. Therefore, f should have zero in $7, 7, A ®3 is not a volume
form in this condition. So {(nx, ®x)}aes» is not an almost cosymplectic p-sphere on M®.

Generally, when the dimension of M is 4n + 1, the degree of polynomial function is 2n +
1, which is odd, so the polynomial function has zero on $7*!. Thus there is not an almost
cosymplectic p-sphere in dimension 4n + 1. O

Note that the degree of polynomial function is 2n when the dimension of M is 4n—1, so there
is no restriction to the existence of almost cosymplectic p-spheres in these dimensions. There is

an example about cosymplectic circles on 7 dimensional manifolds in [9].

Lemma 2.2 Let {(nx, ®x)}rese be an almost cosymplectic p-sphere. Then for every fixed i,
there must be a j, such that i¢,®; # 0 fori,j € 1,2,...,p+ 1,14 # j.

Proof Let {(nx, Px)}resr be an almost cosymplectic p-sphere and fix i. Suppose i¢,®,(p) =0
forall j=1,...,p+ 1 and p € M, then we have

ifiq)k(p) = Alifiq)l(p) +eee )‘;D-l-liﬁi(l);ﬂ-i'l(p) =0.

If na(&)(p) = 0, then (nx A ®Y)(&,---) vanished at p, and the {(nx,®x)} cannot be an al-
most cosymplectic p-sphere. We put a = n(&)(p) # 0, & = %, then we have ig/®)(p) = 0,
m(&)(p) = 1 at p. Thus the Reeb vector field of structure {(nx, ®x)} is &. The structure
(—n;, —®;) is also an almost cosymplectic p-sphere and the Reeb vector field is —¢;. We de-
fine a function f from $? to R by &x(p) = f(MN)&(p), f is continuous and f(N\) = 1 for
A = (0,...,0,1(ith),0,...,0), f(Ae) = —1 for Ay = (0,...,0,—1(ith),0,...,0). There exist-
s some Ag € $P, such that &, (p) = f(Ao)&(p) = 0. Since &x(p) = &, # 0, we get a contradiction.
So there exists a number j, s.t. i¢,®;(p) #0. O
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Corollary 2.3 Let {(nx, ®x)}rese be an almost cosymplectic p-sphere. If i¢,®; # 0 for every
1,7 €1,...,p+ 1,4 +# j, then the Reeb vector fields & of (n;, ®;) are everywhere linearly inde-

pendent.
Proof Let {(nx,®x)}resr be an almost cosymplectic p-sphere. &1,&s,...,&+1 are the corre-
sponding Reeb vector fields, respectively. If there is a set of number a1, as,...,ap+1 on R, s.t.

a1é1+azba+- - +apr1§pr1 = 0. Then we have g ¢ yanent - tapirp s =0fori=1,2,...,p+1,
ie.,
arig, 1+ agig, @1+ -+ apaig,, 21 =0,

aligl Dy + agi& Do+ -+ ap+1i5p+1<1>2 =0,

aliEI (I);DJrl + a2i§2(1)p+1 + -+ Qp+1i§p+l(1)p+1 = 0.

The coefficient matrix is

ig, P1 ig, 1 ifp+1q)1
7;51 @2 Z£2¢2 i£p+1¢2
i Ppr1 e Pprr i5p+1(I)P+1

The rank of coefficient matrix must be p 4+ 1 due to i¢,®; = 0 and i, ®; # 0. So the equation
set must have zero solution, we get (a1,as,...,apt+1) = (0,0,...,0). Thus &, &, ..., &p41 are
linearly independent. O

Especially, for almost cosymplectic circle, i.e., p = 1, we have the following conclusions:

Corollary 2.4 ([9]) Let {(m®1), (2, ®2)} be an almost cosymplectic circle. Then i¢, o and

¢, ®1 never vanish, £ and &, are everywhere linearly independent.

Proposition 2.5 An almost cosymplectic p-sphere is round if and only if the following condi-
tions are satisfied:
(i) g, ®j +ig;®; =0 fori,j =1,2,...,p+ 1.

Proof Let {(nx, ®x)}resr be an almost cosymplectic p-sphere. If it is round, then we have
M (€x) =1, ie, DA = 0, and they are equivalent to

p+1 p+1
M) = D ANm(&) = D Ami() + D Admi(§) =1,
i,j=1 i=1 i#j
p+1 p+1
1¢, Oy = Z Aidjig, @ = Z )\127,51(1)1 + Z Aidjig, ®; = 0.
i,j=1 i=1 i#]

Then we get

Z Aidjni(§5) =0, Z Aidjig; ®; = 0.
i#j i#£]
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By substituting A\; = A\; = \/LE’ A =0, wherei,j=1,...,p+ 1, k # i,j, we obtain
ni(&) +nj(&) =0, ig,®; +ig,®; =0. O (2.2)

Proposition 2.6 Let {(nx, ®))}res» be an almost cosymplectic p-sphere on M?®. Then M is
taut if and only if the following conditions are satisfied:

(i) mAN®;=n; AN®; fori,j=1,2,...,p+1;

(i) mAN®;=—-n; AN®; fori,j=1,2,....p+1,i#j.

Proof If the almost cosymplectic p-sphere is taut, then we have
p+1 p+1 p+1 p+1
(o) (Snm) = (Som) (S m)
i=1 j=1 i=1 j=1
for any A = (A1,..., Apy1), N = (A}, ..., ALyy) € 8P. By taking (A1, ..., Apt1) = (0,...,1(jth),
—..,0)and (A1, ..., Ap11) = (0,...,1(ith),...,0), we get
771/\(1)1:7’]J/\‘I)J, 17]21,2,,p—|—1 (23)

By taking (A1,..., Apy1) = (0,..., 5(ith),..., 5=(jth),...,0) and (X},..., A1) = (0,...,1
(¢th or jth),...,0), according to (2.3), we obtain

AP =—; NP, 4,5=1,2,...,p+1,i#]. (24)
On the other hand, if (2.3) and (2.4) are fulfilled, we have

(A + - Apsampr1) A (M®@r + - Ap 1 Ppir)

p+1

= Z)\?m N D; +Z)\i)\j(77i AN®;+n; \D;)
i=1 i<j

= A\ Py

Then the almost cosymplectic p-sphere is taut. O

Proposition 2.7 Let {(n1,®1), (72, ®2), (13, ®3)} be an almost cosymplectic sphere on M?3. If
ig,®; # 0 for every i,j = 1,2,3,49 # j, then it is taut if and only if it is round.

Proof Let {(nx, ®x)}recs2 be a taut almost cosymplectic sphere on M3. Then (2.3) and (2.4)
hold. Let & be the Reeb vector field of (n;, ®;), i = 1,2,3. We have i¢,n; = 1, 3¢, ®; = 0. Then

according to (2.3), we have
ig; @i = igyig, (i N Pi) = g, (1 A Rj) = —igiig; (n; N D;) = —ig; D;. (2.5)
By applying the equation (2.4) on the vector field &;, we obtain
(I)j -1 N\ igl.(l)j = —ig;n; N P,. (2.6)

By applying the equation (2.6) on the vector field £;, we obtain —ig;n; Adg, @5 = —ig,m; Nig,; s
Then by using (2.5), we get i¢, ®;(n:(&;) +n;(&)) = 0. Since ig, ®; # 0, we have

ni(&5) +n;(&) = 0. (2.7)
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From (2.5), (2.7) and Proposition 2.5, we conclude that the taut almost cosymplectic sphere is
round.

Next we suppose that {(nx,®x)}res2 is a round almost cosymplectic sphere on M3 and
ig,®; # 0 for every i,j = 1,2,3,49 # j. According to Proposition 2.5, we have (2.2), and
according to Corollary 2.3, we have that &1, &2, s are linearly independent. By straightforward

computation, we prove that

A Pr(&1,62,83) = P1(&2,&3) = m A P1(&1,62,83).

So the round almost cosymplectic sphere is taut. O

Remark 2.8 According to Corollary 2.3, the condition of i¢, ®; # 0 is unnecessary for almost
cosymplectic circle, so we say that roundness is equivalent to tautness for almost cosymplectic

circles on dimension 3.

3. Almost cosymplectic metric bi-structures

In [10], D. Perrone introduced and studied the notion of bi-contact metric structures on
three-manifolds. According to the Lemma 3.2 in [10], we have known that for a pair of almost

contact metric structures {(¢;, &, 7, g) }i=1,2, the condition ¢g(&1,&2) = 0 is equivalent to

P12 +em @& = — (P21 +em @ &1), (3.1)

where 2&1 = ep1&,6 = +1. Now, using this property, we consider the notion of almost
cosymplectic metric bi-structures on M3.

Let M be a three-manifold. A pair of almost cosymplectic metric structures {(;, &, 7, 9) }i=1,2
is said to be almost cosymplectic metric bi-structure if the two almost cosymplectic metric struc-
tures satisfy (3.1). Moreover, when ¢ = +1 (resp., ¢ = —1), the almost cosymplectic metric
bi-structure is called negative (resp., positive).

After introducing the notions of almost cosymplectic metric bi-structures, we show some re-

sults between almost cosymplectic circles and almost cosymplectic metric bi-structures.

Proposition 3.1 Let {(n1, ®1), (12, ®2)} be an almost cosymplectic circle on M3. Then it is
taut if and only if the corresponding almost cosymplectic metric structures are positive almost

cosymplectic metric bi-structure.

Proof If {(n1,®1), (2, P2)} is a taut almost cosymplectic circle, the corresponding two almost
cosymplectic metric structures are (¢1,&1,7m1,9), (¢2,€2,m2,9). From Remark 2.8 and Propo-
sition 2.5, we have 11(&2) + 172(£1) = 0 which means g(&1,&) = 0, the almost cosymplectic
metric structures satisfy (3.1), therefore {(v;,&,ni,9)}i=1,2 is an almost cosymplectic metric
bi-structure. Put £3 = o1& = a1, then (&1,&2,€3) is a global orthonormal basis on M3. By
computation, we get (m; A ®1)(£1,82,&3) = —1 and (2 A @2)(£1,&2,&3) = €. Using Proposition
2.6, we get € = —1, i.e., the almost cosymplectic metric bi-structure is positive.

Conversely, if {(vi,&,n:,9)}i=1,2 is a positive almost cosymplectic metric bi-structure, we
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have g(£1,&) = m(§2) = n2(&1) = 0 and @261 = —@1&2. Then we obtain ig, ®1 + i¢, P2 = 0.
Thus we conclude that {(n;, ®;)}i=1,2 is a taut almost cosymplectic circle by applying Proposition
2.5. 0

Let {(®i,&,mi,9)}i=1.2 be an almost cosymplectic metric bi-structure on M3. Put

& =182, N3 = —M20p1, P3 = P12 +en ®&1. (3.2)

Then we have that (£1,&2,&3) is a global orthonormal basis and 3 = p1&2 = ep2£1. We have the
following properties:

P31 = (P12 + el @ &1)&1 = Prpabs = epiés = —ebo,

@382 = (P12 +em2 ® §1)&2 = €61,

0383 = (P12 + M2 ® &1)Es = 10263 = €136 = 0,

P36 = p3(—ela) = =&, 382 = pa(er) = —&, ¢3€3 =0,

n3(61) = n3(§2) =0, n3(&s) =1,

9(s&is w3&5) = 9(& &) — ms(&)ns(&5), i, =1,2,3.

Therefore, we obtain that (¢3,&3, 73, ¢9) is an almost contact metric structure. Moreover, we have

the following properties for this structure.

Theorem 3.2 If {(¢s, &, i, g) bi=1,2 is an almost cosymplectic metric bi-structure on a three-
manifold M, then there exists a global basis of vector fields {{1,&2,&3} such that

[52753] = 0653, [63751] = ﬁ§37 [61752] = ’7637 (33)

where &1, &5 are the corresponding Reeb vector fields of the two almost cosymplectic structures;
& € kerm Nkernq; o, B and v are smooth functions satisfying 3(v) + &1(a) + &(8) = 0. In
particular, the third almost contact metric structure (s, &3, 13, g) is almost cosymplectic if and

only ifa=08=~v=0.
Proof If {(©i,&,1i,9)}i=1,2 is an almost cosymplectic metric bi-structure on M? and
§3 =182, N3 = —N20p1, p3= P12 +eN QL&
We have known that (&1, &2, &3) is a global orthonormal basis. If we suppose
€1, &) =&+ 728 + &3,
[€2, &3] = a1é1 + 2o + ads,

[€3,&1] = Bi& + Baéo + BEs,

it is known that (v1,&1,m,9) and (p2,&2,72,g) are almost cosmplectic metric structures, so
we have V& = hipr and V& = hapa. Thus Vg & = 0, Vg, & = 0. Therefore, we get
ag = PB1 =91 =72 = 0. Due to dni(&2,&3) = 0 and dne(&1,&3) = 0, we obtain ay = 82 = 0.
Then

[52753] = 0653, [53751] - ﬁ§37 [51752] = ’763
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Thus we have

dPs (&1, 82, 83) = —Ps([61, &2], &3) + P3([€1, &3], §2) — Ps([€2, €3], &) = 0. (3.4)
Furthermore, from Jacobi identity, we get

[[€1,62], &3] + [[€2, &3], &) + [[€3, &), o] = —[63(7) + & (@) + &(B)]és = 0,

which means that £3(v) 4+ &1(a) + &2(8) = 0.
We also obtain

2dn3(&1,&2) = —n3([61,&2]) = —,
2dn3(§2,83) = —n3([€2,&3]) = —,
2dn3(&3,&1) = —n3([&3,61)) = —B.

According to (3.4), if (p3,&3,7n3,9) is almost cosymplectic metric structure, we must have v =
a=0£=0.0

Corollary 3.3 If {(i,&,ni,9) }i=1,2 is a cosymplectic metric bi-structure on M3, then there
exists a third almost contact metric structure (ys,&s,ns,g) which satisfies (3.2) and is cosym-

plectic metric structure.

Proof According to Theorem 3.2, we find the tensor hy = %Eglcpl and hy = %252 9 satisfying:

2h1&e = (Le,01)&2 = [&1, p182] — 1[61, &o] = 762 — B,
2h1&3 = (Le,1)&s = [€1,p183] — 161, &3] = —BE — 73, (3.5)
2h2&1 = (Le,02)61 = [€2, p2bi] — w2[62, 1] = —e7v&r + cad,
2ha&s = (L, 02)&3 = [§2, 9283] — 2[&2, &3] = eady +&76s.
Then we get
0 0 0 —ev 0 ea
29hi=10 ~ 81|, 2= 0 0 0
0 -8 —v ea 0 ey
So if (@i, &,mi,9)i=1,2 are cosymplectic manifolds, we have V& = h;p; = 0, which means

wih; X = 0 for any vector field X € X(M). By applying ¢; on ;h;, we get h; = 0 which
means a = § =~ = 0. About the tensor hg = %253 3, we have

2h3&1 = (Le,3)61 = (€3, 361] — v3(€3,&1] = eads,
2h3& = (Le, )& = (€3, v382] — v3(€3, §2] = €BE3.

Therefore, according to Theorem 3.2, we get if these two almost cosymplectic metric structures
are cosymplectic, the third almost contact metric structure is almost cosymplectic. Moreover,
due to hg = 0 it is cosymplectic. O

According to the above results, on a three dimensional Riemannian manifold M3 admitting

almost cosymplectic metric bi-structures, there exists a global basis of vector fields {1, 2,83}
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satisfying (3.3). Using (3.3) and the Levi-Civita equation, we get

0 383 —3&2
(Ve &) = —3&3 0 3&1 : (3.6)
-3+ P8 F6 —afs B +ab

Then according to (3.3) and (3.6), we calculate the following Riemannian curvature tensor
which is defined by R(X,Y)Z = VxVyZ —VyVxZ — V|xy|Z for any X, Y, Z € X(M):

R(en &6 = —37%6 + (56:00) + Br)és,
R(E2 618 = (~561(1) — B + (—3E(0) + 0,

R( )61 = (—56(1) + a1 + (560) + &(6) — af)és,

. . (3.7)
R(&s, €)1 = (56 (7) + B7)&2 + (=&1(F) + Z”Yz — %),
R(65, 68 = (~56(0) — )6 + (G (@) + 365(1) +aB)és,
R(&3,82)& = (—%52(7) +ay)ér + (§2(a) + 272 —a?)&.
Then we obtain
Q6 = (<6(8) - T — e+ (BOTE0) |oge,  ((8O) Lo,
2
Qe = (6(0) + 2 1 ap)es + (o)~ L —a?)e + (5157) + vﬁ)ﬁ (38)
Q6 = (-2 v ame + ) 1 e+ () + el + L —a? - 6

If {(©:,&,mi»9) }i=1,2 is a cosymplectic metric bi-structure, we have o = 8 = v = 0. There-

fore, we have the following results:

Theorem 3.4  If {(¢:,&,mi,9)}i=1.2 is a cosymplectic metric bi-structure on M3, then the

scalar curvature scal = 0.

4. Some results of h; satisfying certain conditions

In this section, we discuss some special properties of Riemannian manifold M? with almost
cosymplectic metric bi-structures. Let {£1,£2,&3 = v1&2 = €21} be the global orthonormal
basis satisfying (3.2). First of all, using Egs. (3.3) and (3.6), we compute the following formulas,

for the tensor hy, we have

(Veh)z = (361() + 360 + (—364(8) + 57°)6s

(Vehi)s = (~36(68) + 57906 + (~56(1) — 567)6s
(Vehn)er = (~ 3606 + (- 376,

(V) = 38761 + 56006 - 56(6)6, (1)
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(Vehn)is = 376 — 56(8)6 — 562(1)6s

(Ven)er = (17" + 5606 + 15ks,

(Ve hi)ée = (17 + ﬁ2)§1 + (153(7) —af)é + (—%53(5) —ay)&s,
(Ve hi)és = Zﬁ%l + (—553(@ —ay)é2 + (—%53(7) + af)Es;

for the tensor ho, we have

(Ve ho)ér = —gfl( )& — 504752 + %51 (a)és,

g
(Ve ho)éo = —104751 - —7 %,

)
)

(Veho)es = S&1(@)6 = 5776 + S6(1&,

(Ve ha)é 5
)
)
)

(—5&M) + F0ma + <§sz<a> + 5776, (1.2)
(Veho)es = (56(0) + 5776 + (G&0 >—fm>ss,

(Vesha §1=<—f§3< )—aamm( 7+ 20?6 + (5a(a) — B,
(Ve ha)éo ( v + a N+ OW€3,

t(Vesha)és = (553(a) —efvy)é + ZOZW& + (%53(7) +eaB)Es.

On a Riemannian manifold, a (1, 1)-type tensor T is said to be of Codazzi type if it satisfies
(VxT)Y = (VyT)X for any vector field X, Y. By the previous calculations, we obtain:

Theorem 4.1 Let M be a three-manifold with almost cosymplectic metric bi-structures.
If the tensor {h;},=12 are being of Codazzi type, then the any almost cosymplectic manifold
(M, @;,&;,m;) is cosymplectic and locally isometric to the flat Euclidean space R3.

Proof Let M be a three-manifold with almost cosymplectic metric bi-structures {(¢;, &, i, 9) Fi=1,2-
If hy is being of codazzi type, i.e., (Vxh1)Y = (Vyhi)X for any vector field X, Y, replace X
and Y by & and &, respectively. Then using (4.1), we get

_51( )+ [37:07

551(5) - %7 =0.

(4.3)

Then replacing X and Y by &; and &3, respectively, we obtain

1 1, 1.,
—iﬁl(ﬁ)—§5 17 =0
1

3
— 551(7) - 157 = 0.

(4.4)

Applying the formula 3£;(8) = 242 in the first term of (4.4), we obtain 4% + 2 = 0, which
means v =0 and § = 0.
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Similarly, using the same way for hy, we get

€ 3¢
552(7) - Zor)/ = 07
(4.5)
“6a(a)+ 297 =0
2> TRt
~&(0) — 2o + 42 =0,
2 2 4
(4.6)
“6() - Ty =0
552 Y 4 v :
Using £&3(e) = —3242 in the first term of (4.6), we get v> + a? = 0, which means a = 0 and

v = 0. So we have o = 8 = v = 0. Therefore, we have that (M, ¢;,&,7:)i=1,2,3 are cosymplectic.
According to [2], any of them is locally isometric to the flat Euclidean space R3. O
On a Riemannian manifold, we say a symmetric (1,1)-type tensor field T is cyclic parallel if

it satisfies

9(VxT)Y,Z) + g(VyT)Z, X) + g(V2T)X,Y) =0 (4.7)
for any vector field X, Y, Z. We have the following result:

Theorem 4.2 Let M be a three-manifold with almost cosymplectic metric bi-structure. Sup-
pose that the tensors {h;}i—1 2 are cyclic parallel, then the scalar curvature of M3 is 0, —43% or

—4a2.
Proof According to (4.1), (4.2) and (4.7), we obtain

o(Veshn)6s, &) = — 567 + aB =0,
9(Vesha)és. &) = 560) +caf =0,

From this, we have £3(7) = @ = 0. Replacing X =&, Y =Z=&L and X =Y =7 =& in
(4.7) for hy respectively, we get &1 () = &2(y) = 0. Then we conclude that 7 is a constant.

By replaCing (Xa Ya Z) = (51552553)7 (52752553)5 (52753553) in (47) for hy respeCtiV61Ya we
have the following relationships:

—6(B)+ 7+ =0,
&3(7) — 262(B) — 208 =0, (4.8)
$62(1) + E5(8) + 207 =0.

By replacing (X,Y, Z) = (&1,61,83), (£1,€2,&3), (§1,83,83) in (4.7) for hy respectively, we have
the following relationships:

() — 56s(7) — a =0,
L) +9* +a* =0, (4.9)
S61(0) + E3(a) — 267 =0,

According to a8 = 0, we have three conditions.
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If « =0 and 8 = 0, from the first term of (4.8) and the second term of (4.9), we get that
v = 0. In this case, the scalar curvature is 0.
If « = 0 and 8 # 0, by the second term of (4.9), we conclude that v = 0 and (4.8) is equivalent

to &1 (8) =%, &(8) = 0, &(8) = 0. Applying these in (3.8), we obtain Q&1 = —28%¢1, Q& =0,
Q&3 = —23%¢3. Tt follows that the scalar curvature is —4/32.
If « # 0 and § = 0, according to the first term of (4.8), we get that v = 0 and (4.9) is

equivalent to & (a) = 0, &(a) = —a?, &5(a) = 0. In this context, we obtain

Q& =0, Q& = —2a%8, Q& = —2a°E;.

It follows that the scalar curvature is —4a?. This completes the proof. O
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