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Abstract Let f be a continuous map on infra-solvmanifold M of type (R) and N∞(f) be

the asymptotic Nielsen number of f . In this paper, the sufficient conditions to assure that

logN∞(f) is the infimum of topological entropies of the homotopy class of the map f are given

by using Nielsen fixed point theory. These conclusions will generalize the similar results on

infra-nilmanifolds.
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1. Introduction

Let f : X → X be a continuous map on a compact metric space X . The pair (f,X) is

called a topological dynamical system. The complexity of a dynamical system is one of the main

topics in the study of the dynamical system. There are several ways to measure complexity of

a topological dynamical system. Topological entropy is a topological invariant and a topological

dynamical system with positive entropy means that the complexity of the system is “big”. This

invariant measures the complexity of the topological dynamical system in the following way: let

f : X → X be a continuous map on a compact metric space and {x, f(x), f2(x), . . . , fn−1(x)} be

an orbit segment of length n . Then the topological entropy h(f) of f measures the exponential

growth rate in n of the number of orbit segments of length n with arbitrarily fine resolution.

Therefore, it is meaningful to estimate or calculate topological entropy.

In [1], Ivanov has proved that if f is a continuous map on the compact connected polyhedron

X , then the topological entropy h(f) and the asymptotic Nielsen number N∞(f) of f satisfy

h(f) ≥ logN∞(f).

And then the above conclusion was also proved by Jiang with simpler method in [2]. Since

N∞(f) is a homotopy invariant, we have

inf{h(g)|g ≃ f : X → X} ≥ logN∞(f). (1.1)
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In [2], Jiang raised the following open problem: what are the conditions for logN∞(f) to

be the best lower bound for h(f) of all maps homotopic to f? In other words, when does the

equality hold in the inequality (1.1) (see [2, Question 5.3])? For this question, the author first

obtains the following results in [3]:

Theorem 1.1 ([3, Theorem 1]) Let f : Tm → Tm be a continuous map on m dimensional torus.

Then the equality

inf{h(g)|g ≃ f : Tm → Tm} = logN∞(f)

holds if and only if one of the following conditions is satisfied

(i) 1 is not in the spectrum of f∗ : H1(T
m,R) → H1(T

m,R);

(ii) 1 is in the spectrum of f∗, but the norms of its all other eigenvalues are not more than

1.

Theorem 1.2 ([3, Theorem 2]) Let f : M := G/Γ → M be a continuous map on compact

nilmanifold, F be the unique extension of f♯ : Γ → Γ(Γ ≈ π1(M)) on Lie group G and F∗ be the

homomorphism of Lie algebra of G induced by F . Then the equality

inf{h(g)|g ≃ f : M → M} = logN∞(f)

holds if and only if one of the following conditions is satisfied

(i) 1 is not in the spectrum of F∗;

(ii) 1 is in the spectrum of F∗, but the norms of its all other eigenvalues of are not more

than 1.

Recently, as a generalization of the above results, the author obtained the following results

in [4]:

Theorem 1.3 ([4, Theorem 4.1]) Let f : M := π\G → M be a continuous map on the infra-

nilmanifold M with holonomy group H , and Φ = (b, B) be a homotopy lift of f . Then the

equality

inf{h(g)|g ≃ f : M = π\G → M} = logN∞(f)

holds if and only if one of the following conditions is satisfied

(i) 1 /∈ σ(B∗);

(ii) 1 ∈ σ(B∗) but sp(B∗) ≤ 1;

(iii) 1 ∈ σ(B∗), sp(B∗) > 1, and N∞ = Π|λi|>1|λi|; where σ(B∗) and sp(B∗) denote the

spectrum and the spectral radius of B∗, λi ∈ σ(B∗).

These results give a part of answer of Jiang’s question above. However, there are still much

works to be done before the question can be completely solved. In this paper, we continue to

consider the above equality for other continuous maps. We will give the sufficient conditions to

assure that logN∞(f) is the infimum of topological entropies of homotopy classes of the maps

on infra-solvmanifolds of type (R). Since the class of solvable Lie groups of type (R) contains all

nilpotent Lie groups, these results will essentially generalize some conclusions in [4].
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2. Preliminaries

In this section we will recall some necessary preliminaries on the infra-solvmanifolds of type

(R), and list some basic concepts of topological entropy and asymptotic Nielsen number which

are related to the discussion of this paper.

Definition 2.1 ( [5]) Let G be a connected Lie group. The semi-direct product aff(G) :=

G⋊ End(G) with the binary operation

(a,A)(b, B) = (a ·Ab,AB)

is called the semigroup of affine endomorphisms of G, where End(G) is the set of all endomor-

phisms of G.

In particular, Aff(G) := G⋊Aut(G) is called the affine group of G, where Aut(G) is the set of

all automorphisms ofG . The elements of aff(G) and |rmAff(G) are called affine endomorphisms

and affine automorphisms of G:

Definition 2.2 ([5]) Let G be a connected Lie group. The action of the semigroup aff(G) on G

is defined by

(a,A)z := a ·Az, z ∈ G

and

(a,A)(b, B)(z) := (a,A)((b, B)(z)), z ∈ G.

Definition 2.3 ([5]) Let G be a connected and simply connected solvable Lie group. A discrete

subgroup Γ of G is called a lattice of G if the orbit space G/Γ is compact, and in this case G/Γ

is called a special solvmanifold.

Definition 2.4 ([5]) Let π ⊂ Aff(G) be a torsion-free finite extension of the lattice Γ. The

orbit space π\G is called an infra-solvmanifold on model G. H := π/Γ(⊂ Aut(G)) is called the

holonomy group of π or π\G.

Clearly, the infra-solvmanifold π\G is finitely covered by the special solvmanifold G/Γ with

the covering transformation group equal to H . When H = 1, π ⊂ G and the orbit space π\G is

exactly a special solvmanifold.

Definition 2.5 ([5]) An infra-solvmanifold π\G is called of type (R) if G is of type (R), that

is, every adjoint representation ad(X) of the Lie algebra of G has only real eigenvalues.

Let f : X → X be a continuous map on the compact metric space X . For given ε > 0 and

n ∈ N, a subset E ⊂ X is said to be an (n, ε)-separated subset under f if for each pair x 6= y

in E there exists i (0 ≤ i < n) such that d(f i(x), f i(y)) ≥ ε. Let sn(ε, f) denote the largest

cardinality of any (n, ε)-separated subset E under f . Then we have the following definition:

Definition 2.6 ([2]) Write h(f, ε) := lim supn
1
n log sn(ε, f). Then

h(f) := lim
ε→0

h(f, ε)

is called the topological entropy of f .
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Remark 2.7 sn(ε, f) is the greatest number of orbit segments {x, f(x), f2(x), . . . , fn−1(x)} of

length n that can be distinguished one from another provided we can only distinguish between

points of X that are at least ε apart. If h(f, ε) > 0, then, up to resolution ε > 0 , the number

sn(ε, f) of distinguishable orbit segments grows exponentially with n. So h(f) measures the

growth rate in n of the number of orbit segments of length n with arbitrarily fine resolution.

Let f be a continuous map on the compact connected polyhedronX . To define the asymptotic

Nielsen number of f , we define an equivalence relation on fixed point set Fix(f) of f as follows:

For x0, x1 ∈ Fix(f), x0 ∼ x1 if and only if there exists a path c from x0 to x1 such that

c ≃ f ◦ c{x0, x1}. An equivalence class of this relation is called a fixed point class of f . To each

fixed point class F , one can assign an integer ind(f, F ). A fixed point class F is called essential

if ind(f, F ) 6= 0. Now, the Nielsen number of f is defined by

N(f) := the number of essential fixed point classes of f.

This leads to the following definition:

Definition 2.8 ([2]) Let f be a continuous map on the compact connected polyhedron X . Then

N∞(f) := max{1, lim sup
n

[N(fn)]
1
n }

is called the asymptotic Nielsen number of f .

3. Infimum of topological entropies of homotopy classes of maps on

infra-solvmanifolds of type (R)

Let f : M = π \G → M be a continuous map on the infra-solvmanifold M of type (R). Then

it induces an endomorphism f♯ on π1(M). By [5, Theorem2.2], there exists affine endomorphism

Φ = (b, B) on G such that for all α ∈ π1(M) ≈ π we have

f♯(α) ◦ Φ = Φ ◦ α, (3.1)

B is unique up to Inn(G), the inner automorphism group of G. This implies that the affine

endomorphism Φ = (b, B) induces a continuous map Φ(b,B) : M → M on the infra-solvmanifold

M , which is homotopic to f . That is, f has an affine homotopy lift Φ = (b, B).

To estimate or calculate the asymptotic Nielsen number of f , we first give the following two

lemmas.

Lemma 3.1 Suppose f : M = π \G → M is a continuous map on the infra-solvmanifold M of

type (R) with holonomy group H , and Φ = (b, B) is a homotopy lift of f . Then for any A1 ∈ H ,

there exists a sequence A1, A2, . . . of elements of H such that

(i) Ai+1B = BAi for i ∈ N;

(ii) The sequence is a periodic sequence from some Aj .

Proof We write the natural projection from π to H = π/Γ as ρ, then for any A1 ∈ H , there is

x ∈ π such that ρ(x) = A1. Write Ai := ρ(f i−1
♯ (x)), x := (a1, A1), f

i−1
♯ (x) := (ai, Ai). Then we
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have

f i
♯ (x)(b, B) = (b, B)f i−1

♯ (x),

by (3.1), i.e.,

(ai+1, Ai+1)(b, B) = (b, B)(ai, Ai).

So

Ai+1B = BAi.

Also H is finite, thus there exist j ≥ 1 and k ≥ 1 such thatAj+k = Aj , and so, we have

Aj+k+1 = Aj+1, Aj+k+2 = Aj+2, . . . (in general Aj+nk+l = Aj+l for all l, n ∈ N). That is, the

sequence is a periodic sequence from some Aj . 2

We will refer to the sequence A1, A2, . . . , Aj , . . . , Aj+k−1, Aj+k = Aj , . . . in Lemma 3.1 above

as a periodic sequence for A1, associated to f , with period k starting from position j. The

following lemma is a generalization of [6, Lemma 3.1], the proof is also similar.

Lemma 3.2 Suppose f : M = π \G → M is a continuous map on the infra-solvmanifold M of

type (R) with holonomy group H , and Φ = (b, B) is a homotopy lift of f . Let A1, A2, . . . , Aj , . . . ,

Aj+k−1, Aj+k = Aj , . . . be a periodic sequence for A1 ∈ H , associated to f with period k starting

from position j. Then

(i) For any i ∈ N, det(I − (A1)∗(B)∗) = det(I − (Ai)∗(B)∗);

(ii) Bk
∗ (Aj)∗ = (Aj)∗Bk

∗ ;

(iii) There is l ∈ N, such that ((Aj)∗B∗)l = Bl
∗,

where ()∗ denotes the differential of ().

Because averaging formula for the Nielsen numbers of maps on infra-nilmanifolds can be

generalized to infra-solvmanifolds of type (R) (see [5, 7]), we have the following.

Theorem 3.3 Suppose f : M = π \G → M is a continuous map on the infra-solvmanifold M of

type (R) with holonomy group H , and Φ = (b, B) is a homotopy lift of f . Then the asymptotic

Nielsen number N∞(f) of f satisfies

1 ≤ N∞(f) ≤
∏

|λi|>1

|λi|.

In particular, N∞(f) =
∏

|λi|>1 |λi| when 1 /∈ σ(B∗) and sp(B∗) > 1; N∞(f) = 1 when sp(B∗) ≤
1, where σ(B∗) and sp(B∗) denote the spectrum and the spectral radius of B∗, λi ∈ σ(B∗).

Proof Let µ1, µ2, . . . , µm be the eigenvalues of (AjB)∗ with each eigenvalue listed as many times

as its algebraic multiplicity. By Lemma 3.2 (iii), ((AjB)∗)l = Bl
∗, so

{µl
1, µ

l
2, . . . , µ

l
m} = {λl

1, λ
l
2, . . . , λ

l
m}.

We may assume that µl
i = λl

i, i = 1, 2, . . . ,m. Thus |λi| = |µi|. We have

| det(I − (A1)∗(B)∗)| = | det(I − (Aj)∗(B)∗)| =
m
∏

i=1

|1− µi| ≤
m
∏

i=1

(1 + |µi|) =
m
∏

i=1

(1 + |λi|).
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So

| det(I − (A1)∗B
n
∗ )| ≤

m
∏

i=1

(1 + |λn
i |),

and hence

N(fn) =
1

|H |
∑

A∈H

| det(I −A∗B
n
∗ )| ≤

m
∏

i=1

(1 + |λn
i |) (3.2)

by [5, Theorem 4.3]. Therefore,

N(fn)1/n = (
1

|H |
∑

A∈H

| det(I −A∗B
n
∗ )|)1/n ≤

(

m
∏

i=1

(1 + |λn
i |)
)1/n

,

and so

lim supN(fn)1/n ≤ lim sup
(

m
∏

i=1

(1 + |λn
i |)
)1/n

=
∏

|λi|>1

|λi| lim sup
(

∏

|λi|>1

(1 + |λ−n
i |)

)
1
n
(

∏

|λi|≤1

(1 + |λn
i |)
)

1
n

i.e.,

N∞(f) ≤
∏

|λi|>1

|λi|. (3.3)

When 1 /∈ σ(B∗) and sp(B∗) > 1,

N(fn) =
1

|H |
∑

A∈H

| det(I −A∗B
n
∗ )| ≥

1

|H | | det(I − Bn
∗ )|.

So

N(fn)1/n ≥ | det(I −Bn
∗ )|1/n/|H |1/n.

Also note that

| det(I −Bn
∗ )| =

m
∏

i=1

|1− |λn
i |

=
∏

|λi|>1

|λn
i |
∏

|λi|>1

|1− λ−n
i |

∏

|λi|<1

|1− λn
i |

∏

|λi|=1 (λi are roots of unity)

|1− λn
i |

∏

|λi|=1 (λi are not roots of unity)

|1− λn
i |

But
∏

|λi|=1 (λi are roots of unity) |1−λn
i | takes only limited numbers of values for any natural

number n. Therefore, if

∆n :=
∏

|λk|>1

|1− λ−n
k |

∏

|λk|<1

|1− λn
k |

∏

|λk|=1 (λk are roots of unity)

|1− λn
k |,

then (∆ns
)

1
ns → 1 for the subsequence {∆ns

} of all nonzero terms of ∆n. Also if

σns
:=

∏

|λi|=1 (λi are not roots of unity)

|1− λns

i | =
t0
∏

j=1

|1− λns

ij
||1− λ̄ns

ij
|, λij = eθji,
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then

σns
= 4t0 | sinns

θ1
2
sinns

θ2
2
· · · sinns

θt0
2
|2.

Then, by [4, Lemma 3.1]

lim sup
ns

(σns
)

1
ns = lim sup

ns

(4t0)
1
ns | sinns

θ1
2
sinns

θ2
2
· · · sinns

θt0
2
| 2
ns = 1.

i.e.,

lim sup
ns

|det(I −Bns)| 1
ns =

∏

|λi|>1

|λi|.

Hence,

lim supN(fn)1/n ≥ lim sup | det(I −Bn
∗ )|1/n =

∏

|λi|>1

|λi|.

So

N∞(f) ≥
∏

|λi|>1

|λi|. (3.4)

(3.3) and (3.4) imply

N∞(f) =
∏

|λi|>1

|λi|.

When sp(B∗) ≤ 1, we have |λi| ≤ 1 for any λi ∈ σ(B∗). By (3.2), it follows that N(fn) ≤ 2m

and N∞(f) = 1. 2

Let M = π \G be an infra-solvmanifold of type (R) with holonomy group H . By [8, Lemma

3.1], we can choose a fully invariant subgroup Λ ⊂ Γ of π which is of finite index. Therefore,

f♯(Λ) ⊂ Λ and so f♯ induces the following commutative diagram

1 // Λ //

f ′

♯

��

π //

f♯

��

J //

f̄♯
��

1

1 // Λ // π // J // 1,

Diagram 1 Commutative diagram of the fundamental groups

where J := π/Λ is finite. Applying (3.1) for λ ∈ Λ ⊂ π, we see that

f♯(λ) = bB(λ)b−1 = τbB(λ),

where τb is the conjugation by b. The homomorphism f ′
♯ : Λ → Λ induces a unique Lie group

homomorphism F := τbB : G → G, and hence a homomorphism F∗ on the Lie algebra of G. On

the other hand, since f♯(Λ) ⊂ Λ, we have the following two facts: (i) f and Φ(b,B) can be lifted to

f̄ and φf on the special solvmanifold N := G/Λ which finitely and regularly covers M and has

J as its group of covering transformations; (ii) F induces a map φF on the special solvmanifold

N .

Theorem 3.4 Let f : M = π \ G → M be a continuous map on the infra-solvmanifold M of

type (R) with a holonomy group H , and Φ = (b, B) be a homotopy lift of f . If 1 /∈ σ(B∗), then

h(f) ≥ h(Φ(b,B)) = logN∞(f).
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Hence Φ(b,B) minimizes the entropy in the homotopy class of f .

Proof The Lie group G has a right invariant metric d (see [9, p.24]). Similarly, there is left

invariant metric d′ on G. Then we have

hd′(Φ) =hd′(Lb ◦B) = hd′(B) = hd′(B∗)

=

{

∑

|λi|>1 log |λi|, sp(B∗) > 1;

0, sp(B∗) ≤ 1
(3.5)

similar to [10, Corollary11,16]. In the commutative diagram

G

p

��

Φ
// G

p

��

N

p̄

��

φf
// N

p̄

��

M
Φ(b,B)

// M,

Diagram 2 Commutative diagram of the Lie group G and its orbit spaces

we take any metric d′′ onM . By compactness the lift d′′Λ of d′′ to N is equivalent to the projection

d′Λ of d′ to N (see [11, Lemma 3.1]).

So,

h(φf ) = hd′′

Λ
(φf ) = hd′

Λ
(φf ) = hd′(Φ) (3.6)

where the last equal sign comes from the first proposition in [12, p.184]. And from [11, Proposition

2.1], we have

h(Φb,B) = h(φf ). (3.7)

Hence

h(f) ≥ logN∞(f) = log
∏

|λj |>1

|λj | = log
∏

|µj |>1

|µj | = h(Φ(b,B))

when sp(B∗) > 1 by Theorem 3.3 and the equalities (3.5) to (3.7). In addition, N∞(f) = 1 and

h(Φ(b,B)) = 0 = logN∞(f) when sp(B∗) ≤ 1. Therefore,

h(f) ≥ logN∞(f) = h(Φ(b,B)). 2

Theorem 3.5 Let f : M = π \ G → M be a continuous map on the infra-solvmanifold M of

type (R) with a holonomy group H , and Φ = (b, B) be a homotopy lift of f . Then we have

inf{h(g)|g ≃ f : π \G → π \G} = logN∞(f), (3.8)

provided that one of the following conditions holds:

(i) 1 /∈ σ(B∗);

(ii) sp(B∗) ≤ 1;

(iii) sp(B∗) > 1, and N∞(f) =
∏

|λi|>1 |λi|, where λi ∈ σ(B∗).
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Proof Suppose (i) holds. Since Φ(b,B) ≃ f and

h(g) ≥ logN∞(g) = logN∞(f) = h(Φ(b,B))

for any g ≃ f by Theorem 3.4, the equality (3.5) holds.

Suppose (ii) holds. Then

h(Φ(b,B)) = h(φf ) = 0 = logN∞(f).

And since f ≃ Φ(b,B), the equality (3.5) holds.

Suppose (iii) holds. Then

h(Φ(b,B)) = h(φf ) =
∑

|λi|>1

log |λi| = logN∞(f).

And since Φ(b,B) ≃ f and h(g) ≥ logN∞(g) = logN∞(f) for any g ≃ f , the equality (3.8)

holds. 2

Corollary 3.6 Let f : N = G/π → N be a continuous map on the special solvmanifold N of

type (R), and Φ = (b, B) be a homotopy lift of f . Then we have

inf{h(g)|g ≃ f : N = G/π → N} = logN∞(f), (3.9)

provided that one of the following conditions holds:

(i) 1 /∈ σ(B∗);

(ii) 1 ∈ σ(B∗), but sp(B∗) ≤ 1.

Proof When condition (i) holds, the conclusion is derived directly from Theorem 3.5 (i). When

condition (ii) holds we have

N(fn) = | det(I −Bn
∗ )| = 0,

so N∞(f) = 1. Also sp(B∗) ≤ 1, hence

h(φf ) = 0 = logN∞(f).

And since f = φf , the equality (3.9) holds. 2

Remark 3.7 When G is nilpotent Lie group σ(F∗) = σ(B∗) by [8, Lemma 3.2]. Hence Theorem

3.5 and Corollary 3.6 generalize the sufficiency of Theorem 4.1 in [4] and Theorem 2 in [3].

Example 3.8 The solvable Lie group Sol is one of the eight geometries that one considers in the

study of 3-manifolds [12]. One can describe Sol as a semi-direct product R2
⋊ϕ R where t ∈ R

acts on R
2 via the map

ϕ(t) =

(

et 0

0 e−t

)

,

i.e.,

(x, y, t) · (x′, y′, t′) := ((x, y) + (x′, y′)ϕ(t), t + t′) = (x+ etx′, y + e−ty′, t+ t′).
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Clearly, the Lie group Sol can be embedded into Aff(R2) ⊂ M3(R) as






et 0 x

0 e−t y

0 0 1






,

where x, y and t are real numbers. Consider the equality

expXs =







et(s) 0 x(s)

0 e−t(s) y(s)

0 0 1






.

It follows that the elements in the Lie algebra of Sol are

X =







t 0 a

0 −t b

0 0 0






.

We take an ordered (linear) basis for the Lie algebra as follows:

e1 =







0 0 1

0 0 0

0 0 0






, e2 =







0 0 0

0 0 1

0 0 0






, e3 =







1 0 0

0 −1 0

0 0 0






.

For any α = (x0, y0, t0) ∈ R
2
⋊ϕ R, we have

τα((x, y, t)) = (x0 + et0x− etx0, y0 + e−t0y − e−ty0, t).

So

Ad(α) = (τα)∗ =







et0 0 −x0

0 e−t0 y0

0 0 1






.

Hence σ(Ad(α)) = {et0 , e−t0 , 1} and the Lie group Sol is solvable Lie group of type (R) which

is not isomorphic to nilpotent Lie group by [13, Proposition 2.1]. Let Γ be the subgroup of Sol

which is generated by

(
1√
5
,
−1√
5
, 0), (

√
5− 1

2
√
5

,

√
5 + 1

2
√
5

, 0), (0, 0, ln
3 +

√
5

2
).

Then Γ is isomorphic to the group Z
2
⋊φ Z where

φ =

(

2 1

1 1

)

is an element of SL(2,Z) with eigenvalues 3±
√
5

2 and in fact Γ is a lattice of Sol.

Let a = (0, 0, 12 ln
3+

√
5

2 ) ∈ Sol and A: Sol→ Sol be the automorphism of Sol given by

A((x, y, t)) := (−x,−y, t).

Then A has period 2, and (a,A)2 = ((0, 0, ln 3+
√
5

2 ), I) ∈ Sol⋊Aut(Sol), where I is the identity
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automorphism of Sol. The subgroup

π := 〈Γ, (a,A)〉 ⊂ Sol⋊Aut (Sol)

generated by the lattice Γ and the element (a,A) is discrete and torsion free, and Γ is a normal

subgroup of π of index 2. Thus π is a torsion-free finite extension of the lattice Γ, and π\Sol
is an infra-solvmanifold, which has a double covering Γ\Sol → π\Sol by its holonomy group

H = π/Γ = {I, A} ∼= Z2.

Let B : Sol → Sol be the automorphism of Sol given by

B(x, y, t) := (mx,my,−t),

where m is any nonzero integer. Then BA = AB and the conjugation by ((0, 0, 0), B) ∈ Sol ⋊

Aut (Sol)maps π into π (and Γ into Γ). Thus, the affine endomorphism

Φ = ((0, 0, 0), B) : Sol → Sol

induces φB : Sol/Γ → Sol/Γ and ΦB : π\Sol → π\Sol so that the following diagram is commuta-

tive:

Sol

��

((0,0,0),B)
// Sol

��

Sol/Γ

��

φB
// Sol/Γ

��

π\Sol ΦB
// π\Sol

Diagram 3 Commutative diagram of the Lie group Sol and its orbit spaces

On other hand, with respect to the basis {e1, e2, e3}, the differentials of A and B are

A∗ =







1 0 0

0 −1 0

0 0 1






, B∗ =







0 m 0

m 0 0

0 0 −1






.

Since σ(B∗) = {−1,±m}, for any f ≃ ΦB we have

inf{h(g)|g ≃ f : M = π\Sol → M} = logN∞(f),

by Theorem 3.5 (i) and (ii).
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