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Abstract The lack of covariate data is one of the hotspots of modern statistical analysis. It

often appears in surveys or interviews, and becomes more complex in the presence of heavy

tailed, skewed, and heteroscedastic data. In this sense, a robust quantile regression method is

more concerned. This paper presents an inverse weighted quantile regression method to explore

the relationship between response and covariates. This method has several advantages over the

naive estimator. On the one hand, it uses all available data and the missing covariates are

allowed to be heavily correlated with the response; on the other hand, the estimator is uniform

and asymptotically normal at all quantile levels. The effectiveness of this method is verified by

simulation. Finally, in order to illustrate the effectiveness of this method, we extend it to the

more general case, multivariate case and nonparametric case.

Keywords Robust quantile regression; missing covariates; selection probability; Kernel esti-

mator; weighting method
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1. Introduction

Quantile regression was first introduced in [1], which is gradually emerging as a significant

and unified statistical methodology for estimating models of conditional quantile functions. This

kind of regression offers a systematic strategy for examining how covariates influence the location,

scale and shape of the entire response distribution. It has been extensively used in economics,

finance, insurance and medical research.

With the applications of quantile regression becoming universal and widespread, various ex-

tended models and estimation methods are springing up. For the simple parametric quantile
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regression model, minimization of the check function is routinely used. A typical transforma-

tion such as Box-Cox transformation could be employed when the considered variable has a

non-normal distribution [2]. In consideration of more complex cases, a nonparametric or semi-

parametric approach could be applied [3,4]. In the case of non-parametric model, kernel weighting

method is one of the popular estimation procedure. However, some problems arise in application:

first, this estimator is not a distribution function, then cannot be easily and directly calculated;

second, quantile curves based on these conditional estimators may suffer from quantile crossing

one another, which is absolutely absurd. To solve the first problem, Hall et al. [4] introduced

a so-called adjusted Nadaraya-Waston estimator. Yu and Jones [3] usd a “double-kernel” to

solve the second problem. Likewise, semiparametric quantile regression has also been discussed

in great detail of literatures [5]. Especially in medicine of most concerned nowadays, the need

for varied quantile curves rather a simple reference chart emerges when the measurements are

strongly dependent on the covariates such as age, income level etc. Therefore, in such case, Cloe

and Green [5] employed the weighted quantile regression model, with the response being weight

and the covariate being age. Even better, when covariates are missing, censored quantile regres-

sion provides a powerful tool in survival analysis. Compared to classical Cox proportional hazard

model, it relaxes the proportionality assumptions and can naturally accommodate heterogeneity

of data. Moreover, by applying quantile regression survival time can be modeled directly, hence

having practical significance.

Missing Data is a long-standing topic in statistical analysis. Among different missing-data

patterns, nonresponse is a common problem in survey. But we do not study missing response but

focus on missing covariate problems in our paper, which always occur to practical analysis and

application. For instance, in a study on the association between acute graft versus host disease of

bone marrow transplants, 97 females are follow-up surveyed by Fred Hutchinson Cancer Research

Center. The covariate-donor’s previous pregnancy status, of great interest, however missed for

31 patients due to the incompleteness of the donors’ medical history.

In classical mean regression, various of missing mechanisms as well as estimating approaches

have been finely developed to solve the missing covariate problems. There are four kinds of

approaches: (1) complete case method (CC), which only just uses fully observed sample to esti-

mate the interest parameters. However, it is well known that the CC analysis can be biased when

the data are not missing completely at random (MCAR), this method is not good choice with

complex data missing mechanisms although it is easy to implement. (2) imputation-based meth-

ods, which involve various methods such as single imputation, multiple imputation and Bayesian

imputation [6] etc.. (3) likelihood-based methods, which assume the joint distribution for both

covariates and responses and use observed data likelihood by integrating the missing covariate to

obtain the model parameters, usually, the EM algorithms or quasi-Newton algorithms are used

to resolve this problem [7] etc.. (4) weight-based methods, which use the inverse of some response

probability as weight to adjust the observed portion and make unbiased estimators [8,9]. Other-

wise, Ibrahim et al. [7] made detailed and full reviews about these methods in generalized linear

model (GLM), [10] proposed semiparametric regression imputation estimator, marginal average
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estimator, and (marginal) propensity score weighted estimator in semiparametric partially linear

regression model with missing response data.

Whereas in quantile regression framework, it is a newly topic to deal with missing data

problem and there has not been a lot of works. For the missing values of nonresponse, Yoon [11]

proposed a two-step estimating method in quantile regression scenario and demonstrates the

consistency and asymptotic normality of the proposed estimator. In missing covariates patterns,

Wei et al. [12] developed a multiple imputation method of estimating when missing mechanism

is missing at random. Sherwood et al. [13] proposed a weighted quantile regression method to

analyze health care cost data and developed a modified BIC for variable selection. Wei and

Yang [14] constructed unbiased estimating equations, which is an extension of joint modeling

method and provided an iterative EM-type algorithm. Recently, Tai et al. [15] built a multiple

weighted estimating equations method to resolve the missing problem with quantile regression.

Han et al. [16] proposed the multiple robust method in quantile regression to deal with the

missing data.

Based on the above literature, we aim to construct a quantile regression method to deal with

missing covariate which is established on the weight-based method. The weight is called selection

probability, which is similar to Horvitz-Thompson weighting scheme (first proposed in [17]) that

has little assumption of the distribution to covariates. Different from other estimate method

of selection probability, we use the nonparametric method rather than parametric method (like

logistic regression which may suffer from model misspecification risk). Our approach has analo-

gous inspiration to [18] but there are different ideas and skills in proving theoretical properties.

Furthermore, we extend the linear quantile regression to nonparametric quantile regression and

express the main formal of missing quantile regression model.

The rest of the paper is organized as follows. The proposed method as well as its asymptotic

properties are studied in Section 2, where bandwidth selection method is also discussed. A

simulation study is presented in Section 3. In Section 4, several extensions are made to illustrate

the usefulness of our proposed method. Section 5 concludes this paper with some discussions.

Some tables are included in the Appendix.

2. Methodology

To solve the missing covariate problem in quantile regression, we propose a new estimator

called inverse probability N-W weighted estimator. Further, we prove the asymptotic properties

of the estimator.

2.1. Inverse probability N-W weighted estimator

We observe (Yi, Xi, δi), where Yi is a one-dimensional response, Xi is a one-dimensional

covariate, and δi is a missing indicator, δi = 1 when Xi is observed and δi = 0 when Xi is

missing. A case is considered where X is missing at random (MAR), but not missing completely

at random (MCAR). The missing probability is allowed to depend on the responses. That is, the
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MAR assumption in this paper is that X and δ are conditionally independent given response Y ,

πi = P (δi = 1|Yi, Xi) = P (δi = 1|Yi) = π(Yi), (2.1)

where πi is the selection probability mentioned above.

In common two-stage procedures, the selection probabilities are supposed to be known, which

is impossible to achieve in most real missing data applications. To solve this problem, we proposed

a Nadaraya-Waston (N-W) type estimator to estimate the selection probability πi.

For the general linear model,

Y = XTβ + ε,

where β is the unknown parameter, ε is the error term. Given X = x, the τ% conditional

quantile function of response Y is

QY (τ |x) = xTβ, (2.2)

where QY (τ |x) represents the τth conditional quantile of Y and we assume Pr(ǫ ≤ 0|x) = τ .

Thus, given a data set {(xi, yi)}ni=1, β can be estimated by minimizing
∑n

i=1 ρτ (yi−xT
i β), where

xi = (1, xi)
T , ρτ (x) = τxI[0,∞)(x) + (τ − 1)xI(−∞,0)(x) is the check function.

To accommodate the missing problem in observed data, we propose a Horvitz-Thompson

inverse selection weighted method, in the case of the selection probability πi can be obtained in

advance. Then β can be estimated by

β̂ = argmin
β

n∑

i=1

ρτ (yi − xT
i β)

δi
πi
. (2.3)

It can be seen from Eq. (2.3) that if the ith observation is missing (δi = 0), it would not be

included in the objective function, whereas it may play a big part by adjusting the weights π in

Eq. (2.3). In real applications, πi is usually unknown. Thus due to the strong correlation between

Yi and δi, we propose a Nadaraya-Waston type estimator to estimate selection probability πi,

that is

π̂i = π̂(yi) =

∑n
j=1 δjKh(yi − yj)∑n
j=1Kh(yi − yj)

, (2.4)

where Kh(·) = K(·/h)/h and h is a bandwidth. By plugging into the π̂i in Eq. (2.3), estimate of

β can be obtained by

β̂∗ = argmin
β

n∑

i=1

ρτ (yi − xT
i β)

δi
π̂i
. (2.5)

2.2. Asymptotic properties

Let Y1, . . . , Yn be independently and identically distributed with F . The conditional distri-

bution functions of Yi is P (Yi < y|xi) = F (y), and we define

QYi
(τ |xi) = F−1(τ |xi) ≡ ξ(τ),

where ξ(τ) is the real τth quantile of the distribution F . Then we have the following two theorems

for the estimators with known and unknown selection probabilities.

Assumptions and conditions:
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(1) The distribution F is absolutely continuous, with continuous densities f(ξ) uniformly

bounded away from 0 and ∞ at the point ξ(τ).

(2) Define D0(τ) = limn→∞ n−1
∑

1
πi
xix

T
i , and D1(τ) = limn→∞ n−1f(ξ(τ))

∑
xix

T
i . Both

D0(τ) and D1(τ) are the positive definite matrices.

(3) maxi=1,...,n ‖ xi ‖ /
√
n→ 0.

(4) The selection probability π(Y ) > c > 0.

(5) The kernel function K(·) is a symmetric probability density with support [−1, 1].

(6) |π(Y )−π̂(Y )| = op(1) uniformly. π̂(Y ) > c∗ > 0 and π̂(Y ) has bounded partial derivatives

up to order 2 almost surely.

(7) The density of Y , f(y), has bounded derivatives up to order 2 on support C, and satisfies

0 < infy∈C f(y) 6 supy∈C f(y) <∞.

Theorem 2.1 Under Conditions (1)–(4), we have

√
n(β̂(τ) − β(τ)) → N(0, τ(1 − τ)D−1

0 (τ)D1(τ)D
−1
0 (τ)).

Theorem 2.1 is established based on the Nadaraya-Watson estimator of the unknown selection

probability πi.

Theorem 2.2 Under Conditions (1)–(7), we have

√
n(β̂∗(τ) − β(τ)) → N(0, τ(1 − τ)D−1

0 (τ)D1(τ)D
−1
0 (τ)).

Theorems 2.1 and 2.2 suggest that, though the estimators are obtained via different as-

sumptions and approaches, asymptotic properties are the same. That is to say, our proposed

Nadaraya-Watson type estimator has an identical efficiency as if it is known ahead.

2.3. Bandwidth selection

To obtain a more efficient estimator π̂i, bandwidth h plays a crucial role in balancing between

bias and variance, as in Eq. (2.4). Thus in this section we present an effective method to choose

an optimal bandwidth. Härdle [19] demonstrated the consistency of Nadaraya-Watson estimator

of any unknown nonparametric function. Similar to that, the asymptotic mean square error

(AMSE) of estimator π̂i is

AMSE{π̂h(y)} =
1

nh

σ2(y)

fY (y)
‖K‖22 +

h4

4
{π′′(y) + 2

π′(y)f ′
Y (y)

fY (y)
}2µ2

2(K),

where σ2(y) = Var(π(Y )|Y = y). Minimizing the AMSE with respect to h, we have the optimal

bandwidth for π̂(y), that is

hopt =
[ σ2(y)‖K‖22
n{π′′(y) + 2

π′(y)f ′

Y
(y)

fY (y) }2µ2
2(K)fY (y)

] 1

5 .

Note that in the above equation, h ∼ n−1/5 and both π(y) and fY (y) are unknown. An

“ad hoc” plug-in bandwidth selection is to estimate π(y) by a third or higher degree polynomial

parametric regression, and to estimate fY (y) through nonparametric way such as usual kernel

density estimation.
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3. Simulation studies

In this section, to investigate the efficiency and nice properties of our proposed estimators, we

conduct some simulations. In each simulation we generate n = 1000 observations and compare

the performances of weighted and original estimators for β0 and β1 in model (3.1), each refers

to the intercept (-1.33) and coefficient (1.67), denoted by orq (original quantile regression) and

wrq (weighted quantile regression). The original estimator (orq) is the same as complete case

method (CC), which ignores all the missing observations and just uses the complete sample case

to perform estimation without weight. Whereas, the weighted estimator (wrq) also only uses

complete data but realizes estimation by constructing the inverse probability weighted estima-

tion equation based on the selection probability. In the weighted estimators, wrq real denotes

the weight of estimator coming from the real selection probability, then the weights come from

estimated selection probabilities π̂is via Logistic, Local Polynomial and Nadaraya-Waston esti-

mator are denoted as wrq log, wrq loess and wrq nw, respectively. Especially, to examine the

effects of quantile τ on the response, τ = 0.05, 0.1, 0.25, 0.5, 0.75, 0.9, 0.95 are considered.

We generate 1000 observations {(xi, yi)} from

Y = 1.67X − 1.33 + 0.6ε (3.1)

where X ∼ U(2, 5), a uniform distribution, the error ε follows a standard normal distribution.

To model the missing data, the selection probability π is assumed to be a piecewise function of

yi,

π(yi) =

{
p1, yi > 4

0.99, yi 6 4
(3.2)

where p1 is set to be 0.1, . . . , 0.9, respectively. Thus δ(yi) has a Bernoulli distribution, i.e.,

δ(yi) ∼ Bernoulli(π(yi)).

If δ(yi) = 0, we regard the ith observation xi as missing.

0 2 4 6 8
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0
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0
.4

0
.6

0
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1
.0

Y

P
i

Figure 1 Logistic (green dotted line), Local Polynomial (blue dotted line) and Nadaraya-Waston

(red dotted line) estimates of selection probability when p1 = 0.3. The black circles represent δ(Xi),

indicating the missingness of ith observation. The solid line is the real probabilities we assumed. If the

estimates are beyond the interval [0,1], 0.01 or 0.99 is taken instead
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To see the performance of estimators π̂s, we take p1 = 0.3 as an example. The estimated π̂is

is depicted in Figure 1. It can be observed from Figure 1 that the Nadaraya-Waston estimator

fits πi best.

To estimate the unknown coefficients β0 and β1, first we use the real selection probability

(3.2) denoted as β̂wrq real
= (β̂wrq real,0, β̂wrq real,1), that is

β̂wrq real
(τ) = argmin

β

n∑

i=1

ρτ (yi − xT
i β)

δ(yi)

π(yi)
.

Then we employ the estimated selection probability π̂is for the missing observations to obtain

estimate β, denoted as β̂wrq log
, β̂wrq loess

and β̂wrq nw
, respectively. To compare these estima-

tors, we use relative error re1 and re0, where re0 = |(β̂0 − β0)/β0| and re1 = |(β̂1 − β1)/β1|.
Results are reported in Table 1, where the mean relative error of 1000 simulations are also

reported.

p1 Method
τ = 0.05 τ = 0.1 τ = 0.25 τ = 0.5 τ = 0.75 τ = 0.9 τ = 0.95

re0 re1 re0 re1 re0 re1 re0 re1 re0 re1 re0 re1 re0 re1

0.1

orq 0.182 0.108 0.192 0.107 0.213 0.104 0.207 0.086 0.188 0.062 0.274 0.046 0.514 0.042

wrq real 0.109 0.051 0.1 0.042 0.1 0.034 0.12 0.031 0.198 0.035 0.448 0.046 0.964 0.058

wrq log 0.293 0.142 0.285 0.129 0.267 0.107 0.266 0.084 0.349 0.072 0.889 0.087 2.626 0.14

wrq loess 0.121 0.057 0.112 0.047 0.125 0.04 0.181 0.042 0.326 0.051 0.696 0.067 1.275 0.075

wrq nw 0.112 0.051 0.099 0.041 0.094 0.033 0.109 0.029 0.171 0.031 0.359 0.038 0.775 0.049

0.2

orq 0.115 0.064 0.106 0.058 0.093 0.046 0.086 0.033 0.128 0.026 0.292 0.026 0.614 0.032

wrq real 0.085 0.038 0.075 0.03 0.076 0.025 0.093 0.023 0.152 0.026 0.33 0.033 0.702 0.042

wrq log 0.271 0.125 0.292 0.125 0.341 0.124 0.437 0.125 0.582 0.119 0.918 0.115 1.381 0.102

wrq loess 0.091 0.04 0.075 0.03 0.072 0.024 0.088 0.022 0.143 0.024 0.312 0.031 0.672 0.04

wrq nw 0.087 0.038 0.075 0.03 0.074 0.024 0.086 0.022 0.137 0.024 0.285 0.029 0.596 0.037

0.3

orq 0.088 0.045 0.072 0.035 0.065 0.027 0.074 0.02 0.138 0.019 0.308 0.024 0.617 0.031

wrq real 0.076 0.032 0.066 0.026 0.066 0.021 0.08 0.02 0.129 0.021 0.285 0.028 0.585 0.035

wrq log 0.173 0.08 0.192 0.081 0.246 0.087 0.329 0.091 0.486 0.096 0.802 0.097 1.3 0.095

wrq loess 0.077 0.033 0.067 0.026 0.063 0.021 0.073 0.018 0.12 0.02 0.259 0.025 0.534 0.031

wrq nw 0.074 0.032 0.064 0.025 0.063 0.021 0.074 0.018 0.12 0.02 0.255 0.026 0.525 0.031

0.4

orq 0.075 0.034 0.068 0.028 0.061 0.021 0.078 0.017 0.139 0.019 0.292 0.023 0.574 0.03

wrq real 0.069 0.029 0.063 0.024 0.06 0.019 0.073 0.018 0.113 0.019 0.255 0.025 0.543 0.032

wrq log 0.118 0.052 0.133 0.054 0.173 0.06 0.242 0.066 0.364 0.07 0.625 0.073 1.066 0.075

wrq loess 0.07 0.029 0.064 0.024 0.058 0.018 0.067 0.016 0.106 0.017 0.235 0.023 0.501 0.029

wrq nw 0.069 0.029 0.063 0.024 0.058 0.018 0.068 0.016 0.107 0.018 0.232 0.023 0.501 0.029

0.5

orq 0.07 0.03 0.06 0.023 0.061 0.018 0.077 0.017 0.128 0.018 0.277 0.023 0.553 0.029

wrq real 0.066 0.027 0.059 0.022 0.059 0.018 0.07 0.017 0.11 0.018 0.233 0.023 0.496 0.029

wrq log 0.088 0.038 0.092 0.037 0.119 0.04 0.171 0.046 0.268 0.05 0.505 0.057 0.898 0.061

wrq loess 0.066 0.027 0.058 0.021 0.058 0.018 0.068 0.016 0.106 0.017 0.222 0.021 0.478 0.028

wrq nw 0.065 0.027 0.058 0.021 0.058 0.018 0.067 0.016 0.105 0.017 0.227 0.022 0.481 0.028

0.6

orq 0.066 0.027 0.059 0.022 0.058 0.017 0.075 0.016 0.124 0.017 0.247 0.021 0.484 0.026

wrq real 0.064 0.026 0.057 0.021 0.055 0.017 0.066 0.015 0.105 0.017 0.219 0.021 0.444 0.026

wrq log 0.075 0.031 0.075 0.029 0.093 0.03 0.129 0.033 0.206 0.037 0.384 0.042 0.694 0.046

wrq loess 0.064 0.026 0.056 0.02 0.054 0.016 0.064 0.015 0.1 0.016 0.209 0.02 0.438 0.026

wrq nw 0.063 0.025 0.055 0.02 0.054 0.016 0.065 0.015 0.101 0.016 0.209 0.02 0.434 0.026

0.7

orq 0.062 0.024 0.056 0.02 0.056 0.016 0.07 0.015 0.112 0.016 0.23 0.02 0.455 0.025

wrq real 0.061 0.024 0.055 0.02 0.054 0.016 0.066 0.015 0.103 0.016 0.214 0.02 0.432 0.025

wrq log 0.066 0.026 0.064 0.024 0.071 0.022 0.096 0.024 0.154 0.027 0.298 0.031 0.574 0.036

wrq loess 0.061 0.024 0.055 0.02 0.054 0.016 0.064 0.014 0.1 0.016 0.207 0.019 0.414 0.024

wrq nw 0.061 0.024 0.055 0.02 0.054 0.016 0.064 0.014 0.101 0.016 0.209 0.019 0.417 0.024

0.8

orq 0.061 0.024 0.055 0.02 0.052 0.015 0.067 0.015 0.105 0.016 0.208 0.019 0.413 0.023

wrq real 0.06 0.024 0.054 0.019 0.051 0.015 0.065 0.015 0.1 0.016 0.198 0.019 0.407 0.023

wrq log 0.061 0.024 0.057 0.02 0.056 0.017 0.076 0.018 0.122 0.02 0.238 0.024 0.462 0.028

wrq loess 0.06 0.024 0.054 0.019 0.05 0.015 0.063 0.014 0.098 0.015 0.195 0.019 0.407 0.023

wrq nw 0.06 0.024 0.054 0.019 0.05 0.015 0.064 0.014 0.098 0.015 0.195 0.019 0.407 0.023

0.9

orq 0.058 0.023 0.052 0.018 0.053 0.015 0.063 0.014 0.097 0.015 0.203 0.019 0.415 0.023

wrq real 0.058 0.023 0.052 0.018 0.052 0.015 0.061 0.013 0.095 0.015 0.203 0.019 0.413 0.023

wrq log 0.058 0.022 0.053 0.019 0.054 0.016 0.065 0.015 0.101 0.016 0.209 0.02 0.424 0.024

wrq loess 0.058 0.023 0.052 0.018 0.053 0.015 0.062 0.014 0.094 0.014 0.2 0.018 0.411 0.023

wrq nw 0.058 0.023 0.052 0.018 0.052 0.015 0.062 0.014 0.095 0.014 0.202 0.019 0.412 0.023

Table 1 Mean relative error of several estimators
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Parts of Table 1 display the results of orq and wrq real methods which are obtained only

based on complete data case. Their difference is whether to employ the weights in the objective

check function. As a result, in about 77.8% of our simulation results, the performance of wrq real

is better than orq with given p1s and τs. It is also evident from Table 1 that wrq real method

appears better when τ is small, and orq gradually takes active part as τ gets bigger, which is

due to both the sparseness of data for extreme quantile level and the weighting scheme. The

weighting scheme strengthens the role of the several unmissingness data in objective function.

Another phenomenon is the influence of p1. We find that the relative errors are getting closer

with the increase of p1. That is reasonable, when p1 is big enough, Eq. (3.2) indicates that π(yi)

is almost a constant, making the weighting scheme useless. Over 90 percent of the results shows

the superiority of the previous method. And only in extreme situations such as τ -level is high

and p1 (3.2) is small enough, orq is likely to be better than wrq nw, which is caused by leverage

effect mentioned above.

In addition, it can be seen from Table 1 that wrq nw has better performance than wrq real.

That is to say, compared with real selection probability, N-W type estimator is much more

preferable, which is obscure and a little bit interesting. However, leverage effect is also one

of the reason for explaining this phenomenon, where smooth nonparametric estimate of π(yi)

can counterbalance parts of the disadvantages caused by leverage effect and the weight. It is

approved by Figure 1. The estimated π̂i is to deviate from πi in the edge of range of yi, that

can neutralize some disadvantages caused by leverage effect. Some theoretical explanations can

be found in Robins et al. [8].

Method orq wrq real wrq log wrq loess wrq nw

orq - 22.22% 96.03% 15.08% 8.73%

wrq real 77.78% - 98.41% 30.95% 11.11%

wrq log 3.97% 1.59% - 1.59% 1.59%

wrq loess 84.92% 69.05% 98.41% - 39.68%

wrq nw 91.27% 88.89% 98.41% 60.32% -

Table 2 Comparative result of mean relative error

As mentioned above, different estimators of πi, such as Logistic [13], Local Polynomial and

Nadaraya-Waston estimators, are also compared and presented in Table 1. For the sake of

simplicity, Table 2 is also provided. Numbers in Table 2 are the comparative results of the

corresponding methods, for instance, 77.78% in Row 2 and Column 1 mean that wrq real is

better performed than orq in percentage of 77.78. From the result, wrq log is even worse than

orq in most cases, that’s because the selection probability (3.2) is a step function and not suitable

for logistic estimation. In practice, non-parametric regression is usually better than parametric

method for unknown function. Furthermore, even in most cases of the 1000 simulations wrq loess

is better than orq or wrq real, it is inferior to wrq nw in almost 60% cases.

From the results and analysis of Tables 1 and 2, we find that in most cases the performance

of each estimator is roughly of the relationship as follows: wrq nw > wrq loess > wrq real >

orq > wrq log. Thus we would like to further compare between these estimators by using
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relative error criteria, since estimators with small relative error are usually wanted and then

investigate its dependence on sample size n. As the matter of convenience, we choose 3 typical

methods, wrq nw, wrq real and orq, to compare. Several sample size cases are considered here,

n = 200, n = 300, n = 500 and n = 1000. Results of the proportion in 1000 replications are

listed in Tables 3–5. P (reestimaor1 < reestimator2) is a measure of estimator accuracy, it shows

the proportion of trials in which estimator has smaller relative error.

It is evident from Table 3 that wrq methods (stands for wrq real and wrq nw) perform better

when sample size n gets larger. And wrq nw is obviously more superior to wrq real. Tables 4

and 5 provide the relative errors of intercept and slope, respectively. It seems that, comparing

with wrq real, wrq nw has better estimation accuracy in terms of coefficient than the intercept.

That is another evidence of the crucial influence of leverage effect to the estimators. We also

illustrate the performance of wrq methods in Figure 2. It is obvious that compared with orq

methods, wrq estimates are closer to the true value except for wrq log.

Sample Size P (rewrq real
< reorq) P (rewrq nw

< reorq) P (rewrq nw
< rewrq real

)

n = 200 46.03% 69.05% 90.48%

n = 300 49.21% 70.63% 84.92%

n = 500 57.94% 79.37% 85.71%

n = 1000 77.78% 91.27% 88.89%

Table 3 The effects of sample size on relative errors

Sample Size P (rewrq real,0 < reorq,0) P (rewrq nw,0 < reorq,0) P (rewrq nw,0 < rewrq real,0)

n = 200 46.03% 68.25% 88.89%

n = 300 52.38% 74.60% 85.71%

n = 500 65.08% 84.13% 84.13%

n = 1000 82.54% 93.65% 87.30%

Table 4 The effects of sample size on relative errors of intercept

Sample Size P (rewrq real,1 < reorq,1) P (rewrq nw,1 < reorq,1) P (rewrq nw,1 < rewrq real,1)

n = 200 46.03% 69.84% 92.06%

n = 300 46.03% 66.67% 84.13%

n = 500 50.79% 74.60% 87.30%

n = 1000 73.02% 88.89% 90.48%

Table 5 The effects of sample size on relative errors of slope

In addition to analyzing the relative error, we also simulate the Bias (BIAS), sample standard

deviation error (SD), estimated standard error (SE) and coverage probability based on nominal

target coverage of 95% (COV) of estimators among different estimated methods with varied

quantiles and p1 values (see Appendix). The estimated standard errors of estimators are calcu-

lated based on the bootstrap method. They are similar to the results in Table 1, that wrq nw

has better estimation effect with both intercept and slope.
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Figure 2 Comparison of the estimated lines (p1 = 0.3, n = 1000, τ = 0.1, 0.5, 0.9). The solid lines

are the real regression lines as the standard of comparison, the black, purple, green and red dotted lines

are based on orq, wrq real, wrq log and wrq nw methods, respectively.
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Figure 3 Comparison of the medians of estimated coefficients (p1 = 0.3, m = 1000, n = 1000,

τ = 0.1, . . . , 0.9). The solid lines are the real coefficients as the standard of comparison, the green, blue

and red dotted lines are based on wrq log, wrq loess and wrq nw methods, respectively.

Figure 3 depicts the comparison results of the medians of estimated coefficients with various

quantile level τs. It is strongly supported from this figure that wrq nw and wrq loess estimators

are more robust and efficient than wrq log estimators. In addition, the performance of wrq nw

estimator of coefficient is better than wrq loess, especially when τ > 0.5. Considering with the

estimation circles in Figure 1, we can confirm that wrq nw is a better estimation than wrq loess

with respect to our example.

4. Generalization
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In this section, we would like to generalize our proposed methods to more complicated cases.

First multivariate case is considered, second nonparametric techniques are further applied to

extend our linear parametric model specification. Local polynomial method is mainly considered

here to take an example. Note almost all the nonparametric methods can be applied here.

4.1. Multivariate linear model

In the above section, X is assumed to be a one-dimensional variable, which seems to be more

restricted. In this section, we generalize our method to the more general settings: that is X

can be multivariate, high-dimensional. In the missing data scenario, some of the covariates are

assumed to be missing at random while the others not. Thus let X = (U, T ), and U is MAR,

while Y and T are fully observed. Here, U and T are d1 and d2-dimensional random vectors

respectively. Define missing indicator δi for the ith individual. δi = 1 when Ui is observed, δi = 0

when Ui is missing. Then the MAR assumption implies

πi = P (δi = 1|Yi, Ui, Ti) = P (δi = 1|Yi, Ti) = π(Si),

where Si = (Yi, Ti). Furthermore, πi can be estimated by

π̂i = π̂(si) =

∑n
j=1 δjKH(si − sj)∑n
j=1 KH(si − sj)

,

where K(·) is a multivariate kernel function. H is a bandwidth matrix. In such case, π̂i is a

weighted average of those δi where sj lies in a ball or cube around si. More details can be referred

to Härdle et al. [18]. After chosen the appropriate kernel and bandwidth, π̂i can be estimated

finely and β can be obtained via

β̂∗ = argmin
β

n∑

i=1

ρτ (yi − xT
i β)

δi
π̂(si)

.

Remark 4.1 In the multivariate case where U = (U1, . . . , Ud1
), we mean δ = 0 provided any

variable in U is missing, one or two or even more. Thus under this circumstance, just using CC

data to conduct estimation is a great loss of information, leading to the inefficiency of the resulting

estimator. Therefore on the occasion the imputation method seems to have more advantages.

However, the assumption in this paper is that the missing covariates are strongly related with

the observed variables, therefore we suppose that most of U is missing for simplicity and easiness

to handle. In terms of the selection of the multivariate kernel function, a type of multivariate

kernels, which is called spherical or radial-symmetric can be obtained from univariate kernel

functions by taking K(u) ∝ K(‖u‖), where ‖u‖ =
√
uTu denotes the Euclidean norm of the

vector u.

4.2. Nonparametric model

When the relationship between X and Y is not linear, nonparametric model is a good choice.

In this section, we consider generalization of proposed methods to nonparametric model. To

explore the relationship between X and Y , we assume that

Y = m(X) + ε,
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where m(x) is a unknown function, ε is the error term satisfying E(ε) = 0. We define the τth

conditional quantile of Y as qτ (x). To estimate qτ (x), local linear method is employed. The idea

of local linear quantile regression is to approximate qτ (x) by a linear function

qτ (t) ≈ qτ (x) + q′τ (x)(t − x) ≡ a+ b(t− x)

for t in a neighborhood of x. Thus, estimating qτ (x) and q
′
τ (x) is equivalent to estimating a and

b. Therefore in the missing covariate case, given a sample {xi, yi}ni=1, â and b̂ can be obtained

by minimizing
n∑

i=1

ρτ (yi − a− b(xi − x))K(
x− xi
h1

)
δi

π̂(yi)
,

where h1 is a smoothing bandwidth, π̂ can be obtained by Eq. (2.4). Note that to have a good

estimate in nonparametric model, we should choose two bandwidths h and h1, each representing

the smoothness of selection probability and local linear function. Yu and Jones [3] presented the

optimal bandwidth in local linear quantile regression.

5. Conclusion and discussions

Missing covariates is a focus topic in statistical analysis. In this paper, a weighted quantile

regression method is considered to deal with this problem. By adding effective weights into the o-

riginal objective function, the resulting estimator is robust, efficient and consistent. This method

is also demonstrated to have more extensions beyond simple linear regression. The missing prob-

ability could be estimated by various parametric and nonparametric methods. And it’s verified

that the method using nonparametric estimated missing probability has the same efficiency as

it is known in advance. Results of the simulation suggest the usefulness and practicality of the

proposed estimator. In addition, our method can be generalized to more complicated models,

such as nonparametric quantile regression models. For instance, we provide a brief description of

local linear quantile regression model, and estimate it by the weighted method. Actually, More

models and missing assumptions should be concerned using the provided weighted estimation

method, which is dependent upon future research.

6. Proof of theorems

Assumptions and conditions:

(1) The distribution F is absolutely continuous, with continuous densities f(ξ) uniformly

bounded away from 0 and ∞ at the point ξ(τ).

(2) Define D0(τ) = limn→∞ n−1
∑

1
πi
xix

T
i , and D1(τ) = limn→∞ n−1f(ξ(τ))

∑
xix

T
i . Both

D0(τ) and D1(τ) are the positive definite matrices

(3) maxi=1,...,n ‖ xi ‖ /
√
n→ 0.

(4) The selection probability π(Y ) > c > 0.

(5) The kernel function K(·) is a symmetric probability density with support [−1, 1].
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(6) |π(Y )−π̂(Y )| = op(1) uniformly. π̂(Y ) > c∗ > 0 and π̂(Y ) has bounded partial derivatives

up to order 2 almost surely.

(7) The density of Y, f(y), has bounded derivatives up to order 2 on support C, and satisfies

0 < infy∈C f(y) 6 supy∈C f(y) <∞.

Proof of Theorem 2.1 The behavior of
√
n(β̂(τ) − β(τ)) follows from consideration of the

objective function

Zn(η) =

n∑

i=1

[ρτ (ui − xT
i η/

√
n)− ρτ (ui)]

δi
πi
,

where ui = yi − xT
i β. The function Zn(η) is obviously convex and is minimized at η̂n =

√
n(β̂(τ) − β(τ)). Using Knight’s identity,

ρτ (u− v)− ρτ (u) = −vψτ (u) +

∫ v

0

(I(u ≤ s)− I(u ≤ 0))ds,

with ψτ (u) = τ − I (u < 0). We may write Zn(η) = Z1n(η) + Z2n(η), where

Z1n(η) = − 1√
n

n∑

i=1

(xT
i ηψτ (ui))

δi
πi

Z2n(η) =

n∑

i=1

(∫ vni

0

(I(ui ≤ s)− I(ui ≤ 0))ds
) δi
πi

≡
n∑

i=1

Z2ni(η)

and vni = xT
i η/

√
n. We have

EZ1n(η) = − 1√
n

n∑

i=1

E(xT
i ηψτ (ui)

δi
πi

)

= − 1√
n

n∑

i=1

E(E(xT
i ηψτ (ui)

δi
πi

|yi,xi))

= − 1√
n

n∑

i=1

E(xT
i ηψτ (ui)E(

δi
πi

|yi,xi))

= − 1√
n

n∑

i=1

E(xT
i ηψτ (ui)

E(δi|yi,xi)

πi
)

= − 1√
n

n∑

i=1

E(xT
i ηψτ (ui))

= − 1√
n

n∑

i=1

xT
i ηE(τ − I(ui < 0)) = 0.

VarZ1n(η) =
1

n

n∑

i=1

E(xT
i ηψτ (ui)

δi
πi

)2

=
1

n

n∑

i=1

E(E((xT
i η)

2ψ2
τ (ui)

δi
π2
i

|yi,xi))

=
1

n

n∑

i=1

E((xT
i η)

2ψ2
τ (ui)E(

δi
π2
i

|yi,xi))
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=
1

n

n∑

i=1

E((xT
i η)

2ψ2
τ (ui)/πi)

=
1

n

n∑

i=1

(xT
i η)

2E(τ2/πi + (1− 2τ)I(ui < 0)/πi)

=
(τ(1 − τ))

n

n∑

i=1

(xT
i η)

2

πi

It follows from the Lindeberg-Feller central limit theorem, using Condition (2), that Z1n(η) →
−ηTW where W ∼ N(0, τ(1 − τ)D0(τ)).

As for Z2n(η), we have

EZ2n(η) =

n∑

i=1

EZ2ni(η)

=

n∑

i=1

E
((∫ vni

0

(I(ui ≤ s)− I(ui ≤ 0))ds
) δi
πi

)

=

n∑

i=1

E
(
E
(( ∫ vni

0

(I(ui ≤ s)− I(ui ≤ 0))ds
) δi
πi

|yi,xi

))

=
n∑

i=1

E
( ∫ vni

0

(I(ui ≤ s)− I(ui ≤ 0))ds
)

=

n∑

i=1

∫ vni

0

(F (ξ + s)− F (ξ))ds

=
1√
n

n∑

i=1

∫
x
T
i η

0

(F (ξ + t/
√
n)− F (ξ

√
n))dt

= n−1
n∑

i=1

∫
x
T
i η

0

√
n(F (ξ + t/

√
n)− F (ξ

√
n))dt

= n−1f(ξ)

n∑

i=1

∫
x
T
i η

0

tdt+ o(1)

= (2n)−1f(ξ)

n∑

i=1

ηTxix
T
i η + o(1)

→ 1

2
ηTD1(τ)η.

The first equation follows from the independence in Condition (1).

Var(Z2n(η)) =
n∑

i=1

Var(Z2ni(η)) ≤
n∑

i=1

E(Z2ni(η))
2

≤ max |Z2ni(η)|
n∑

i=1

E(Z2ni(η))

≤ 1

c
√
n
max |xT

i η|
n∑

i=1

EZ2ni(η) → 0,
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where c = min(πi) > 0 mentioned in Condition (4). The above bound and Condition (3) implies

that

Zn(η) → Z0(η) = −ηTW +
1

2
ηTD1(τ)η.

The convexity of the limiting objective function, Z0(η), assure the uniqueness of the minimizer,

and consequently,

η̂n =
√
n(β̂(τ)− β(τ)) = argminZn(η) → η̂0 = argminZ0(η).

Finally, we see that η̂0 = D−1
1 (τ)W and the result follows. 2

Proof of Theorem 2.2 Similarly, the objective function

Z∗
n(η) =

n∑

i=1

[ρτ (ui − xT
i η/

√
n)− ρτ (ui)]

δi
π̂i
,

is convex and is minimized at

η̂∗n =
√
n(β̂∗(τ) − β(τ)).

Using Knight’s identity, we get

Z∗
n(η) = Z∗

1n(η) + Z∗
2n(η),

where

Z∗
1n(η) = − 1√

n

n∑

i=1

(xT
i ηψτ (ui))

δi
π̂i
,

Z∗
2n(η) =

n∑

i=1

(∫ vni

0

(I(ui ≤ s)− I(ui ≤ 0))ds
) δi
π̂i

≡
n∑

i=1

Z∗
2ni(η)

and vni = xT
i η/

√
n.

By a linearization technique in [20],

δi
π̂i

=
δi
πi

+ (
δi
π̂i

− δi
πi

) =
δi
πi

+ (
δi(πi − π̂i)

π2
i

+
δi(πi − π̂i)

2

π2
i π̂i

)

=
δi
πi

+
δi(πi − π̂i)

π2
i

(1 +
πi − π̂i
π̂i

)

=
δi
πi

+
δi(πi − π̂i)

π2
i

(1 + op(1)),

we can derive

Z∗
1n(η) = − 1√

n

n∑

i=1

(xT
i ηψτ (ui))

δi
π̂i

= − 1√
n

n∑

i=1

xT
i ηψτ (ui)(

δi
πi

+
δi(πi − π̂i)

π2
i

(1 + op(1)))

= − 1√
n

n∑

i=1

xT
i ηψτ (ui)

δi
πi

− 1√
n

n∑

i=1

xT
i ηψτ (ui)

δi(πi − π̂i)

π2
i

(1 + op(1))

= A1 +A2(1 + op(1)).
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From the Proof of Theorem 2.1, we have E(A1) = 0, and it can be verified that

A2 =− 1√
n

n∑

i=1

δi(πi − π̂i)

π2
i

xT
i ηψτ (ui)

=− 1√
n

n∑

i=1

δi
π2
i

∑n
j=1(πi − δi)Kh(yi − yj)∑n

j=1Kh(yi − yj)
xT
i ηψτ (ui)

=− 1√
n

n∑

i=1

δi
π2
i

∑n
j=1(πi − δi)Kh(yi − yj)

nf̂(yi)
xT
i ηψτ (ui)

=− 1√
n

n∑

i=1

δi
π2
i

∑n
j=1(πi − δi)Kh(yi − yj)

nf(yi)
xT
i ηψτ (ui) + op(1)

=− 1√
n

n∑

i=1

δi
π2
i f(yi)nh

xT
i ηψτ (ui)

n∑

j=1

(πi − δi)Kh(yi − yj) + op(1)

=− 1√
n

n∑

i=1

δi
π2(yi)f(yi)nh

xT
i ηψτ (ui)

n∑

j=1

(π(yi)− π(yj))Kh(yi − yj)−

1√
n

n∑

j=1

(δj − π(yj))
1

nh

n∑

i=1

δi
π2(yi)f(yi)

xT
i ηψτ (ui)K(

yi − yj
h

) + op(1)

=op(1)−
1√
n

n∑

j=1

δj − π(yj)

π(yj)
E(xT

i ηψτ (ui)|yj) + op(1)

=− 1√
n

n∑

j=1

δj − π(yj)

π(yj)
E(xT

i ηψτ (ui)|yj) + op(1),

then

EA2 =E(− 1√
n

n∑

j=1

δj − π(yj)

π(yj)
E(xT

i ηψτ (ui)|yj) + op(1))

= − 1√
n

n∑

j=1

E(
δj − π(yj)

π(yj)
E(xT

i ηψτ (ui)|yj)) + E(op(1)) → 0

and we have

EZ∗
1n(η) = E(A1) + E(A2)(1 + op(1)) → 0.

For the variance, we have

VarZ∗
1n(η) =

1

n

n∑

i=1

E(xT
i ηψτ (ui)

δi
π̂i

)2

=
1

n

n∑

i=1

E(xT
i ηψτ (ui)(

δi
πi

+
δi(πi − π̂i)

π2
i

(1 + op(1))))
2

=
1

n

n∑

i=1

E(xT
i ηψτ (ui)(

δi
π2
i

+
2δi(πi − π̂i)

π3
i

(1 + op(1)) +
δi(πi − π̂i)

2

π4
i

(1 + op(1))))

=
1

n

n∑

i=1

E(xT
i ηψτ (ui)(

δi
π2
i

+
δi(πi − π̂i)

π3
i

(2 + op(1))))
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=
1

n

n∑

i=1

E(xT
i ηψτ (ui)

δi
π2
i

) +
1

n

n∑

i=1

E(xT
i ηψτ (ui)

δi(πi − π̂i)

π3
i

)(2 + op(1))

= VarZ1n(η) +
1

n
E(

n∑

i=1

δi
π3(yi)

(π(yi)− π̂(yi))x
T
i ηψτ (ui))(2 + op(1))

= VarZ1n(η) +
1

n
E(

n∑

i=1

δi
π3(yi)

∑n
j=1(π(yi)− δj)Kh(yi − yj)

nf(yi)
xT
i ηψτ (ui) + op(1))·

(2 + op(1))

= VarZ1n(η) +
1

n
E(

n∑

j=1

π(yj)− δj
π2(yj)

E(xT
i ηψτ (ui)|yi) + op(1))(2 + op(1))

= VarZ1n(η).

Then it can be verified that Z∗
1n(η) → −ηTW where W ∼ N(0, τ(1 − τ)D0(τ)), using the

Lindeberg-Feller central limit theorem.

As for Z∗
2n(η), we have

EZ∗
2n(η) =

n∑

i=1

EZ∗
2ni(η) =

n∑

i=1

E
(( ∫ vni

0

(I(ui ≤ s)− I(ui ≤ 0))ds
) δi
π̂i

)

=

n∑

i=1

E
((∫ vni

0

(I(ui ≤ s)− I(ui ≤ 0))ds
)
(
δi
πi

+
δi(πi − π̂i)

π2
i

(1 + op(1)))
)

=
n∑

i=1

E
( ∫ vni

0

(I(ui ≤ s)− I(ui ≤ 0))ds
δi
πi

)
+

( n∑

i=1

E
(∫ vni

0

(I(ui ≤ s)− I(ui ≤ 0))ds
δi
π2
i

(πi − π̂i)
))

(1 + op(1))

=EZ2n(η) + E
( n∑

i=1

δi
π2(yi)

∑n
j=1(π(yi)− δj)Kh(yi − yj)

nf(yi)
·

( ∫ vni

0

(I(ui ≤ s)− I(ui ≤ 0))ds
)
+ op(1)

)
(1 + op(1))

=EZ2n(η) + E
( n∑

j=1

π(yi)− δj
π(yi)

E
( ∫ vni

0

(I(ui ≤ s)− I(ui ≤ 0))ds|yi
)
+ op(1)

)
(1 + op(1))

=EZ2n(η) →
1

2
ηTD1(τ)η

and

Var(Z∗
2n(η)) =

n∑

i=1

Var(Z∗
2ni(η)) ≤

n∑

i=1

E(Z∗
2ni(η))

2

≤max |Z∗
2ni(η)|

n∑

i=1

E(Z∗
2ni(η))

≤ 1

c∗
√
n
max |xT

i η|
n∑

i=1

EZ∗
2ni(η) → 0.
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Therefore, as same as the Proof of Theorem 2.1, we can have

Z∗
n(η) → Z∗

0 (η) = −ηTW +
1

2
ηTD1(τ)η.

As a result,

η̂∗n =
√
n(β̂∗(τ)− β(τ)) = argminZ∗

n(η) → η̂∗0 = argminZ∗
0 (η) = D−1

1 (τ)W.

We complete the proof of Theorem 2.2. 2

Appendix

The contents of Tables 6 and 7 are shown here.

p1 Method τ = 0.1 τ = 0.25 τ = 0.5 τ = 0.75 τ = 0.9

BIAS SD SE COV BIAS SD SE COV BIAS SD SE COV BIAS SD SE COV BIAS SD SE COV

0.1

orq -0.4116 0.5387 0.4740 0.86 -0.3809 0.4448 0.4092 0.87 -0.2933 0.4088 0.4946 0.88 -0.1531 0.3870 0.6070 0.94 -0.0218 0.4465 0.5335 0.93

wrq real 0.0863 0.5967 0.2915 0.89 0.0194 0.4857 0.3934 0.94 0.0071 0.4462 0.6110 0.95 -0.0265 0.5542 0.7760 0.96 -0.1620 0.8123 1.3433 0.88

wrq log 0.7699 0.8119 1.0611 0.79 0.5244 0.6680 0.7111 0.85 0.3552 0.6676 0.6996 0.91 0.0152 1.1913 0.6832 0.91 -0.6476 1.6390 0.6722 0.86

wrq loess 0.1771 0.6265 0.3236 0.88 -0.0876 0.5569 0.3603 0.93 -0.2293 0.6021 1.1606 0.94 -0.3445 0.8116 1.4569 0.95 -0.4147 0.9669 1.6799 0.90

wrq nw 0.2719 0.5760 0.3242 0.87 0.1026 0.4824 0.3288 0.92 0.0950 0.4232 0.4023 0.93 0.0778 0.4508 0.6926 0.96 -0.0407 0.6215 1.0793 0.93

0.2

orq -0.1737 0.4435 0.3359 0.94 -0.1031 0.3561 0.7171 0.94 -0.0364 0.3318 0.2986 0.95 0.0516 0.3168 0.2116 0.94 0.1170 0.3670 0.4268 0.92

wrq real 0.0494 0.4506 0.7235 0.94 -0.0032 0.3600 0.4560 0.95 0.0012 0.3358 0.2663 0.97 -0.0061 0.3693 0.3337 0.96 -0.0563 0.5303 0.8051 0.94

wrq log 0.6295 0.5332 0.5942 0.81 0.6022 0.4872 0.4591 0.76 0.5439 0.4826 0.6102 0.78 0.4084 0.6280 0.6220 0.85 0.1367 0.7310 0.6019 0.92

wrq loess 0.0822 0.4550 0.3801 0.91 -0.0214 0.3517 0.3224 0.94 -0.0365 0.3212 0.2020 0.96 -0.0569 0.3406 0.2179 0.97 -0.1035 0.4970 0.7372 0.96

wrq nw 0.1058 0.4449 0.5115 0.92 0.0391 0.3451 0.2934 0.94 0.0618 0.3079 0.1868 0.95 0.0589 0.3300 0.2210 0.94 0.0309 0.4478 0.6560 0.95

0.3

orq -0.0321 0.4090 0.2721 0.94 0.0089 0.3090 0.3385 0.95 0.0355 0.2677 0.2980 0.93 0.0844 0.2939 0.2749 0.93 0.1256 0.3487 0.3574 0.93

wrq real 0.0520 0.4024 0.2626 0.93 0.0256 0.3210 0.3974 0.94 -0.0136 0.3001 0.3431 0.95 -0.0197 0.3545 0.4052 0.93 -0.0395 0.4785 0.2735 0.93

wrq log 0.4498 0.3950 0.2552 0.81 0.4398 0.3474 0.2316 0.80 0.4419 0.3917 0.3390 0.82 0.4050 0.4851 0.3693 0.80 0.3038 0.5819 0.3339 0.88

wrq loess 0.0794 0.4094 0.2935 0.90 0.0391 0.3224 0.3479 0.94 -0.0267 0.2717 0.2895 0.97 -0.0378 0.3129 0.3640 0.95 -0.0619 0.4266 0.3121 0.96

wrq nw 0.0819 0.3919 0.2438 0.91 0.0600 0.3112 0.3389 0.94 0.0178 0.2760 0.2987 0.96 0.0162 0.3197 0.3458 0.94 0.0134 0.4134 0.3074 0.94

0.4

orq -0.0153 0.3661 0.5811 0.93 0.0195 0.2782 0.3246 0.95 0.0716 0.2589 0.2402 0.93 0.1195 0.2671 0.4035 0.93 0.1480 0.3362 0.1632 0.92

wrq real 0.0165 0.3567 0.4728 0.93 0.0107 0.2764 0.3743 0.96 0.0163 0.2786 0.3127 0.95 0.0168 0.3032 0.4040 0.95 -0.0118 0.4213 0.2500 0.93

wrq log 0.2934 0.3565 0.3560 0.88 0.3341 0.3020 0.4285 0.83 0.3484 0.3038 0.3997 0.81 0.3607 0.3695 0.2526 0.85 0.3229 0.5017 0.1373 0.83

wrq loess 0.0295 0.3511 0.4507 0.94 0.0155 0.2611 0.3238 0.96 0.0169 0.2445 0.2685 0.96 0.0155 0.2882 0.3535 0.97 -0.0166 0.3861 0.1264 0.95

wrq nw 0.0272 0.3470 0.4239 0.94 0.0293 0.2605 0.3302 0.96 0.0435 0.2546 0.2776 0.94 0.0453 0.2765 0.3525 0.95 0.0387 0.3789 0.1381 0.94

0.5

orq 0.0281 0.3594 0.4041 0.94 0.0352 0.2702 0.3296 0.95 0.0626 0.2397 0.2685 0.93 0.0743 0.2698 0.2613 0.92 0.1069 0.3193 0.3161 0.93

wrq real 0.0305 0.3411 0.3727 0.94 0.0133 0.2633 0.3869 0.95 -0.0016 0.2495 0.3047 0.95 -0.0232 0.2969 0.2790 0.94 -0.0231 0.3755 0.3300 0.95

wrq log 0.2239 0.3289 0.3314 0.91 0.2278 0.2677 0.3044 0.87 0.2377 0.2556 0.2670 0.88 0.2368 0.3262 0.3626 0.88 0.2382 0.4075 0.3242 0.90

wrq loess 0.0572 0.3516 0.3868 0.94 0.0160 0.2564 0.3496 0.95 -0.0061 0.2440 0.2956 0.95 -0.0269 0.2724 0.2626 0.94 -0.0315 0.3512 0.3390 0.95

wrq nw 0.0527 0.3450 0.3805 0.94 0.0239 0.2550 0.3655 0.94 0.0122 0.2428 0.2878 0.95 0.0003 0.2783 0.2828 0.94 0.0064 0.3509 0.3326 0.94

0.6

orq 0.0239 0.3324 0.2795 0.97 0.0515 0.2772 0.3081 0.91 0.0693 0.2493 0.2115 0.92 0.0925 0.2520 0.2359 0.92 0.1150 0.3105 0.3361 0.92

wrq real 0.0148 0.3224 0.2390 0.96 0.0179 0.2706 0.2773 0.92 0.0112 0.2575 0.2239 0.92 0.0134 0.2769 0.2749 0.93 0.0006 0.3451 0.3425 0.95

wrq log 0.1453 0.3133 0.2188 0.94 0.1640 0.2666 0.2668 0.88 0.1789 0.2595 0.2110 0.89 0.1903 0.2758 0.2492 0.89 0.2104 0.3583 0.2904 0.90

wrq loess 0.0239 0.3181 0.2076 0.97 0.0171 0.2707 0.2684 0.91 0.0078 0.2557 0.2181 0.92 0.0007 0.2745 0.2735 0.93 -0.0004 0.3443 0.3483 0.94

wrq nw 0.0207 0.3144 0.2367 0.97 0.0246 0.2708 0.2634 0.91 0.0194 0.2516 0.2114 0.92 0.0231 0.2733 0.2631 0.92 0.0226 0.3397 0.3238 0.94

0.7

orq 0.0408 0.3183 0.7210 0.94 0.0524 0.2637 0.4011 0.93 0.0467 0.2475 0.1589 0.93 0.0468 0.2572 0.2093 0.94 0.0810 0.3117 0.4332 0.94

wrq real 0.0210 0.3086 0.6848 0.95 0.0170 0.2657 0.3935 0.93 -0.0031 0.2490 0.1540 0.94 -0.0114 0.2659 0.2118 0.95 -0.0046 0.3221 0.4259 0.95

wrq log 0.1034 0.2989 0.6352 0.94 0.1117 0.2559 0.3637 0.89 0.1177 0.2429 0.1631 0.91 0.1175 0.2689 0.1926 0.92 0.1409 0.3230 0.5317 0.95

wrq loess 0.0328 0.2992 0.6429 0.96 0.0183 0.2584 0.3768 0.93 -0.0060 0.2404 0.1546 0.94 -0.0142 0.2593 0.2341 0.95 -0.0104 0.3071 0.4236 0.96

wrq nw 0.0260 0.3000 0.6567 0.96 0.0208 0.2578 0.3733 0.93 0.0026 0.2408 0.1595 0.94 -0.0034 0.2605 0.2198 0.95 0.0102 0.3072 0.4210 0.96

0.8

orq -0.0083 0.3265 0.2385 0.94 0.0168 0.2683 0.2279 0.93 0.0249 0.2483 0.2080 0.91 0.0243 0.2614 0.2565 0.93 0.0339 0.3120 0.4291 0.93

wrq real -0.0136 0.3302 0.2331 0.94 -0.0068 0.2661 0.2259 0.93 -0.0081 0.2493 0.2206 0.92 -0.0153 0.2665 0.2539 0.93 -0.0192 0.3271 0.4449 0.93

wrq log 0.0323 0.3279 0.2371 0.94 0.0501 0.2646 0.2291 0.93 0.0549 0.2431 0.2124 0.93 0.0626 0.2650 0.2595 0.92 0.0723 0.3228 0.4699 0.92

wrq loess -0.0109 0.3248 0.2290 0.94 -0.0048 0.2623 0.2325 0.93 -0.0110 0.2432 0.2152 0.92 -0.0143 0.2604 0.2568 0.93 -0.0144 0.3218 0.4228 0.92

wrq nw -0.0126 0.3240 0.2331 0.94 -0.0019 0.2622 0.2206 0.93 -0.0059 0.2458 0.2144 0.92 -0.0076 0.2616 0.2619 0.93 -0.0084 0.3199 0.4214 0.93

0.9

orq 0.0162 0.3113 0.5630 0.92 0.0192 0.2418 0.4098 0.95 0.0159 0.2242 0.2297 0.93 0.0230 0.2491 0.2346 0.93 0.0386 0.3132 0.3505 0.93

wrq real 0.0052 0.3157 0.5531 0.92 0.0100 0.2424 0.4111 0.95 0.0003 0.2251 0.2268 0.93 0.0029 0.2556 0.2368 0.94 0.0155 0.3171 0.3510 0.94

wrq log 0.0279 0.3114 0.5617 0.92 0.0330 0.2402 0.4142 0.95 0.0301 0.2250 0.2246 0.93 0.0371 0.2566 0.2284 0.92 0.0518 0.3121 0.3557 0.93

wrq loess 0.0115 0.3128 0.5248 0.93 0.0122 0.2419 0.4011 0.95 0.0012 0.2233 0.2280 0.94 0.0034 0.2504 0.2279 0.94 0.0208 0.3166 0.3364 0.94

wrq nw 0.0076 0.3138 0.5475 0.92 0.0131 0.2410 0.4076 0.95 0.0019 0.2243 0.2268 0.94 0.0049 0.2529 0.2319 0.93 0.0216 0.3149 0.3486 0.94

Table 6 The SD, SE and COV of intercept
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p1 Method τ = 0.1 τ = 0.25 τ = 0.5 τ = 0.75 τ = 0.9

BIAS SD SE COV BIAS SD SE COV BIAS SD SE COV BIAS SD SE COV BIAS SD SE COV

0.1

orq 0.1831 0.1839 0.1824 0.83 0.1792 0.1553 0.1370 0.81 0.1546 0.1450 0.1675 0.84 0.1129 0.1394 0.2379 0.90 0.0703 0.1609 0.2103 0.89

wrq real -0.0291 0.1994 0.0890 0.88 -0.0064 0.1636 0.1242 0.92 -0.0023 0.1478 0.2363 0.95 0.0101 0.1761 0.2453 0.94 0.0535 0.2372 0.3148 0.87

wrq log -0.2646 0.2469 0.3028 0.75 -0.1936 0.2120 0.2567 0.81 -0.1468 0.2132 0.2253 0.89 -0.0544 0.3202 0.186 0.91 0.1488 0.4145 0.1888 0.85

wrq loess -0.0704 0.2088 0.1072 0.84 0.0165 0.1854 0.0998 0.91 0.0605 0.1803 0.3072 0.95 0.0967 0.2189 0.361 0.93 0.1316 0.2611 0.4371 0.87

wrq nw -0.0869 0.1890 0.1028 0.85 -0.0294 0.1638 0.1001 0.91 -0.0275 0.1467 0.1521 0.94 -0.0184 0.1557 0.2572 0.95 0.0243 0.1968 0.2803 0.90

0.2

orq 0.0879 0.1471 0.1139 0.91 0.0693 0.1180 0.2463 0.91 0.0494 0.1121 0.1004 0.93 0.0222 0.1047 0.0752 0.94 0.0034 0.1223 0.1631 0.93

wrq real -0.0177 0.1463 0.2662 0.91 0.0011 0.1162 0.1511 0.94 -0.0012 0.1071 0.0648 0.96 0.0001 0.114 0.1066 0.96 0.0163 0.156 0.2524 0.94

wrq log -0.2125 0.1614 0.1402 0.76 -0.2094 0.1528 0.1318 0.71 -0.1969 0.1577 0.2021 0.74 -0.1585 0.1957 0.2289 0.81 -0.068 0.2188 0.2141 0.91

wrq loess -0.0276 0.1474 0.1382 0.89 0.0066 0.1150 0.0790 0.95 0.0103 0.1040 0.0502 0.95 0.0154 0.1055 0.0583 0.96 0.0315 0.1447 0.227 0.95

wrq nw -0.0331 0.1433 0.1848 0.89 -0.0106 0.1119 0.0721 0.93 -0.0177 0.1001 0.0497 0.95 -0.0176 0.1064 0.0624 0.95 -0.0081 0.1419 0.226 0.95

0.3

orq 0.0338 0.1288 0.0929 0.94 0.0231 0.0989 0.0989 0.94 0.0157 0.0843 0.0914 0.93 0.0024 0.0919 0.0801 0.95 -0.0083 0.1091 0.0987 0.95

wrq real -0.0183 0.1236 0.0917 0.92 -0.0090 0.1000 0.1095 0.92 0.0039 0.0902 0.1034 0.95 0.0053 0.1048 0.1041 0.94 0.0133 0.1386 0.078 0.93

wrq log -0.1517 0.1172 0.0681 0.78 -0.1495 0.1075 0.0661 0.75 -0.1541 0.1278 0.1018 0.78 -0.1464 0.1613 0.106 0.78 -0.1144 0.1929 0.1091 0.84

wrq loess -0.0260 0.1252 0.1025 0.91 -0.0130 0.1004 0.0985 0.94 0.0081 0.0815 0.0864 0.97 0.0112 0.0929 0.0899 0.95 0.0217 0.1235 0.0944 0.95

wrq nw -0.0271 0.1195 0.0839 0.91 -0.0187 0.0967 0.0959 0.93 -0.0044 0.0843 0.0902 0.95 -0.0043 0.0969 0.0845 0.94 -0.0005 0.1244 0.0934 0.95

0.4

orq 0.0226 0.1124 0.1845 0.95 0.0139 0.0857 0.0814 0.96 -0.0011 0.0819 0.0821 0.94 -0.0146 0.084 0.1404 0.94 -0.0222 0.1054 0.0521 0.92

wrq real -0.0067 0.1084 0.1421 0.93 -0.0035 0.0847 0.0930 0.95 -0.0045 0.0861 0.0956 0.94 -0.0049 0.0911 0.1341 0.94 0.0045 0.1239 0.0623 0.93

wrq log -0.0985 0.1049 0.0866 0.85 -0.1124 0.0933 0.1148 0.79 -0.1177 0.0955 0.1276 0.75 -0.1244 0.1219 0.0752 0.83 -0.1139 0.1694 0.0414 0.81

wrq loess -0.0097 0.1053 0.1377 0.93 -0.0047 0.0802 0.0790 0.95 -0.0048 0.0752 0.0848 0.94 -0.0045 0.0882 0.1258 0.95 0.0058 0.1155 0.0431 0.94

wrq nw -0.0093 0.1042 0.1239 0.93 -0.0088 0.0799 0.0810 0.95 -0.0124 0.0785 0.0871 0.93 -0.0126 0.0836 0.1212 0.94 -0.0105 0.1166 0.0434 0.94

0.5

orq 0.0057 0.1075 0.1165 0.95 0.0032 0.0813 0.0978 0.95 -0.0037 0.0721 0.0768 0.94 -0.007 0.0803 0.0794 0.94 -0.017 0.0967 0.1095 0.95

wrq real -0.0103 0.1023 0.1063 0.95 -0.0054 0.0778 0.1089 0.95 0.0000 0.0736 0.0844 0.94 0.0065 0.086 0.0858 0.95 0.0065 0.1106 0.1041 0.95

wrq log -0.0724 0.0941 0.0899 0.87 -0.0763 0.0791 0.0850 0.85 -0.0797 0.0762 0.0715 0.86 -0.0819 0.0994 0.1119 0.87 -0.0848 0.1293 0.1008 0.90

wrq loess -0.0173 0.1043 0.1093 0.94 -0.0060 0.0751 0.0981 0.95 0.0019 0.0710 0.0824 0.95 0.0079 0.0773 0.0828 0.95 0.0096 0.1018 0.1116 0.95

wrq nw -0.0162 0.1017 0.1068 0.94 -0.0083 0.0752 0.1027 0.94 -0.0032 0.0708 0.0801 0.94 -0.0001 0.0802 0.0891 0.94 -0.0017 0.1032 0.1098 0.95

0.6

orq 0.0047 0.0999 0.0943 0.96 -0.0033 0.0811 0.0858 0.92 -0.0080 0.0731 0.0685 0.93 -0.015 0.0736 0.0608 0.94 -0.0208 0.0907 0.0867 0.94

wrq real -0.0028 0.0959 0.0757 0.95 -0.0045 0.0785 0.0752 0.93 -0.0016 0.0746 0.0722 0.93 -0.0029 0.0793 0.0632 0.94 0.0013 0.0973 0.0938 0.95

wrq log -0.0453 0.0922 0.0687 0.92 -0.0517 0.0760 0.0705 0.87 -0.0565 0.0767 0.0687 0.88 -0.0614 0.0812 0.0618 0.88 -0.0689 0.1091 0.0747 0.90

wrq loess -0.0051 0.0939 0.0644 0.95 -0.0037 0.0781 0.0717 0.92 0.0000 0.0737 0.0703 0.93 0.0016 0.078 0.0672 0.94 0.0019 0.0976 0.0912 0.94

wrq nw -0.0047 0.0930 0.0733 0.94 -0.0061 0.0784 0.0719 0.92 -0.0035 0.0727 0.0680 0.93 -0.0053 0.0783 0.0631 0.93 -0.005 0.097 0.0839 0.94

0.7

orq -0.0057 0.0925 0.1983 0.95 -0.0089 0.0750 0.1105 0.94 -0.0068 0.0706 0.0494 0.93 -0.0078 0.0728 0.0615 0.96 -0.0188 0.0914 0.1125 0.94

wrq real -0.0072 0.0890 0.1897 0.95 -0.0060 0.0749 0.1050 0.94 0.0002 0.0704 0.0466 0.94 0.002 0.0747 0.0635 0.95 -0.0015 0.0935 0.1098 0.95

wrq log -0.0332 0.0847 0.1711 0.93 -0.0360 0.0721 0.0902 0.90 -0.0384 0.0694 0.0462 0.89 -0.0406 0.0771 0.0565 0.92 -0.049 0.0966 0.1509 0.94

wrq loess -0.0100 0.0857 0.1756 0.96 -0.0059 0.0729 0.0978 0.94 0.0016 0.0675 0.0460 0.94 0.0031 0.0723 0.0705 0.95 0.0006 0.0888 0.108 0.95

wrq nw -0.0085 0.0860 0.1795 0.96 -0.0066 0.0728 0.0969 0.93 -0.0011 0.0677 0.0470 0.94 -0.0001 0.0729 0.0662 0.95 -0.0058 0.0893 0.1076 0.96

0.8

orq 0.0081 0.0919 0.0622 0.94 0.0015 0.0758 0.0670 0.93 -0.0010 0.0696 0.0608 0.92 -0.0012 0.0734 0.0746 0.93 -0.003 0.0875 0.1102 0.95

wrq real 0.0054 0.0924 0.0599 0.94 0.0036 0.0748 0.0655 0.94 0.0040 0.0699 0.0656 0.91 0.0059 0.0744 0.0744 0.93 0.0075 0.0911 0.1133 0.94

wrq log -0.0089 0.0913 0.0616 0.94 -0.0141 0.0740 0.0669 0.93 -0.0162 0.0677 0.0638 0.93 -0.0192 0.0746 0.0753 0.91 -0.0222 0.0916 0.1246 0.95

wrq loess 0.0047 0.0907 0.0596 0.94 0.0032 0.0735 0.0683 0.93 0.0047 0.0681 0.0631 0.93 0.0056 0.0724 0.0748 0.93 0.0056 0.0895 0.1057 0.93

wrq nw 0.0051 0.0905 0.0611 0.94 0.0023 0.0734 0.0648 0.94 0.0034 0.0688 0.0633 0.92 0.0037 0.073 0.0771 0.93 0.0045 0.0891 0.1041 0.94

0.9

orq -0.0024 0.0869 0.1605 0.93 -0.0033 0.0676 0.1119 0.93 -0.0027 0.0628 0.0646 0.93 -0.0042 0.0698 0.0667 0.93 -0.0083 0.0882 0.0955 0.94

wrq real -0.0012 0.0878 0.1585 0.92 -0.0025 0.0676 0.1120 0.95 -0.0002 0.0629 0.0638 0.93 -0.0005 0.0712 0.0666 0.93 -0.0038 0.0892 0.0962 0.95

wrq log -0.0082 0.0866 0.1599 0.93 -0.0095 0.0670 0.1131 0.94 -0.0096 0.0630 0.0626 0.94 -0.0115 0.0717 0.0653 0.92 -0.0154 0.0877 0.0982 0.94

wrq loess -0.0027 0.0872 0.1482 0.93 -0.0030 0.0672 0.1099 0.94 -0.0003 0.0620 0.0647 0.94 -0.0006 0.0693 0.0645 0.93 -0.0054 0.0888 0.0923 0.94

wrq nw -0.0017 0.0876 0.1551 0.93 -0.0032 0.0671 0.1120 0.94 -0.0005 0.0625 0.0641 0.94 -0.0008 0.0703 0.0655 0.93 -0.0055 0.0885 0.0961 0.94

Table 7 The BIAS, SD, SE and COV of slope
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[19] W. HÄRDLE, M. MÜLLER, S. SPERLICH, et al. Nonparametric and Semiparametric Models. Springer-
Verlag, New York, 2004.

[20] Xu GUO, Wangli XU. Goodness-of-fit for general linear models with covariates missed at random. J. Statist.

Plann. Inference, 2012, 142(7): 2047–2058.


