Journal of Mathematical Research with Applications
May, 2021, Vol. 41, No. 3, pp. 303-322
DOI:10.3770/j.issn:2095-2651.2021.03.008
Http://jmre.dlut.edu.cn

The Horvitz-Thompson Weighting Method for Quantile

Regression Estimation in the Presence of Missing
Covariates

Zhaoji CHU!, Lingnan TAI', Wei XIONG!"2, Xu GUO'"*, Maozai TIAN35*

1.

1. Center for Applied Statistics, School of Statistics, Renmin University of China,
Beijing 100872, P. R. China;

2. School of Statistics, University of International Business and Economics,
Beijing 100029, P. R. China;

3. Department of Medical Engineering and Technology, Xinjiang Medical University,
Xingiang 830011, P. R. China;

4. School of Statistics, Beijing Normal University, Beijing 100875, P. R. China;

5. School of Statistics and Information, Xinjiang University of Finance and Economics,
Xingiang 830012, P. R. China

Abstract The lack of covariate data is one of the hotspots of modern statistical analysis. It
often appears in surveys or interviews, and becomes more complex in the presence of heavy
tailed, skewed, and heteroscedastic data. In this sense, a robust quantile regression method is
more concerned. This paper presents an inverse weighted quantile regression method to explore
the relationship between response and covariates. This method has several advantages over the
naive estimator. On the one hand, it uses all available data and the missing covariates are
allowed to be heavily correlated with the response; on the other hand, the estimator is uniform
and asymptotically normal at all quantile levels. The effectiveness of this method is verified by
simulation. Finally, in order to illustrate the effectiveness of this method, we extend it to the
more general case, multivariate case and nonparametric case.

Keywords Robust quantile regression; missing covariates; selection probability; Kernel esti-
mator; weighting method
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Introduction

Quantile regression was first introduced in [1], which is gradually emerging as a significant

and unified statistical methodology for estimating models of conditional quantile functions. This

kind of regression offers a systematic strategy for examining how covariates influence the location,

scale and shape of the entire response distribution. It has been extensively used in economics,

finance, insurance and medical research.

With the applications of quantile regression becoming universal and widespread, various ex-

tended models and estimation methods are springing up. For the simple parametric quantile
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regression model, minimization of the check function is routinely used. A typical transforma-
tion such as Box-Cox transformation could be employed when the considered variable has a
non-normal distribution [2]. In consideration of more complex cases, a nonparametric or semi-
parametric approach could be applied [3,4]. In the case of non-parametric model, kernel weighting
method is one of the popular estimation procedure. However, some problems arise in application:
first, this estimator is not a distribution function, then cannot be easily and directly calculated;
second, quantile curves based on these conditional estimators may suffer from quantile crossing
one another, which is absolutely absurd. To solve the first problem, Hall et al. [4] introduced
a so-called adjusted Nadaraya-Waston estimator. Yu and Jones [3] usd a “double-kernel” to
solve the second problem. Likewise, semiparametric quantile regression has also been discussed
in great detail of literatures [5]. Especially in medicine of most concerned nowadays, the need
for varied quantile curves rather a simple reference chart emerges when the measurements are
strongly dependent on the covariates such as age, income level etc. Therefore, in such case, Cloe
and Green [5] employed the weighted quantile regression model, with the response being weight
and the covariate being age. Even better, when covariates are missing, censored quantile regres-
sion provides a powerful tool in survival analysis. Compared to classical Cox proportional hazard
model, it relaxes the proportionality assumptions and can naturally accommodate heterogeneity
of data. Moreover, by applying quantile regression survival time can be modeled directly, hence
having practical significance.

Missing Data is a long-standing topic in statistical analysis. Among different missing-data
patterns, nonresponse is a common problem in survey. But we do not study missing response but
focus on missing covariate problems in our paper, which always occur to practical analysis and
application. For instance, in a study on the association between acute graft versus host disease of
bone marrow transplants, 97 females are follow-up surveyed by Fred Hutchinson Cancer Research
Center. The covariate-donor’s previous pregnancy status, of great interest, however missed for
31 patients due to the incompleteness of the donors’ medical history.

In classical mean regression, various of missing mechanisms as well as estimating approaches
have been finely developed to solve the missing covariate problems. There are four kinds of
approaches: (1) complete case method (CC), which only just uses fully observed sample to esti-
mate the interest parameters. However, it is well known that the CC analysis can be biased when
the data are not missing completely at random (MCAR), this method is not good choice with
complex data missing mechanisms although it is easy to implement. (2) imputation-based meth-
ods, which involve various methods such as single imputation, multiple imputation and Bayesian
imputation [6] etc.. (3) likelihood-based methods, which assume the joint distribution for both
covariates and responses and use observed data likelihood by integrating the missing covariate to
obtain the model parameters, usually, the EM algorithms or quasi-Newton algorithms are used
to resolve this problem [7] etc.. (4) weight-based methods, which use the inverse of some response
probability as weight to adjust the observed portion and make unbiased estimators [8,9]. Other-
wise, Ibrahim et al. [7] made detailed and full reviews about these methods in generalized linear

model (GLM), [10] proposed semiparametric regression imputation estimator, marginal average
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estimator, and (marginal) propensity score weighted estimator in semiparametric partially linear

regression model with missing response data.

Whereas in quantile regression framework, it is a newly topic to deal with missing data
problem and there has not been a lot of works. For the missing values of nonresponse, Yoon [11]
proposed a two-step estimating method in quantile regression scenario and demonstrates the
consistency and asymptotic normality of the proposed estimator. In missing covariates patterns,
Wei et al. [12] developed a multiple imputation method of estimating when missing mechanism
is missing at random. Sherwood et al. [13] proposed a weighted quantile regression method to
analyze health care cost data and developed a modified BIC for variable selection. Wei and
Yang [14] constructed unbiased estimating equations, which is an extension of joint modeling
method and provided an iterative EM-type algorithm. Recently, Tai et al. [15] built a multiple
weighted estimating equations method to resolve the missing problem with quantile regression.
Han et al. [16] proposed the multiple robust method in quantile regression to deal with the

missing data.

Based on the above literature, we aim to construct a quantile regression method to deal with
missing covariate which is established on the weight-based method. The weight is called selection
probability, which is similar to Horvitz-Thompson weighting scheme (first proposed in [17]) that
has little assumption of the distribution to covariates. Different from other estimate method
of selection probability, we use the nonparametric method rather than parametric method (like
logistic regression which may suffer from model misspecification risk). Our approach has analo-
gous inspiration to [18] but there are different ideas and skills in proving theoretical properties.
Furthermore, we extend the linear quantile regression to nonparametric quantile regression and

express the main formal of missing quantile regression model.

The rest of the paper is organized as follows. The proposed method as well as its asymptotic
properties are studied in Section 2, where bandwidth selection method is also discussed. A
simulation study is presented in Section 3. In Section 4, several extensions are made to illustrate
the usefulness of our proposed method. Section 5 concludes this paper with some discussions.

Some tables are included in the Appendix.

2. Methodology

To solve the missing covariate problem in quantile regression, we propose a new estimator
called inverse probability N-W weighted estimator. Further, we prove the asymptotic properties

of the estimator.

2.1. Inverse probability N-W weighted estimator

We observe (Y;, X;,d;), where Y; is a one-dimensional response, X; is a one-dimensional
covariate, and ¢; is a missing indicator, d; = 1 when X; is observed and §; = 0 when Xj; is
missing. A case is considered where X is missing at random (MAR), but not missing completely

at random (MCAR). The missing probability is allowed to depend on the responses. That is, the
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MAR assumption in this paper is that X and § are conditionally independent given response Y,

where 7; is the selection probability mentioned above.

In common two-stage procedures, the selection probabilities are supposed to be known, which
is impossible to achieve in most real missing data applications. To solve this problem, we proposed
a Nadaraya-Waston (N-W) type estimator to estimate the selection probability ;.

For the general linear model,

Y = XT8 +¢,

where 8 is the unknown parameter, ¢ is the error term. Given X = z, the 7% conditional

quantile function of response Y is
Qy(r|x) =x78, (2.2)

where Qy (7]x) represents the 7th conditional quantile of Y and we assume Pr(e < 0]x) = 7.
Thus, given a data set {(x;,y;)}", 8 can be estimated by minimizing Y., pr(y; —x! ), where
x; = (L, 2;)T, pr(x) = 72l)p 00y (2) + (T — 1)2](_0o0)(2) is the check function.

To accommodate the missing problem in observed data, we propose a Horvitz-Thompson
inverse selection weighted method, in the case of the selection probability 7; can be obtained in

advance. Then 8 can be estimated by
A n 5
B = argmin > oy — Xfﬁ);z- (2.3)
i=1
It can be seen from Eq.(2.3) that if the ith observation is missing (§; = 0), it would not be
included in the objective function, whereas it may play a big part by adjusting the weights 7 in
Eq. (2.3). In real applications, ; is usually unknown. Thus due to the strong correlation between

Y; and d;, we propose a Nadaraya-Waston type estimator to estimate selection probability 7,
that is "
2 R (y) = ijl 6 Kn(yi — yj),
Zj:l Kn(yi —yj5)
where K, () = K(-/h)/h and h is a bandwidth. By plugging into the 7; in Eq. (2.3), estimate of
(B can be obtained by

(2.4)

o~ R~ i
B* = arg ménz pr(yi — X?B);- (25)
i=1 ¢

2.2. Asymptotic properties
Let Yi,...,Y, be independently and identically distributed with F'. The conditional distri-
bution functions of Y; is P(Y; < y|x;) = F(y), and we define
Qv (7]xi) = F~1(7]xi) = &(7),

where £(7) is the real 7th quantile of the distribution F. Then we have the following two theorems
for the estimators with known and unknown selection probabilities.

Assumptions and conditions:



The H-T weighting method for QR estimation in the presence of missing covariates 307

(1) The distribution F' is absolutely continuous, with continuous densities f(§) uniformly
bounded away from 0 and oo at the point £(7).

(2) Define Do(7) = limy,s0on™ > %xixiT, and D1(7) = lim,, 0o n ™1 f(€(7)) Y- x;x7. Both
Dy(7) and D;(7) are the positive definite matrices.
3) maxi;=1, . | % || /v/n—0.
4) The selection probability 7(Y) > ¢ > 0.
5)
6) |7(Y)=7(Y)| = 0p(1) uniformly. 7(Y") > ¢* > 0 and 7(Y") has bounded partial derivatives

up to order 2 almost surely.

The kernel function K (-) is a symmetric probability density with support [—1,1].

A~ I~~~

(7) The density of Y, f(y), has bounded derivatives up to order 2 on support C, and satisfies
0 < infyec f(y) <supyec f(y) < oo

Theorem 2.1 Under Conditions (1)—(4), we have
Vi(B(r) = B(7)) = N(0,7(1 = 7)Dy (1) D1 (7) Dg (7).
Theorem 2.1 is established based on the Nadaraya-Watson estimator of the unknown selection
probability ;.
Theorem 2.2 Under Conditions (1)—(7), we have
Va(B*(r) = B(7)) = N(0,7(1 = 7)Dy ™ (1) D1 (7) Dy ' (7))

Theorems 2.1 and 2.2 suggest that, though the estimators are obtained via different as-
sumptions and approaches, asymptotic properties are the same. That is to say, our proposed

Nadaraya-Watson type estimator has an identical efficiency as if it is known ahead.
2.3. Bandwidth selection

To obtain a more efficient estimator 7;, bandwidth h plays a crucial role in balancing between
bias and variance, as in Eq. (2.4). Thus in this section we present an effective method to choose
an optimal bandwidth. Hérdle [19] demonstrated the consistency of Nadaraya-Watson estimator

of any unknown nonparametric function. Similar to that, the asymptotic mean square error
(AMSE) of estimator 7; is

0,2 4 ! /
AMSE(R (1)} = - O IKIB + 7 () + 2T 23 ),

where o%(y) = Var(n(Y)|Y = y). Minimizing the AMSE with respect to h, we have the optimal
bandwidth for 7(y), that is

[ (y)|K|3
n{n(y) + 27 LB 2 () fyr ()

Note that in the above equation, h ~ n~'/®> and both m(y) and fy(y) are unknown. An

S

hopt =

“ad hoc” plug-in bandwidth selection is to estimate 7(y) by a third or higher degree polynomial
parametric regression, and to estimate fy (y) through nonparametric way such as usual kernel

density estimation.
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3. Simulation studies

In this section, to investigate the efficiency and nice properties of our proposed estimators, we
conduct some simulations. In each simulation we generate n = 1000 observations and compare
the performances of weighted and original estimators for 3y and 81 in model (3.1), each refers
to the intercept (-1.33) and coefficient (1.67), denoted by orq (original quantile regression) and
wrq (weighted quantile regression). The original estimator (orq) is the same as complete case
method (CC), which ignores all the missing observations and just uses the complete sample case
to perform estimation without weight. Whereas, the weighted estimator (wrq) also only uses
complete data but realizes estimation by constructing the inverse probability weighted estima-
tion equation based on the selection probability. In the weighted estimators, wrq_,eq; denotes
the weight of estimator coming from the real selection probability, then the weights come from
estimated selection probabilities 7;s via Logistic, Local Polynomial and Nadaraya-Waston esti-
mator are denoted as wWrq_jog, Wrq-joess and Wrq_n., respectively. Especially, to examine the
effects of quantile 7 on the response, 7 = 0.05,0.1,0.25,0.5,0.75,0.9,0.95 are considered.

We generate 1000 observations {(z;,y;)} from

Y =1.67X —1.33+ 0.6¢ (3.1)

where X ~ U(2,5), a uniform distribution, the error ¢ follows a standard normal distribution.

To model the missing data, the selection probability m is assumed to be a piecewise function of

Yis
D1, Yi > 4
m(yi) = (32)
0.99, vy; <4

where p; is set to be 0.1,...,0.9, respectively. Thus 6(y;) has a Bernoulli distribution, i.e.,
0(y;) ~ Bernoulli(r(y;)).

If 6(y;) = 0, we regard the ith observation x; as missing.

04

0.2

0.0
H
8

Figure 1 Logistic (green dotted line), Local Polynomial (blue dotted line) and Nadaraya-Waston
(red dotted line) estimates of selection probability when p; = 0.3. The black circles represent 6(X;),
indicating the missingness of ith observation. The solid line is the real probabilities we assumed. If the

estimates are beyond the interval [0,1], 0.01 or 0.99 is taken instead
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To see the performance of estimators 7s, we take p; = 0.3 as an example. The estimated 7;s
is depicted in Figure 1. It can be observed from Figure 1 that the Nadaraya-Waston estimator
fits m; best.

To estimate the unknown coefficients 5y and (7, first we use the real selection probability
(3.2) denoted as Burqg.,.., = (Buwrqrou.05 Buwrgoen1), that is

6(yi)

n
. B . _ T3\ 2\
Burgoren (1) = arg InBln ; pr(yi —x; B) () .

Then we employ the estimated selection probability 7;s for the missing observations to obtain

estimate 3, denoted as Bqu_log, Bqu_mss and Bqu respectively. To compare these estima-

—-nw ?

tors, we use relative error re; and reg, where reg = |(80 — 80)/Bo| and re; = |(B1 — B1)/5l.

Results are reported in Table 1, where the mean relative error of 1000 simulations are also

reported.
” Method T = 0.05 7 =0.1 T =0.25 T =20.5 T =0.75 7T =0.9 7 =0.95
reg rep reg rep reg reg reg req reg rep reg rep reg rep
orq 0.182 0.108 | 0.192 0.107 | 0.213 0.104 | 0.207 0.086 | 0.188 0.062 | 0.274 0.046 | 0.514 0.042
Wrqg_real 0.109 0.051 0.1 0.042 0.1 0.034 0.12 0.031 0.198 0.035 | 0.448 0.046 | 0.964 0.058
0.1 wrq_iog 0.293 0.142 | 0.285 0.129 | 0.267 0.107 | 0.266 0.084 | 0.349 0.072 | 0.889 0.087 | 2.626 0.14
WTrq-loess 0.121 0.057 | 0.112 0.047 | 0.125 0.04 0.181 0.042 | 0.326 0.051 0.696 0.067 1.275 0.075
Wrq —pw 0.112 0.051 0.099 0.041 | 0.094 0.033 | 0.109 0.029 | 0.171 0.031 0.359 0.038 | 0.775 0.049
orq 0.115 0.064 | 0.106 0.058 | 0.093 0.046 | 0.086 0.033 | 0.128 0.026 | 0.292 0.026 | 0.614 0.032
WrQ_real 0.085 0.038 | 0.075 0.03 0.076 0.025 | 0.093 0.023 | 0.152 0.026 0.33 0.033 | 0.702 0.042
0.2 wrq_jog 0.271 0.125 | 0.292 0.125 | 0.341 0.124 | 0.437 0.125 | 0.582 0.119 | 0.918 0.115 1.381 0.102
Wrg-joess | 0.091 0.04 0.075 0.03 0.072 0.024 | 0.088 0.022 | 0.143 0.024 | 0.312 0.031 | 0.672 0.04
Wrg—nw 0.087 0.038 | 0.075 0.03 0.074 0.024 | 0.086 0.022 | 0.137 0.024 | 0.285 0.029 | 0.596 0.037
orq 0.088 0.045 | 0.072 0.035 | 0.065 0.027 | 0.074 0.02 0.138 0.019 | 0.308 0.024 | 0.617 0.031
WrQ—real 0.076 0.032 | 0.066 0.026 | 0.066 0.021 0.08 0.02 0.129 0.021 | 0.285 0.028 | 0.585 0.035
0.3 wrq_iog 0.173 0.08 0.192 0.081 | 0.246 0.087 | 0.329 0.091 0.486 0.096 | 0.802 0.097 1.3 0.095
Wrg_joess | 0.077 0.033 | 0.067 0.026 | 0.063 0.021 | 0.073 0.018 0.12 0.02 0.259 0.025 | 0.534 0.031
Wrq-—nw 0.074 0.032 | 0.064 0.025 | 0.063 0.021 0.074 0.018 0.12 0.02 0.255 0.026 | 0.525 0.031
orq 0.075 0.034 | 0.068 0.028 | 0.061 0.021 | 0.078 0.017 | 0.139 0.019 | 0.292 0.023 | 0.574 0.03
Wrq-real 0.069 0.029 | 0.063 0.024 0.06 0.019 [ 0.073 0.018 | 0.113 0.019 | 0.255 0.025 | 0.543 0.032
0.4 wrq_jog 0.118 0.052 | 0.133 0.054 | 0.173 0.06 0.242 0.066 | 0.364 0.07 0.625 0.073 1.066 0.075
WTq-loess 0.07 0.029 | 0.064 0.024 | 0.058 0.018 | 0.067 0.016 | 0.106 0.017 | 0.235 0.023 | 0.501 0.029
Wrg-nw 0.069 0.029 | 0.063 0.024 | 0.058 0.018 | 0.068 0.016 | 0.107 0.018 | 0.232 0.023 [ 0.501 0.029
orq 0.07 0.03 0.06 0.023 | 0.061 0.018 | 0.077 0.017 | 0.128 0.018 | 0.277 0.023 | 0.553 0.029
Wrq_real 0.066 0.027 | 0.059 0.022 | 0.059 0.018 0.07 0.017 0.11 0.018 | 0.233 0.023 | 0.496 0.029
0.5 q-log 0.088 0.038 | 0.092 0.037 | 0.119 0.04 0.171  0.046 | 0.268 0.05 0.505 0.057 | 0.898 0.061
Wrg_jpess | 0.066 0.027 | 0.058 0.021 | 0.058 0.018 | 0.068 0.016 | 0.106 0.017 | 0.222 0.021 | 0.478 0.028
WG —nw 0.065 0.027 | 0.058 0.021 | 0.058 0.018 | 0.067 0.016 | 0.105 0.017 | 0.227 0.022 [ 0.481 0.028
orq 0.066 0.027 | 0.059 0.022 | 0.058 0.017 | 0.075 0.016 | 0.124 0.017 | 0.247 0.021 0.484  0.026
WrQ—_real 0.064 0.026 | 0.057 0.021 | 0.055 0.017 | 0.066 0.015 | 0.105 0.017 | 0.219 0.021 | 0.444 0.026
0.6 wrq_iog 0.075 0.031 0.075 0.029 | 0.093 0.03 0.129 0.033 | 0.206 0.037 | 0.384 0.042 | 0.694 0.046
Wrqg_loess 0.064 0.026 | 0.056 0.02 0.054 0.016 | 0.064 0.015 0.1 0.016 | 0.209 0.02 0.438 0.026
WrQ—nw 0.063 0.025 | 0.055 0.02 0.054 0.016 | 0.065 0.015 | 0.101 0.016 | 0.209 0.02 0.434  0.026
orq 0.062 0.024 | 0.056 0.02 0.056 0.016 0.07 0.015 | 0.112 0.016 0.23 0.02 0.455 0.025
Wrq_real 0.061 0.024 | 0.055 0.02 0.054 0.016 | 0.066 0.015 | 0.103 0.016 | 0.214 0.02 0.432  0.025
0.7  wrq_iog 0.066 0.026 | 0.064 0.024 | 0.071 0.022 | 0.096 0.024 | 0.154 0.027 | 0.298 0.031 [ 0.574 0.036
wWrq-ipess | 0.061 0.024 | 0.055 0.02 0.054 0.016 | 0.064 0.014 0.1 0.016 | 0.207 0.019 | 0.414 0.024
Wrq-—nw 0.061 0.024 | 0.055 0.02 0.054 0.016 | 0.064 0.014 | 0.101 0.016 | 0.209 0.019 | 0.417 0.024
orq 0.061 0.024 | 0.055 0.02 0.052 0.015 | 0.067 0.015 | 0.105 0.016 | 0.208 0.019 | 0.413 0.023
Wrq—real 0.06 0.024 | 0.054 0.019 | 0.051 0.015 | 0.065 0.015 0.1 0.016 | 0.198 0.019 | 0.407 0.023
0.8 wrq_iog 0.061 0.024 | 0.057 0.02 0.056 0.017 | 0.076 0.018 | 0.122 0.02 0.238 0.024 | 0.462 0.028
Wrq-loess 0.06 0.024 | 0.054 0.019 0.05 0.015 | 0.063 0.014 | 0.098 0.015 | 0.195 0.019 | 0.407 0.023
Wrg—nw 0.06 0.024 | 0.054 0.019 0.05 0.015 | 0.064 0.014 | 0.098 0.015 | 0.195 0.019 | 0.407 0.023
orq 0.058 0.023 | 0.052 0.018 | 0.053 0.015 | 0.063 0.014 | 0.097 0.015 | 0.203 0.019 | 0.415 0.023
Wrq_real 0.058 0.023 | 0.052 0.018 | 0.052 0.015 | 0.061 0.013 | 0.095 0.015 | 0.203 0.019 | 0.413 0.023
0.9  wrq_iog 0.058 0.022 | 0.053 0.019 | 0.054 0.016 | 0.065 0.015 | 0.101 0.016 | 0.209 0.02 0.424 0.024
wWrq-joess | 0.0568 0.023 | 0.052 0.018 | 0.053 0.015 | 0.062 0.014 | 0.094 0.014 0.2 0.018 | 0.411 0.023
wWrq-nw 0.058 0.023 | 0.052 0.018 | 0.052 0.015 | 0.062 0.014 | 0.095 0.014 | 0.202 0.019 | 0.412 0.023

Table 1 Mean relative error of several estimators
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Parts of Table 1 display the results of orqg and wrq_.eq; methods which are obtained only
based on complete data case. Their difference is whether to employ the weights in the objective
check function. As a result, in about 77.8% of our simulation results, the performance of wrq_,eq
is better than orq with given p1s and 7s. It is also evident from Table 1 that wrqg_eq; method
appears better when 7 is small, and orq gradually takes active part as 7 gets bigger, which is
due to both the sparseness of data for extreme quantile level and the weighting scheme. The
weighting scheme strengthens the role of the several unmissingness data in objective function.
Another phenomenon is the influence of p;. We find that the relative errors are getting closer
with the increase of p;. That is reasonable, when p; is big enough, Eq. (3.2) indicates that 7(y;)
is almost a constant, making the weighting scheme useless. Over 90 percent of the results shows
the superiority of the previous method. And only in extreme situations such as 7-level is high
and py (3.2) is small enough, orq is likely to be better than wrq_p,,, which is caused by leverage
effect mentioned above.

In addition, it can be seen from Table 1 that wrqg_,., has better performance than wrq_,eq;.
That is to say, compared with real selection probability, N-W type estimator is much more
preferable, which is obscure and a little bit interesting. However, leverage effect is also one
of the reason for explaining this phenomenon, where smooth nonparametric estimate of 7 (y;)
can counterbalance parts of the disadvantages caused by leverage effect and the weight. It is
approved by Figure 1. The estimated 7; is to deviate from m; in the edge of range of y;, that
can neutralize some disadvantages caused by leverage effect. Some theoretical explanations can
be found in Robins et al. [8].

Method orq WTrq-real | WTrq-log | Wrq_joess | WIrqd_nw
orq - 22.22% 96.03% 15.08% 8.73%
WTq _real 77.78% - 98.41% 30.95% 11.11%
Wrq-log 3.97% 1.59% - 1.59% 1.59%
Wrg_joess | 84.92% 69.05% 98.41% - 39.68%
WTq —paw 91.27% 88.89% 98.41% 60.32% -

Table 2 Comparative result of mean relative error

As mentioned above, different estimators of 7;, such as Logistic [13], Local Polynomial and
For the sake of

simplicity, Table 2 is also provided. Numbers in Table 2 are the comparative results of the

Nadaraya-Waston estimators, are also compared and presented in Table 1.

corresponding methods, for instance, 77.78% in Row 2 and Column 1 mean that wrq_req is
better performed than org in percentage of 77.78. From the result, wrq_joq4 is even worse than
orq in most cases, that’s because the selection probability (3.2) is a step function and not suitable
for logistic estimation. In practice, non-parametric regression is usually better than parametric
method for unknown function. Furthermore, even in most cases of the 1000 simulations wrq_jpess
is better than orq or wrq_,eq, it is inferior to wrq_,,, in almost 60% cases.

From the results and analysis of Tables 1 and 2, we find that in most cases the performance
of each estimator is roughly of the relationship as follows: wrq_n, > Wrq_jpess > Wrq-rear >

orq > wrqg_jog. Thus we would like to further compare between these estimators by using
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relative error criteria, since estimators with small relative error are usually wanted and then
investigate its dependence on sample size n. As the matter of convenience, we choose 3 typical
methods, Wrq_nw, Wrq-req; and org, to compare. Several sample size cases are considered here,
n = 200,n = 300,n = 500 and n = 1000. Results of the proportion in 1000 replications are
listed in Tables 3-5. P(recstimaort < T€estimator2) 1S & measure of estimator accuracy, it shows
the proportion of trials in which estimator has smaller relative error.

It is evident from Table 3 that wrq methods (stands for wrq_,eq and wrq_,., ) perform better
when sample size n gets larger. And wrq_p, is obviously more superior to wrq_req;. Tables 4
and 5 provide the relative errors of intercept and slope, respectively. It seems that, comparing
with wrq_realr, Wrq_n,. has better estimation accuracy in terms of coefficient than the intercept.
That is another evidence of the crucial influence of leverage effect to the estimators. We also
illustrate the performance of wrq methods in Figure 2. It is obvious that compared with org

methods, wrq estimates are closer to the true value except for wrq_;og.

Sample Size P(rewrq < Teorq) Pewrg,. <T€orq) PTewrq,. < TCwrq....)

-real

n = 200 46.03% 69.05% 90.48%
n = 300 49.21% 70.63% 84.92%
n = 500 57.94% 79.37% 85.71%
n = 1000 77.78% 91.27% 88.89%

Table 3 The effects of sample size on relative errors

Sample Size  P(rewrq ...;,0 < I€orq,0) PICwrg .0 <T€orq0) PTCwrg ..,0 < TCwrq w0

n = 200 46.03% 68.25% 88.89%
n = 300 52.38% 74.60% 85.71%
n = 500 65.08% 84.13% 84.13%
n = 1000 82.54% 93.65% 87.30%

Table 4 The effects of sample size on relative errors of intercept

Sample Size  P(rewrq ..ol < €orq,1)  PCuwrg w1 <T€orq,1) PrCwrg w1 < TCwrq eu,1)

n = 200 46.03% 69.84% 92.06%
n = 300 46.03% 66.67% 84.13%
n = 500 50.79% 74.60% 87.30%
n = 1000 73.02% 88.89% 90.48%

Table 5 The effects of sample size on relative errors of slope

In addition to analyzing the relative error, we also simulate the Bias (BIAS), sample standard
deviation error (SD), estimated standard error (SE) and coverage probability based on nominal
target coverage of 95% (COV) of estimators among different estimated methods with varied
quantiles and p; values (see Appendix). The estimated standard errors of estimators are calcu-
lated based on the bootstrap method. They are similar to the results in Table 1, that wrq_n.

has better estimation effect with both intercept and slope.
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Figure 2 Comparison of the estimated lines (p1 = 0.3, n = 1000, 7 = 0.1,0.5,0.9). The solid lines
are the real regression lines as the standard of comparison, the black, purple, green and red dotted lines

are based on org, Wrq-real, Wrqg-1og and wrq_n., methods, respectively.

-05

-1.0

Constants
Coefficients of X

Figure 3 Comparison of the medians of estimated coefficients (p1 = 0.3, m = 1000, n = 1000,
7=0.1,...,0.9). The solid lines are the real coefficients as the standard of comparison, the green, blue
and red dotted lines are based on wrq_iog, Wrq-ijvess and wrqg_n., methods, respectively.

Figure 3 depicts the comparison results of the medians of estimated coefficients with various
quantile level 7s. It is strongly supported from this figure that wrq_,,, and wrq_j.ss estimators
are more robust and efficient than wrq_j,, estimators. In addition, the performance of wrq_y.,
estimator of coefficient is better than wrqg_j,ess, especially when 7 > 0.5. Considering with the
estimation circles in Figure 1, we can confirm that wrg_,,, is a better estimation than wrq_jsess

with respect to our example.

4. Generalization
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In this section, we would like to generalize our proposed methods to more complicated cases.
First multivariate case is considered, second nonparametric techniques are further applied to
extend our linear parametric model specification. Local polynomial method is mainly considered

here to take an example. Note almost all the nonparametric methods can be applied here.
4.1. Multivariate linear model

In the above section, X is assumed to be a one-dimensional variable, which seems to be more
restricted. In this section, we generalize our method to the more general settings: that is X
can be multivariate, high-dimensional. In the missing data scenario, some of the covariates are
assumed to be missing at random while the others not. Thus let X = (U,T), and U is MAR,
while Y and T are fully observed. Here, U and T are d; and do-dimensional random vectors
respectively. Define missing indicator ¢; for the ith individual. é; = 1 when U; is observed, d; = 0

when Uj; is missing. Then the MAR assumption implies
m = P(0; = 1|Y;,U;, T;) = P(6; = 1|V, Ti) = 7(8Ss),

where S; = (Y;, T;). Furthermore, m; can be estimated by

a s — 2 j—10iKu(si —s;)
’ Y Y Ka(si—s))

where K(-) is a multivariate kernel function. H is a bandwidth matrix. In such case, 7; is a

weighted average of those d; where s; lies in a ball or cube around s;. More details can be referred
to Hardle et al. [18]. After chosen the appropriate kernel and bandwidth, 7; can be estimated

finely and 8 can be obtained via

n
~ 5
* = argmin = xT ) —.
B = argmi ;Myz B
Remark 4.1 In the multivariate case where U = (Ui, ..., Uy, ), we mean ¢ = 0 provided any

variable in U is missing, one or two or even more. Thus under this circumstance, just using CC
data to conduct estimation is a great loss of information, leading to the inefficiency of the resulting
estimator. Therefore on the occasion the imputation method seems to have more advantages.
However, the assumption in this paper is that the missing covariates are strongly related with
the observed variables, therefore we suppose that most of U is missing for simplicity and easiness
to handle. In terms of the selection of the multivariate kernel function, a type of multivariate
kernels, which is called spherical or radial-symmetric can be obtained from univariate kernel
functions by taking K(u) oc K(|lul|), where |u]| = vVuTu denotes the Euclidean norm of the

vector u.
4.2. Nonparametric model

When the relationship between X and Y is not linear, nonparametric model is a good choice.
In this section, we consider generalization of proposed methods to nonparametric model. To

explore the relationship between X and Y, we assume that

Y =m(X) +e¢,
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where m(z) is a unknown function, ¢ is the error term satisfying F(¢) = 0. We define the 7th
conditional quantile of Y as ¢, (x). To estimate ¢, (z), local linear method is employed. The idea

of local linear quantile regression is to approximate ¢, (x) by a linear function
q-(t) = q-(z) + ¢7(2)(t —2) =a +b(t — )

for ¢ in a neighborhood of x. Thus, estimating ¢,(x) and ¢/ (z) is equivalent to estimating a and
b. Therefore in the missing covariate case, given a sample {z;,y;}", @ and b can be obtained

by minimizing

where h; is a smoothing bandwidth, 7 can be obtained by Eq. (2.4). Note that to have a good
estimate in nonparametric model, we should choose two bandwidths h and hi, each representing
the smoothness of selection probability and local linear function. Yu and Jones [3] presented the

optimal bandwidth in local linear quantile regression.

5. Conclusion and discussions

Missing covariates is a focus topic in statistical analysis. In this paper, a weighted quantile
regression method is considered to deal with this problem. By adding effective weights into the o-
riginal objective function, the resulting estimator is robust, efficient and consistent. This method
is also demonstrated to have more extensions beyond simple linear regression. The missing prob-
ability could be estimated by various parametric and nonparametric methods. And it’s verified
that the method using nonparametric estimated missing probability has the same efficiency as
it is known in advance. Results of the simulation suggest the usefulness and practicality of the
proposed estimator. In addition, our method can be generalized to more complicated models,
such as nonparametric quantile regression models. For instance, we provide a brief description of
local linear quantile regression model, and estimate it by the weighted method. Actually, More
models and missing assumptions should be concerned using the provided weighted estimation

method, which is dependent upon future research.

6. Proof of theorems

Assumptions and conditions:

(1) The distribution F' is absolutely continuous, with continuous densities f(§) uniformly
bounded away from 0 and oo at the point &(7).

(2) Define Dy(7) = limy 0o n ™' Y 2x;x7 , and D1 (7) = limp—oe n ™1 f(£(7)) 3 x;x7 . Both
Dy(7) and D;(7) are the positive deﬁnité matrices

(3) maxi—1_.n [ xi [l /vn—0.

(4) The selection probability 7(Y) > ¢ > 0.

(5) The kernel function K (-) is a symmetric probability density with support [—1,1].
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(6) |7(Y)=7(Y)| = 0p(1) uniformly. 7(Y) > ¢* > 0 and 7(Y") has bounded partial derivatives
up to order 2 almost surely.

(7) The density of Y, f(y), has bounded derivatives up to order 2 on support C, and satisfies
0 <infyec f(y) < sup,ec f(y) < oo.

Proof of Theorem 2.1 The behavior of \/E(B(T) — B(7)) follows from consideration of the

objective function

Zn(n) = Y _lpr (i = x[n//n) = pr(ui)] =,
i=1 ¢
where u; = y; — xF'3. The function Z,(n) is obviously convex and is minimized at 7, =

Va(B(r) — B(7)). Using Knight’s identity,
pr =) = (1) = —vwr )+ [ (1< 5) = T < 0,
with ¢, (u) = 7 — I (u < 0). We may write Z, (1) = Zin(n) + Zon(n), where
Zran) = ——= ST ()

i=1 v

n Vni 51 n
Zontn) = 30 ([ (000 < 5) = T < 0)a5) & = 3 Zanit
i=1 v i=1
and v,; = x 1/y/n. We have
n 61'
EZin(n) = ——= 3 B e () 5)

(B () . )

K2

sl

3 B0 e ) By, x0)

K2

E(6ilyi, x;)

U

)
Z E(X?nlﬂr (uz))

1
NG
L
NG
== > G ()
1
NG
% S KT uB(r — I < 0)) = 0.

3

0
VarZin(n) = + 3 B O ni (u) 2 )?
i=1 !
1< 9;
= =3 BB () 25 i x,)
i=1 ¢
1< d;
= > BT )R B i x2))

i=1 ?
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n

_ZE X 77 ¢2(uz)/ﬂ—1)

i=1

=_ Z(xiTn)2E(T2/m + (1 —=27)1(u; < 0)/m;)

1- ixn

i=1

: =

S

S|

—~~

(7'

It follows from the Lindeberg-Feller central limit theorem, using Condition (2), that Z1,(n) —
—nTW where W ~ N(0,7(1 — 7)Do(7)).
As for Zs,(n), we have

EZsn(n) =Y EZoni(n)

=X e v ey
=S [T VAEE 1y vR) - Flevi)

(2n) "1 f(€) Zn x; X1 1+ o(1)

— 577TD1 (T)n.

The first equation follows from the independence in Condition (1).

n

Var(Zan (1) ZVar Zoni(m) <Y B(Zoni(n))?
i=1

< max |Zan;i(n)] Z E(Z2ni(n))

i=1

1 _
= C\/ﬁ max |Xz 77| ;:1 2 (77)
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where ¢ = min(m;) > 0 mentioned in Condition (4). The above bound and Condition (3) implies
that
T L 7
Zn(n) = Zo(n) = =" W + 50" Di(7)n.

The convexity of the limiting objective function, Zy(n), assure the uniqueness of the minimizer,

and consequently,
in = Vi(B(r) — B(r)) = argminZ, (n) — 7 = argminZo ().
Finally, we see that o = Dy *(7)W and the result follows. O

Proof of Theorem 2.2 Similarly, the objective function
. - 0i
Zn(n) = _lpr(wi = xn/V/n) = pr(ui)] =,

i=1 v

is convex and is minimized at

Using Knight’s identity, we get

where

Zin(n) = —

Zia) =2 ([0 < 9) - 160 < 0)05) £ = 3 25,0

and v,; = x n/\/n.
By a linearization technique in [20],

0 0 o 0 0; O;(my — 75 O;(my — 75

T T T, ™ ; T
51’ 5 T %1 T %z
Uy i Uz
51 51 Ut T

e TR eY)
we can derive
an(ﬁ) = Z X 77¢T uz A_

%



318 Zhaoji CHU, Lingnan TAI, Wei XIONG and et al.

From the Proof of Theorem 2.1, we have F(A;) = 0, and it can be verified that

i1 (mi = 0) Kn(yi — y5)
= ’ Xian‘r(ui)

2
= — inz ji E;‘L:l(ﬂi —9; Kh(yi _yj)
2

n T ‘
i=1 _12 nf(yz) ximrl)
1 & 5; 7.1: i — 0 Kn(yi — vy,
_ _n g 7T_l2 J 1(7T nf(;l)h(y y])x’g“an(ul) + Op(l)

1 < 5i "
=~ 7 2 g M) )~ m ) Ky )~
L n i i n 0; 7 " Yi — Y )
7 20 = W) 2 s K )
L NG ) g
_Op(l) \/ﬁ]; ﬂ_(y]) E( an( l)|y])+ p(l)
L SR gt ) 40
TR ey D) + o)
then
E@ﬂP%Zéﬁ?Wﬁwwmnwm
j=1 I
== = 3 BT B i (uls)) + Bloy (1)) 0
j=1 J

and we have
EZ},(n) = E(A1) + B(As)(1 + 0,(1)) — 0.

For the variance, we have

Vaern ZE X, 771/)7'(”1)?:_)
=—2Exwmm%+%%;@@mmmf
. 20i(m — 7 (i — 7).
=~ Z E(x?an(ui)(% + %(1 Top(1)) + 2T . 211 o))
i=1 [3 7 T

= % > E(x?nwf(ui)((s—; + M(z +0,(1))))

: 5
=1
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= LS B ) 2+ 23 B ) Ty 40, 1)
i=1 ¢ i=1 ¢
= VarZi,(n) + %E(Z 7T3(ZJ¢) (w(ys) — 7 (y:))xi s (1)) (2 + 0,(1))
1 o~ 6 2o (m(yi) = 05) En(yi — y5)
= VarZi,(n) + ﬁE(; D Y el w(Yi —y I (wi) + 0p(1))-
(2+0p(1))
1o~ 7(y;) =85 or
= VarZin(n) + EE(Z (5] E(xi mbr(ui)lys) + op(1))(2 + 0p(1))
= VarZi,(n).

Then it can be verified that Z7,(n) — —n'W where W ~ N(0,7(1 — 7)Dq(7)), using the

Lindeberg-Feller central limit theorem.

As for Z3,,(n), we have

B30 =3 B2, = S B(( [ 0t <) - 160 < 0)as) 2

_zn:E((/O (I(ui < s) = I(u; < 0))d )(i— 51'(7”1_2 ) () +0,(1))))
_iE(/O”" (T(u; <s8)—I(u; < ()))dsi_i)_'_
(anE(/O (I(ui < 5) = I(u; < O))ds%(m — 7)) )1+ 0,(1))
=1 %
- i 21 (i) = 0) Kn(yi — )
=BZau()+ E()_ W;EM S

and

=1 i=1
<max|Z5,:(n)] Y E(Z3,:(n))
i=1
1

P ;7| ; EZ5,:(n) = 0.

<
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Therefore, as same as the Proof of Theorem 2.1, we can have
Zan) = Z5() = —a"W + 50" Da(rhn.
As a result,
M, = V(B (r) — B(r)) = argminZ;;(n) — G = argminZ; (n) = Dy (n)W-.

We complete the proof of Theorem 2.2. O

Appendix

The contents of Tables 6 and 7 are shown here.

p1 Method 7=01 7=025 7=05 T=0.75 7=09
BIAS  SD SE COV BIAS  SD SE COV BIAS  SD SE COV BIAS  SD SE COV BIAS  SD SE Ccov
orq -0.4116 05387 0.4740 0.86 -0.3809 0.4448 04092 087 -0.2933 04088 0.4946 088 -0.1531 0.3870 0.6070 0.94 -0.0218 0.4465 0.5335 0.93

WrG-reqr  0.0863  0.5967 02915 0.89  0.0194 04857 0.3934 0.94 0.0071 04462 0.6110 0.95 -0.0265 0.5542 0.7760 0.96 -0.1620 0.8123 1.3433 0.88
0.1 wrqi 07699 08119 1.0611 0.79  0.5244  0.6680 0.7111 0.85 0.3552 0.6676 0.6996 0.91  0.0152 11913 0.6832 0.91 -0.6476 1.6390 0.6722 0.86
wWrQjeess  0.1771  0.6265 0.3236 0.88  -0.0876 0.5569 0.3603 0.93 -0.2293 0.6021 1.1606 0.94 -0.3445 0.8116 14569 0.95 -0.4147 0.9669 1.6799 0.90
Wy 02719 0.5760 0.3242 0.87  0.1026  0.4824 0.3288 0.92  0.0950 0.4232 04023 093 0.0778 04508 0.6926 0.96 -0.0407 0.6215 1.0793 0.93
orq -0.1737 04435 0.3359 094 -0.1031 0.3561 0.7171 0.94 -0.0364 0.3318 0.2986 0.95 0.0516 0.3168 02116 0.94 0.1170 0.3670 0.4268 0.92
wWrgrear  0.0494 04506 0.7235 0.94  -0.0032 0.3600 0.4560 0.95 0.0012 0.3358 0.2663 0.97 -0.0061 0.3693 0.3337 0.96 -0.0563 0.5303 0.8051 0.94
0.2 wrqie, 06295 05332 05942 0.81 0.6022 04872 04591 0.76  0.5439 04826 0.6102 0.78 04084 0.6280 0.6220 085 0.1367 0.7310 0.6019 0.92
WrG_ggess  0.0822  0.4550 0.3801 0.91  -0.0214 03517 0.3224 0.94 -0.0365 0.3212 0.2020 0.96 -0.0569 0.3406 02179 0.97 -0.1035 0.4970 0.7372 0.96
W, 0.1058 04449 0.5115 092 0.0391 0.3451 02934 094 0.0618 0.3079 0.1868 0.95 0.0589 0.3300 0.2210 0.94 0.0309 0.4478 0.6560 0.95
orq -0.0321 04090 02721 0.94  0.0089 0.3090 0.3385 0.95 0.0355 0.2677 0.2980 0.93 0.0844 02939 02749 093 0.1256 0.3487 0.3574 0.93
WrG-peqr  0.0520  0.4024 02626 0.93  0.0256  0.3210 0.3974 0.94 -0.0136 0.3001 0.3431 0.95 -0.0197 0.3545 0.4052 093 -0.0395 0.4785 0.2735 0.93
0.3 wrqiy, 04498 03950 02552 0.81 04398 0.3474 0.2316 0.80 0.4419 0.3917 03390 082 04050 04851 0.3693 0.80 03038 0.5819 0.3339 0.88
wWrgjeess  0.0794 04094 0.2935 0.90 0.0391 0.3224 03479 094 -0.0267 0.2717 0.2895 0.97 -0.0378 0.3129 0.3640 0.95 -0.0619 0.4266 0.3121 0.96
Wrgny  0.0819  0.3919 02438 0.91  0.0600 03112 0.3389 0.94 0.0178 02760 0.2987 0.96 0.0162 03197 03458 0.94 0.0134 0.4134 0.3074 0.94
orq -0.0153 0.3661 0.5811 0.93 0.0195 02782 0.3246 0.95 00716 0.2589 0.2402 0.93 0.1195 0.2671 0.4035 0.93 0.1480 0.3362 0.1632 0.92
Wrgrea 00165  0.3567 04728 093  0.0107 0.2764 0.3743 0.96 0.0163 0.2786 0.3127 0.95 0.0168 0.3032 04040 095 -0.0118 0.4213 0.2500 0.93
0.4 wrqgge, 02934 03565 0.3560 088 0.3341 03020 04285 0.83 0.3484 03038 0.3997 081 03607 03695 02526 085 03229 05017 0.1373 0.83
Wrqoess  0.0295 03511 0.4507 094  0.0155 02611 0.3238 0.96 0.0169 0.2445 02685 0.96 0.0155 0.2882 0.3535 0.97 -0.0166 0.3861 0.1264 0.95
W 0.0272 03470 04239 094 00293 0.2605 0.3302 0.96 0.0435 0.2546 02776 0.94 0.0453 0.2765 0.3525 0.95 0.0387 03789 0.1381 0.94
orq 0.0281  0.3594 04041 0.94 0.0352 0.2702 0.3296 0.95 0.0626 02397 0.2685 0.93 0.0743 0.2698 02613 092 0.1069 0.3193 0.3161 0.93
WrGopeqr  0.0305  0.3411 03727 0.94  0.0133  0.2633 0.3869 0.95 -0.0016 0.2495 0.3047 0.95 -0.0232 0.2969 02790 0.94 -0.0231 0.3755 0.3300 0.95
05 wrqi 02239 03289 03314 091 0.2278  0.2677 03044 087 02377 02556 0.2670 0.88 02368 03262 0.3626 0.88 0.2382 04075 0.3242 0.90
WrG-oess  0.0572  0.3516  0.3868 0.94  0.0160 02564 0.3496 0.95 -0.0061 0.2440 0.2956 0.95 -0.0269 0.2724 02626 094 -0.0315 0.3512 0.3390 0.95
Wrgony  0.0527  0.3450 0.3805 0.94  0.0239  0.2550 0.3655 0.94 0.0122 02428 0.2878 0.95 0.0003 0.2783 02828 0.94 0.0064 0.3509 0.3326 0.94
orq 0.0239 03324 02795 097 00515 02772 03081 091 0.0693 02493 0.2115 092 00925 02520 02359 092 01150 0.3105 0.3361 0.92
Wrgrea 00148 03224 02390 096  0.0179  0.2706 02773 0.92  0.0112  0.2575 0.2239 0.92 0.0134 02769 0.2749 093 0.0006 0.3451 0.3425 0.95
0.6 wrqi, 01453 03133 02188 094 0.1640 0.2666 0.2668 0.88 0.1789 0.2595 02110 0.89 0.1903 02758 02492 089 02104 03583 0.2904 0.90
Wrqoess  0.0239 03181 0.2076 0.97  0.0171 02707 0.2684 0.91  0.0078 0.2557 0.2181 0.92  0.0007 0.2745 0.2735 0.93 -0.0004 0.3443 0.3483 0.94
wrgn,, 00207 03144 02367 097  0.0246  0.2708 02634 0.91  0.0194 0.2516 02114 0.92 0.0231 02733 0.2631 092 0.0226 0.3397 0.3238 0.94
orq 0.0408 0.3183 0.7210 0.94 0.0524  0.2637 0.4011 0.93  0.0467 0.2475 0.1589 0.93 0.0468 0.2572 0.2093 0.94 0.0810 0.3117 04332 0.94
WrG_peqr  0.0210  0.3086 0.6848 0.95 0.0170  0.2657 0.3935 0.93  -0.0031 0.2490 0.1540 0.94 -0.0114 0.2659 02118 0.95 -0.0046 0.3221 0.4259 0.95
0.7 wrqie, 01034 02989 0.6352 094 01117 0.2559 0.3637 0.89 0.1177 02429 01631 091 01175 02689 0.1926 092 01409 0.3230 0.5317 0.95
WrGgoess  0.0328  0.2992  0.6429 0.96  0.0183  0.2584 0.3768 0.93  -0.0060 0.2404 0.1546 0.94 -0.0142 0.2593 02341 095 -0.0104 0.3071 0.4236 0.96
wrq-p  0.0260 03000 0.6567 0.96 0.0208 02578 0.3733 0.93 0.0026 0.2408 0.1595 0.94 -0.0034 0.2605 0.2198 0.95 0.0102 0.3072 0.4210 0.96
orq -0.0083 0.2385 094 0.0168 0.2683 02279 0.93 0.0249 0.2483 0.2080 0.91 0.0243 02614 0.2565 0.93 0.0339 0.3120 04291 0.93
Wrqrear -0.0136 0.2331 094 -0.0068 0.2661 02259 0.93 -0.0081 0.2493 0.2206 0.92 -0.0153 02665 0.2539 093 -0.0192 0.3271 0.4449 0.93
0.8 wrqgie,  0.0323 02371 0.94  0.0501 0.2646 0.2291 0.93 0.0549 0.2431 0.2124 093 0.0626 0.2650 0.2595 0.92 0.0723 0.3228 0.4699 0.92
Wrgjeess  -0.0109  0.3248 0.2290 0.94 -0.0048 0.2623 02325 0.93 -0.0110 0.2432 02152 0.92 -0.0143 0.2604 02568 0.93 -0.0144 03218 04228 0.92
wrgn  -0.0126 0.3240 02331 094 -0.0019 0.2622 0.2206 0.93 -0.0059 0.2458 02144 0.92 -0.0076 02616 0.2619 0.93 -0.0084 0.3199 04214 0.93
orq 0.0162 0.3113 0.5630 0.92 0.0192 0.2418 0.4098 0.95 0.0159 02242 0.2297 0.93 0.0230 0.2491 02346 093 0.0386 0.3132 0.3505 0.93
Wrqpea 0.0052 03157 0.5531 0.92  0.0100 0.2424 0.4111 0.95 0.0003 0.2251 02268 0.93  0.0029  0.2556 0.2368 0.94  0.0155 03171 0.3510 0.94
0.9 wrqgi, 00279 03114 05617 092  0.0330 02402 04142 095 0.0301 0.2250 02246 0.93 0.0371 02566 02284 092 00518 03121 0.3557 0.93
Wrg-eess  0.0115  0.3128  0.5248 0.93  0.0122  0.2419 04011 0.95 0.0012 02233 0.2280 0.94 0.0034 0.2504 02279 0.94 0.0208 0.3166 0.3364 0.94
Wrg_py  0.0076  0.3138 05475 0.92  0.0131  0.2410 0.4076 0.95 0.0019 02243 0.2268 0.94 0.0049 0.2529 02319 093 0.0216 0.3149 0.3486 0.94

Table 6 The SD, SE and COV of intercept
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p1 Method 7=01 7=025 7=05 T=0.75 7=09
BIAS  SD SE COV BIAS  SD SE COV BIAS  SD SE COV BIAS  SD SE COV BIAS  SD SE Ccov
orq 0.1831  0.1839 0.1824 083 01792 0.1553 0.1370 0.81 0.1546 0.1450 0.1675 0.84 0.1129 0.1394 02379 0.90 0.0703 01609 0.2103 0.89

WrGopeqr -0.0291  0.1994 0.0890 0.88 -0.0064 0.1636 0.1242 0.92 -0.0023 0.1478 0.2363 0.95 0.0101 0.1761 02453 0.94 0.0535 0.2372 0.3148 0.87
0.1 wrqiy,  -0.2646 02469 03028 0.75 -0.1936 02120 0.2567 0.81 -0.1468 0.2132 02253 089 -0.0544 03202 0.186 091 0.1488 0.4145 0.1888 0.8
Wreess  -0.0704 0.2088 0.1072 084  0.0165 0.1854 0.0998 0.91  0.0605 0.1803 0.3072 0.95 0.0967 02189 0.361 093 0.1316 02611 04371 0.87
Wrony  -0.0869  0.1890 0.1028 0.85 -0.0294 0.1638 0.1001 0.91 -0.0275 0.1467 0.1521 0.94 -0.0184 0.1557 0.2572 0.95 0.0243 0.1968 0.2803 0.90
orq 0.0879  0.1471 0.1139 091  0.0693 0.1180 0.2463 0.91 0.0494 0.1121 0.1004 0.93 0.0222 0.1047 0.0752 094 0.0034 0.1223 0.1631 0.93
wWrQrear  -0.0177  0.1463  0.2662 091  0.0011 0.1162 0.1511 0.94 -0.0012 0.1071 0.0648 0.96 0.0001 0.114 0.1066 0.96 0.0163 0.156 0.2524 0.94
0.2 wrqi,  -02125 01614 0.1402 0.76  -0.2094 0.1528 0.1318 0.71 -0.1969 0.1577 02021 0.74 -0.1585 0.1957 02289 0.81 -0.068 02188 0.2141 091
Wrq_jgess  -0.0276  0.1474 0.1382  0.89  0.0066  0.1150 0.0790 0.95 0.0103  0.1040 0.0502 0.95 0.0154 0.1055 0.0583 0.96 0.0315 0.1447 0.227 0.95
W, -0.0331 0.1433  0.1848 0.89  -0.0106 0.1119 0.0721 0.93 -0.0177 0.1001 0.0497 0.95 -0.0176 0.1064 0.0624 0.95 -0.0081 0.1419 0.226  0.95
orq 0.0338 01288 0.0929 094 0.0231 0.0989 0.0989 094 00157 0.0843 0.0914 093 0.0024 0.0919 0.0801 095 -0.0083 0.1091 0.0987 0.95
WrGpear -0.0183  0.1236  0.0917 0.92  -0.0090 0.1000 0.1095 0.92  0.0039 0.0902 0.1034 0.95 0.0053 0.1048 0.1041 0.94 0.0133 0.1386 0.078 0.93
0.3 wrqie,  -0.1517 01172 0.0681 0.78 -0.1495 0.1075 0.0661 0.75 -0.1541 0.1278 0.1018 0.78 -0.1464 01613 0.106 0.78 -0.1144 0.1929 01091 0.84
WrGapess  -0.0260  0.1252  0.1025 0.91  -0.0130 0.1004 0.0985 0.94 0.0081 0.0815 0.0864 0.97 00112 0.0929 0.0899 095 0.0217 01235 0.0944 0.95
Wrony  -0.0271  0.1195 0.0839 0.91  -0.0187 0.0967 0.0959 0.93 -0.0044 0.0843 0.0902 0.95 -0.0043 0.0969 0.0845 0.94 -0.0005 0.1244 0.0934 0.95
orq 0.0226  0.1124 0.1845 095 0.0139 0.0857 0.0814 096 -0.0011 0.0819 0.0821 0.94 -0.0146 0.084 0.1404 094 -0.0222 0.1054 0.0521 0.92
Wrg_rear -0.0067 0.1084 0.1421 093 -0.0035 0.0847 0.0930 0.95 -0.0045 0.0861 0.0956 0.94 -0.0049 0.0911 0.1341 094 0.0045 0.1239 0.0623 0.93
0.4 wrqiy  -0.0985 0.1049 0.0866 085 -0.1124 0.0933 0.1148 0.79 -0.1177 0.0955 01276 0.75 -0.1244 01219 0.0752 083 -0.1139 0.1694 0.0414 081
Wrqoess  -0.0097 0.1053  0.1377 093  -0.0047 0.0802 0.0790 0.95 -0.0048 0.0752 0.0848 0.94 -0.0045 0.0882 0.1258 0.95 0.0058 0.1155 0.0431 0.94
WGy -0.0093  0.1042  0.1239 0.93  -0.0088 0.0799 0.0810 0.95 -0.0124 0.0785 0.0871 0.93 -0.0126 0.0836 0.1212 0.94 -0.0105 0.1166 0.0434 0.94
orq 0.0057 01075 0.1165 0.95 0.0032 0.0813 0.0978 0.95 -0.0037 0.0721 0.0768 0.94 -0.007 0.0803 0.0794 094 -0.017 0.0967 0.1095 0.95
WrGpeqr -0.0103  0.1023 0.1063 0.95 -0.0054 0.0778 0.1089 0.95 0.0000 0.0736 0.0844 0.94 0.0065 0.086 0.0858 0.95 0.0065 0.1106 0.1041 0.95
0.5 wrqgie,  -0.0724 0.0941 0.0899 0.87 -0.0763 0.0791 0.0850 0.85 -0.0797 0.0762 0.0715 0.86 -0.0819 0.0994 0.1119 087 -0.0848 0.1293 0.1008 0.90
WrGapess  -0.0173 0.1043  0.1093  0.94  -0.0060 0.0751 0.0981 0.95 0.0019 0.0710 0.0824 0.95 0.0079 0.0773 0.0828 0.95 0.0096 0.1018 0.1116 0.95
Wrg-py  -0.0162  0.1017 0.1068 0.94 -0.0083 0.0752 0.1027 0.94 -0.0032 0.0708 0.0801 0.94 -0.0001 0.0802 0.0891 0.94 -0.0017 0.1032 0.1098 0.95
orq 0.0047  0.0999 0.0943 0.96 -0.0033 0.0811 0.0858 0.92 -0.0080 0.0731 0.0685 0.93 -0.015 0.0736 0.0608 0.94 -0.0208 0.0907 0.0867 0.94
Wrgrear -0.0028  0.0959 0.0757 095 -0.0045 0.0785 0.0752 0.93 -0.0016 0.0746 0.0722 093 -0.0029 0.0793 0.0632 094 0.0013 0.0973 0.0938 0.95
0.6 wrqi,  -0.0453 0.0922 0.0687 092 -0.0517 0.0760 0.0705 0.87 -0.0565 0.0767 0.0687 0.88 -0.0614 0.0812 0.0618 0.88 -0.0689 0.1091 0.0747 0.90
Wrq_oess  -0.0051  0.0939  0.0644 0.95 -0.0037 0.0781 0.0717 0.92 0.0000 0.0737 0.0703 0.93 0.0016 0.078  0.0672 0.94 0.0019 0.0976 0.0912 0.94
Wrgn,  -0.0047 0.0930 0.0733 094 -0.0061 0.0784 0.0719 0.92 -0.0035 0.0727 0.0680 0.93 -0.0053 0.0783 0.0631 0.93 -0.005 0.097 0.0839 0.94
orq -0.0057  0.0925 0.1983 0.95 -0.0089 0.0750 0.1105 0.94 -0.0068 0.0706 0.0494 0.93 -0.0078 0.0728 0.0615 0.96 -0.0188 0.0914 0.1125 0.94
WrQ-rear  -0.0072  0.0890 0.1897 0.95 -0.0060 0.0749 0.1050 0.94 0.0002 0.0704 0.0466 0.94 0.002  0.0747 0.0635 0.95 -0.0015 0.0935 0.1098 0.95
wrqie, 00332 0.0847 01711 093  -0.0360 0.0721 0.0902 0.90 -0.0384 0.0694 0.0462 0.89 -0.0406 0.0771 0.0565 0.92 -0.049 0.0966 0.1509 0.94
WrG-oess  -0.0100  0.0857 0.1756  0.96  -0.0059 0.0729 0.0978 0.94 0.0016 0.0675 0.0460 0.94 0.0031 0.0723 0.0705 0.95 0.0006 0.0888 0.108 0.95
WG -0.0085 0.0860 0.1795 0.96 -0.0066 0.0728 0.0969 0.93 -0.0011 0.0677 0.0470 0.94 -0.0001 0.0729 0.0662 0.95 -0.0058 0.0893 0.1076 0.96
orq 0.0081  0.0919 0.0622 094 0.0015 0.0758 0.0670 0.93 -0.0010 0.0696 0.0608 0.92 -0.0012 0.0734 0.0746 0.93 -0.003 0.0875 0.1102 0.95
WrG-rear  0.0054  0.0924 0.0599 0.94 0.0036 0.0748 0.0655 0.94 0.0040 0.0699 0.0656 0.91 0.0059 0.0744 0.0744 0.93 0.0075 0.0911 0.1133 0.94
0.8 wrgiy,  -0.0089 0.0913 0.0616 0.94 -0.0141 0.0740 0.0669 0.93 -0.0162 0.0677 0.0638 0.93 -0.0192 0.0746 0.0753 091 -0.0222 0.0916 0.1246 0.95
Wrq_oess  0.0047  0.0907  0.0596 0.94  0.0032 0.0735 0.0683 0.93 0.0047 0.0681 0.0631 0.93 0.0056 0.0724 0.0748 0.93  0.0056 0.0895 0.1057 0.93
Wrgn 00051 0.0905 0.0611 094 0.0023 0.0734 0.0648 0.94 0.0034 0.0688 0.0633 0.92 0.0037 0.073 00771 093 0.0045 0.0891 0.1041 0.94
orq -0.0024  0.0869 0.1605 0.93 -0.0033 0.0676 0.1119 0.93 -0.0027 0.0628 0.0646 0.93 -0.0042 0.0698 0.0667 0.93 -0.0083 0.0882 0.0955 0.94
WrQrear  -0.0012  0.0878 0.1585 0.92  -0.0025 0.0676 0.1120 0.95 -0.0002 0.0629 0.0638 0.93 -0.0005 0.0712 0.0666 0.93 -0.0038 0.0892 0.0962 0.95
0.9 wrqgi,  -0.0082 0.0866 0.1599 0.93  -0.0095 0.0670 0.1131 0.94 -0.0096 0.0630 0.0626 0.94 -0.0115 0.0717 0.0653 0.92 -0.0154 0.0877 0.0982 0.94
WrG-pess  -0.0027  0.0872  0.1482  0.93  -0.0030 0.0672 0.1099 0.94 -0.0003 0.0620 0.0647 0.94 -0.0006 0.0693 0.0645 0.93 -0.0054 0.0888 0.0923 0.94
Wrq-py  -0.0017  0.0876 0.1551 0.93  -0.0032 0.0671 0.1120 0.94 -0.0005 0.0625 0.0641 0.94 -0.0008 0.0703 0.0655 0.93 -0.0055 0.0885 0.0961 0.94

Table 7 The BIAS, SD, SE and COV of slope

o
o
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