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Abstract The logistic equation with Lévy noise is considered. Under suitable conditions, the

global existence and uniqueness is obtained; it is shown that the unique positive equilibrium is

globally attractive if the initial value is less than the carrying capacity.
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1. Introduction

The one-dimensional logistic population model is described by the ordinary differential equa-

tion

Ẋ(t) = rX(t)[1− X(t)

K
]. (1.1)

Here X(t) is the population size of a certain species at time t whose members usually live

in proximity, share the same basic requirements, and compete for resources, food, habitat, or

territory; r > 0 is a constant which represents the rate of growth and K > 0 is carrying capacity

of the environment. It is well-known that, for any positive initial value, the population will

survive and there is a stable and globally attractive equilibrium point, see May [1] for the details

of this model.

Population systems in the real world are inevitably affected by environmental noise, so it

is significative and interesting to reveal how the noise affects the population systems. One of

the most usual environmental noise is Gaussian noise. Many authors have discussed population

systems under perturbation of Gaussian noise. Mao et al. [2] found the phenomenon that Gaus-

sian noise can suppress a potential population explosion. Jiang and Shi [3] studied the periodic

solution of nonautonomous logistic model perturbed by Gaussian noise; Jiang et al. [4] studied

the existence and uniqueness of Gaussian noise perturbed logistic model and global attraction

of the unique equilibrium. Li and Yin [5] and Wang et al. [6] considered Logistic models and

Lotka-Volterra models respectively with switching Gaussian noise.

To arrive at a more feasible and realistic model, it would be helpful for us to take into

account of some sudden or discontinuous change of environmental phenomena, which could be

described by jump processes, or more general Lévy noise. Bao et al. [7, 8] investigated the
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Lotka-Volterra system perturbed by Lévy noise; under suitable conditions, they obtained the

existence of unique global positive solution and the estimate of sample Lyapunov exponent

and the boundedness of the moment of solution. Huang and Cao [9] studied ergodicity and

bifurcations for stochastic logistic equation driven by Lévy noise. Besides Lévy noise, Xu [10]

recently studied the phenomenological bifurcation for a stochastic logistic model with correlated

colored noise.

For a population system, the existence of stable positive equilibrium means longtime survival

of species, so it is of great biological significance to investigate this interesting problem when the

system is perturbed by Lévy noise. In this paper, we study the logistic equation with Lévy noise

dX(t) =X(t−)[1− X(t−)

K
]×

[
rdt+ αdB(t) + β

∫

|x|<1

H(t, x)Ñ (dt, dx) + γ

∫

|x|≥1

D(t, x)N(dt, dx)
]
. (1.2)

By different method from [7, 8], we obtain that there exists a unique positive solution to (1.2);

furthermore, we show that (1.2) admits a unique positive equilibrium which is globally attractive

when the initial population is less than the carrying capacity.

2. Preliminaries

In this section, we recall some preliminaries for later use. Firstly, let us review the definition

of Lévy processes, see [11, 12] for details.

Definition 2.1 An R
n-valued stochastic process L = (L(t), t ≥ 0) is called Lévy process if:

(1) L(0) = 0 almost surely;

(2) L has independent and stationary increments;

(3) L is stochastically continuous, i.e., for all ǫ > 0 and for all s > 0

lim
t→s

P (|L(t)− L(s)| > ǫ) = 0.

For a given Lévy process L, the associated jump process ∆L = (∆L(t), t ≥ 0) is given by

∆L(t) = L(t) − L(t−) for each t ≥ 0. For any Borel set D in R
n − {0}, define the random

counting measure

N(t,D)(ω) := ♯{0 ≤ s ≤ t : ∆L(s)(ω) ∈ D} =
∑

0≤s≤t

χD(∆L(s)(ω)),

where χD is the indicator function of D. We write ν(·) = E(N(1, ·)) and call it the intensity

measure associated with L. A Borel set D in R
n −{0} is bounded below if 0 /∈ D, the closure of

D. If D is bounded below, then N(t,D) < ∞ almost surely for all t ≥ 0 and (N(t,D), t ≥ 0) is

a Poisson process with intensity ν(D). So N is called Poisson random measure. For each t ≥ 0

and D bounded below, the corresponding compensated Poisson random measure is given by

Ñ(t,D) := N(t,D)− tν(D).

Proposition 2.2 [Lévy-Itô decomposition] If L is an R
n-valued Lévy process, then there exist
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a ∈ R
n, an R

n-valued Wiener process B, and an independent Poisson random measure N on

R
+ × (Rn − {0}) such that, for each t ≥ 0

L(t) = at+ B(t) +

∫

|x|<1

xÑ(t, dx) +

∫

|x|≥1

xN(t, dx). (2.1)

Here the Poisson random measure N has the intensity measure ν which satisfies
∫

Rn

(|y|2 ∧ 1)ν(dy) < ∞ (2.2)

and Ñ is the compensated Poisson random measure of N .

Consider the following differential equation in R
n perturbed by Lévy noise

dX(t) = f(t,X(t−))dt+ g(t,X(t−))dL(t),

where f is Rn-valued and g is an n× n matrix-valued function. By the Lévy-Itô decomposition

(2.1), the equation can be written as

dX(t) =(f(t,X(t−)) + g(t,X(t−))a)dt+ g(t,X(t−))dB(t)+
∫

|x|<1

g(t,X(t−))x Ñ(dt, dx) +

∫

|x|≥1

g(t,X(t−))xN(dt, dx).

Hence we may consider stochastic differential equation with Lévy noise of more general form

dX(t) =f(t,X(t−))dt+ g(t,X(t−))dB(t)+
∫

|x|<1

F (t,X(t−), x) Ñ(dt, dx) +

∫

|x|≥1

G(t,X(t−), x)N(dt, dx),

where F and G are Rn-valued. Note that if the mathematical expectation E|L(t)|p < ∞ for some

p ≥ 1 and all t ≥ 0, then
∫
|x|≥1

|x|pν(dx) < ∞ and hence L(t) admits the Lévy-Itô decomposition

of the form

L(t) = at+B(t) +

∫

Rn

xÑ(t, dx).

In this case, we only need to consider the stochastic differential equation of the form

dX(t) = f(t,X(t−))dt+ g(t,X(t−))dB(t) +

∫

Rn

F (t,X(t−), x) Ñ(dt, dx).

In this paper, we do not assume this condition, i.e., we consider the full form (1.2) and so very

large jump is allowed with considerable probability.

The following well-known result will be used below.

Proposition 2.3 [Law of iterated logarithm] Assume that B(t) is an n-dimensional Wiener

process, then

lim sup
t→∞

B(t)√
2t log log t

= 1, a.s. (2.3)

3. Existence, uniqueness and global attraction of the equilibrium
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Consider the one dimensional logistic Eq. (1.1). If r is perturbed by a Lévy type noise, by

Lévy-Itô decomposition, we consider the following more general form of perturbation

r → r + αḂ(t) + β

∫

|x|<1

H(t, x)Ñ (dt, dx)/dt+ γ

∫

|x|≥1

D(t, x)N(dt, dx)/dt,

where B is standard one-dimensional Brownian motion, N is a Poisson random measure inde-

pendent of B and Ñ is the associated compensated Poisson random measure of N , H and D

describe small and large jumps, respectively (a simple case is H(t, x) = x = D(t, x), i.e., r is

perturbed simply by standard Lévy noise L(·)), and the constants α, β, γ denote the intensity of

perturbations. Hence the associated stochastic differential equation reads as follows

dX(t) =X(t−)[1− X(t−)

K
]×

[
rdt+ αdB(t) + β

∫

|x|<1

H(t, x)Ñ (dt, dx) + γ

∫

|x|≥1

D(t, x)N(dt, dx)
]
. (3.1)

Note that X(t) ≡ 0 and X(t) ≡ K are two solutions of Eq. (3.1).

Firstly we give a priori estimate for the solution of (3.1):

Theorem 3.1 Consider the Eq. (3.1) with initial value X(0) = X0. Assume that 0 < X0 < K

almost surely. Then the solution X(·) of (3.1) with initial value X0 satisfies the property that

0 < X(t) < K almost surely for all t ≥ 0.

Proof When X(t) 6= 0 and X(t) 6= K, from Itô’s theorem we have

d log | X(t)

K −X(t)
| = d log |X(t)| − d log |K −X(t)|

=
1

X(t−)
[X(t−)(1− X(t−)

K
)rdt +X(t−)(1− X(t−)

K
)αdB(t)]+

1

2
(− 1

X(t−)2
)[X(t−)2(1− X(t−)

K
)2α2]dt+

∫

|x|≥1

[log |X(t−) +X(t−)(1− X(t−)

K
)γD(t, x)| − log |X(t−)|]N(dt, dx)+

∫

|x|<1

[log |X(t−) +X(t−)(1− X(t−)

K
)βH(t, x)| − log |X(t−)|]Ñ(dt, dx)+

∫

|x|<1

[
log |X(t−) +X(t−)(1− X(t−)

K
)βH(t, x)| − log |X(t−)|−

1

X(t−)
X(t−)(1− X(t−)

K
)βH(t, x)

]
ν(dx)dt−

1

X(t−)−K
[X(t−)(1− X(t−)

K
)rdt +X(t−)(1− X(t−)

K
)αdB(t)]−

1

2
[− 1

(X(t−)−K)2
][X(t−)2(1− X(t−)

K
)2α2]dt−

∫

|x|≥1

E N(dt, dx)−
∫

|x|<1

A Ñ(dt, dx)−
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∫

|x|<1

[A− 1

X(t−)−K
X(t−)(1− X(t−)

K
)βH(t, x)]ν(dx)dt

= (r − 1

2
α2)dt+

α2

K
X(t−)dt+ αdB(t) +

∫

|x|≥1

log |1 + KγD(t, x)

K −X(t−)γD(t, x)
|N(dt, dx)+

∫

|x|<1

log |1 + KβH(t, x)

K −X(t−)βH(t, x)
|Ñ(dt, dx)+

∫

|x|<1

[log |1 + KβH(t, x)

K −X(t−)βH(t, x)
| − βH(t, x)]ν(dx)dt, (3.2)

where

A = log |K − (X(t) +X(t)(1 − X(t)

K
)βH(t, x))| − log |K −X(t)|,

E = log |K − (X(t) +X(t)(1 − X(t)

K
)γD(t, x))| − log |K −X(t)|.

So there exists a random variable C = C(ω) such that

X(t)

K −X(t)
=C exp

{
rt− 1

2
α2t+ αB(t) +

α2

K

∫ t

0

X(s−)ds+

∫ t

0

∫

|x|≥1

FN(ds, dx)+

∫ t

0

∫

|x|<1

MÑ(ds, dx) +

∫ t

0

∫

|x|<1

[M − βH(s, x)]ν(dx)ds
}
=: CeI , (3.3)

where

M = log |1 + KβH(s, x)

K −X(s)βH(s, x)
|, F = log |1 + KγD(s, x)

K −X(s)γD(s, x)
|.

It follows that

X(t) =
K

1 + 1
C
e−I

.

Since 0 < X0 < K, C = X0

K−X0

> 0, we have

X(t) =
K

1 + ( K
X0

− 1)e−I
, (3.4)

which yields that 0 < X(t) < K almost surely for all t ≥ 0. 2

Now we establish the existence and uniqueness result for Eq. (3.1).

Theorem 3.2 Assume that |βH(t, x)| ≤ η < 1 for (t, x) ∈ [0,∞)×B1 and ν(B1) < ∞, where η

is a constant and B1 represents the interval (−1, 1). Then for arbitrary initial value X(0) = X0

with 0 < X0 < K almost surely, (3.1) admits a unique solution X(·).

Proof Let

X(t) = K
eQ(t)

1 + eQ(t)
, for all t ≥ 0. (3.5)

Then

Q(t) = log
X(t)

K −X(t)
. (3.6)

From (3.2) and (3.6), the Eq. (3.1) can be transformed into

dQ(t) =(r − 1

2
α2 +

eQ(t−)

1 + eQ(t−)
α2)dt+ αdB(t)+
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∫

|x|<1

[log(1 +
βH(t, x)(1 + eQ(t−))

1 + eQ(t−) − eQ(t−)βH(t, x)
)− βH(t, x)]ν(dx)dt+

∫

|x|≥1

log[1 +
γD(t, x)(1 + eQ(t−))

1 + eQ(t−) − eQ(t−)γD(t, x)
]N(ds, dx)+

∫

|x|<1

log[1 +
βH(t, x)(1 + eQ(t−))

1 + eQ(t−) − eQ(t−)βH(t, x)
]Ñ(ds, dx) (3.7)

with initial value Q(0) = log X0

K−X0

. Let

f(Q) := r − 1

2
α2 +

eQ

1 + eQ
α2,

g(t, Q) :=

∫

|x|<1

[log(1 +
βH(t, x)(1 + eQ)

1 + eQ − eQβH(t, x)
)− βH(t, x)]ν(dx),

h(t, x,Q) := log[1 +
γD(t, x)(1 + eQ)

1 + eQ − eQγD(t, x)
],

p(t, x,Q) := log[1 +
βH(t, x)(1 + eQ)

1 + eQ − eQβH(t, x)
].

It is easy to see that the function f(·) meets Lipschitz and linear growth conditions. For the

function g, since |βH(t, x)| ≤ η < 1 and ν(B1) < ∞, we have

∂g(t, Q)

∂Q
=
( ∫

|x|<1

[
log(1 +

βH(t, x)(1 + eQ)

1 + eQ − eQβH(t, x)
)− βH(t, x)

]
ν(dx)

)′

Q

=

∫

|x|<1

[
log(1 +

βH(t, x)(1 + eQ)

1 + eQ − eQβH(t, x)
)− βH(t, x)

]′
Q
ν(dx)

=

∫

|x|<1

eQβ2H2(t, x)

[1 + eQ − eQβH(t, x)][1 + eQ + βH(t, x)]
ν(dx)

≤
∫

|x|<1

η2

1− η2
ν(dx)

=
η2

1− η2
ν(B1). (3.8)

That is, ∂g(t,Q)
∂Q

is bounded, so g meets global Lipschitz condition in Q and hence linear growth

condition. Note that the function h is continuous in Q. For the function p, by the assumption

|βH(t, x)| ≤ η < 1 and ν(B1) < ∞ again, we have

∂p(t, x,Q)

∂Q
=
[
log(1 +

βH(t, x)(1 + eQ)

1 + eQ − eQβH(t, x)
)
]′
Q

=
eQβ2H2(t, x)

[1 + eQ − eQβH(t, x)][1 + eQ + βH(t, x)]

≤ η2

1− η2
, (3.9)

so the coefficient of Ñ satisfies Lipschitz and linear growth conditions in Q. By standard existence

and uniqueness theorem [11, Chapter 6], Eq. (3.7) has a unique solution; so it follows from (3.5)

that the Eq. (3.1) has a unique solution. The proof is completed. 2
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Remark 3.3 Note that the assumption |βH(t, x)| ≤ η < 1 naturally holds when the constant

β satisfies |β| < 1 and the noise is simply the Lévy noise itself, i.e., H(t, x) = x. Finally we

consider the global attraction property for the Eq. (3.1).

Theorem 3.4 Assume that 0 < βH(t, x) < 1, 0 < γD(t, x) < 1 and ν(B1) < ∞. If

[r − α2

2 − ν(B1)] > 0, then the unique solution of (3.1), with initial value X(0) = X0 satisfying

0 < X0 < K almost surely, is globally attractive to K.

Proof Note that when 0 < βH(t, x) < 1, 0 < γD(t, x) < 1 and ν(B1) < ∞, we have M >

0, F > 0 and by (3.4)

X(t) =
K

1 + ( K
X0

− 1)e−I

=
K

1 + ( K
X0

− 1)e−rt+ 1

2
α2t−αB(t)−α2

K

∫
t

0
X(s−)ds+J

>
K

1 + ( K
X0

− 1)e−(r−α2

2
)t+

∫
t

0
ν(B1)ds

=
K

1 + ( K
X0

− 1)e−[r−α2

2
−ν(B1)]t

,

where

J := −
∫ t

0

∫

|x|≥1

FN(ds, dx) −
∫ t

0

∫

|x|<1

MN(ds, dx) +

∫ t

0

∫

|x|<1

βH(s, x)ν(dx)ds

and the inequality holds when t ≫ 1 by the law of iterated logarithm in Proposition 2.3. There-

fore, X(t) → K almost surely as t → ∞. 2

Remark 3.5 Note that the assumptions 0 < βH(t, x) < 1 and 0 < γD(t, x) < 1 mean that the

jump perturbation is appropriately small. This is intuitively natural since very large jumps may

destroy the stability of dynamics associated to Eq. (3.1).

Finally, let us make some comments on the initial value assumption: X0 < K almost surely.

The meaning is obvious: we only consider the case when the initial population size is smaller

than the carrying capacity of environment. It is certainly interesting to consider the opposite

situation: X0 > K almost surely, or even the mixed situation. But unfortunately our method

does not apply for this case, because our arguments depend heavily on the transformation (3.5).

We will investigate this problem further in our future work.
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