Minimum k-Path Vertex Cover in Cartesian Product Graphs

Huiling YIN ${ }^{1}$, Binbin HAO ${ }^{2}$, Xiaoyan SU ${ }^{1}$, Jingrong CHEN ${ }^{1, *}$
1. School of Mathematics and Physics, Lanzhou Jiaotong University, Gansu 730070, P. R. China;
2. School of Traffic and Transportation, Lanzhou Jiaotong University, Gansu 730070, P. R. China

Abstract For the subset $S \subseteq V(G)$, if every path with k vertices in a graph G contains at least one vertex from S, we call that S is a k-path vertex cover set of the graph G. Obviously, the subset is not unique. The cardinality of the minimum k-path vertex cover set of a graph G is called the k-path vertex cover number, we denote it by $\psi_{k}(G)$. In this paper, a lower or upper bound of ψ_{k} for some Cartesian product graphs is presented.
Keywords k-path vertex cover; Cartesian product graphs; bound
MR(2020) Subject Classification 05C69; 05C70; 05C76

1. Introduction

All graphs we consider in this paper are finite, undirected, and simple. For a graph $G=$ (V, E), the vertex set and edge set of G are denoted by $V=V(G)$ and $E=E(G)$, respectively. For a subset $S \subset V(G)$, the subgraph of G induced by S is denoted by $G[S]$. A path with k vertices is called a k-path. For a graph G, the k-path vertex cover problem in G is to find a subset $S \subset V$ (which is called a k-path vertex cover set) such that the removal of S from G results in a graph that does not contain any k-path, i.e., any path in $G[V \backslash S]$ only contains less than k vertices. The k-path vertex cover number of a graph G, denoted by $\psi_{k}(G)$, is the cardinality of a minimum k-path vertex cover set of G.

The motivation for this research is from the following two aspects. One is the communication of wireless sensor network, by K-generalized Canvas Scheme, and we use it to integrate the data in [1]; the other is the intelligent traffic control, such as installing multiple cameras problem in the crossing roads [2].

For the k-path vertex cover problem, we ignore the problem for $k=1$ because $\psi_{1}(G)=$ $|V(G)|$. For $k=2$, it is easy to see that $\psi_{2}(G)$ is related to maximum independent set problem, i.e.,

$$
\psi_{2}(G)=|V(G)|-\alpha(G)
$$

where $\alpha(G)$ denotes the maximum independent number of G. There are many related studies about independent number in [3]. In particular, we calculate $\psi_{2}(G)$ by finding its maximum

Received November 27, 2020; Accepted April 7, 2021
Supported by the National Natural Science Foundation of China (Grant Nos. 61463026; 61463027).

* Corresponding author

E-mail address: chenjr@mail.lzjtu.cn (Jingrong CHEN)
matching when a graph is a bipartite graph. For $k=3$, there is also a known concept of dissociation number related to $\psi_{3}(G)$ in [4-6]. The so-called dissociation number is the maximum cardinality of an induced subgraph of G whose maximum degree is less than or equal to 1 , and we denote it by diss (G). Hence,

$$
\psi_{3}(G)=|V(G)|-\operatorname{diss}(G) .
$$

At present, many researchers studied the value $\psi_{3}(G)$ in various ways [2, 7-9]. Tsur [10] gave a parameterized algorithm with time complexity $O^{*}\left(1.713^{k}\right)$. In [11], the authors presented an efficient polynomial time approximation scheme for the 3-path vertex cover problem $\left(V C P_{3}\right)$ on planar graphs. In 2011, Tu et al. gave a 2 -approximation algorithm, and proposed a primaldual approximation algorithm [2]; In 2013, they mainly studied cubic graphs and gave a 1.57approximation algorithm for the $V C P_{3}$ problem. Later, Zhang et al. [7] improved Tu's upper bound and obtained a 1.5 -approximation algorithm.

For $k \geq 3$, Brešar et al. [12] gave some efficient algorithms for trees, outerplanar graphs, and obtained a general result of connected graphs. Brešar et al. [13] also presented $\psi_{k}(G) \geq$ $\frac{d-k+2}{2 d-k+2}|V(G)|$ for $d \geq k-1$, where G is a d-regular graph. Later, Liu et al. [14] added connectivity to the k-path vertex cover problem and presented a polynomial time approximation scheme of unit disk graphs. In 2014, the authors added a new factor, weight, and studied weighted versions of minimum k-path vertex cover problem for trees, cycles and complete graphs in [15]. Then, Li et al. [16] gave an approximation algorithm for minimum (weighted) connected k-path vertex cover problem.

Recently, the k-path vertex cover problem was studied in many classes of graph products, such as [13], and [17-21], respectively. For the lexicographic product of arbitrary two graphs, Tu and Zhou [2] gave an approximation result of $\psi_{k}(G)$. For the Cartesian product of two paths, Brešar et al. [13] gave an exact value of $\psi_{3}(G)$. Li et al. [18] studied Cartesian product of path and cycle, wheel, complete bipartite graph, respectively. Then, Jakovac [19] obtained a lower and an upper bound of the k-path vertex cover number of rooted product graphs.

In this paper, we mainly make a further research based on [18]. In the next section, we show some known related results. In Section 3, we obtain an exact value of $\psi_{3}\left(P_{m} \square C_{n}\right)$ for positive m and n, provide a better way for calculating $\psi_{k}\left(P_{m} \square C_{n}\right)$, correct $\psi_{k}\left(P_{m} \square W_{n+1}\right)$'s upper bound, and generalize the result in [18, Theorem 2.16] to m dimension.

2. Preliminary knowledge

A cycle of length n is denoted by C_{n}. A wheel W_{n+1} is obtained from C_{n} by adding a new vertex, say v_{0}, such that v_{0} is connected to every vertex of C_{n}. A bipartite graph is a graph whose vertex set can be divided into two disjoint subsets called bipartition, denoted by (X, Y), so that the two ends of every edge are contained in different subsets. A complete bipartite graph with the bipartition (X, Y), denoted by $K_{m, n}$, is a bipartite graph such that $|X|=m,|Y|=n$, and every vertex of X is connected to every vertex of Y.

For two graphs $G=(V(G), E(G))$ and $H=(V(H), E(H))$, the Cartesian product $G \square H$ has
vertex set $V(G) \times V(H)$, and vertices $(u, v),(x, y)$ are adjacent whenever $u=x$ and $v y \in E(H)$ or $u x \in E(G)$ and $v=y$ (see [17]).

Some known results are shown as follows.
Lemma 2.1 ([12]) If a graph G does not contain isolated vertices, then

$$
\psi_{k}(G) \leq|V(G)|-\frac{k-1}{k} \sum_{u \in V(G)} \frac{2}{1+d(u)}
$$

Lemma 2.2 ([13]) For positive integers $k \geq 2$ and $n \geq k$, the following results hold:

$$
\psi_{k}\left(C_{n}\right)=\left\lceil\frac{n}{k}\right\rceil, \quad \psi_{k}\left(P_{n}\right)=\left\lfloor\frac{n}{k}\right\rfloor
$$

Lemma 2.3 ([13]) For positive integers $n, k \geq 1$, we have

$$
\begin{aligned}
& \psi_{3}\left(P_{2 n+1} \square P_{2 k}\right)=2 n k+\left\lfloor\frac{2 k}{3}\right\rfloor, \\
& \psi_{3}\left(P_{2 n} \square P_{2 k}\right)=2 n k, \\
& \psi_{3}\left(P_{2 n+1} \square P_{2 k+1}\right)=n(2 k+1)+\left\lfloor\frac{2 k+1}{3}\right\rfloor(1 \leq n \leq k) .
\end{aligned}
$$

Lemma 2.4 ([18]) If $m \geq 4, m+2 \leq k<2 m$, then $\psi_{k}\left(K_{m, m}\right)=m+1-\left\lfloor\frac{k}{2}\right\rfloor$.
Lemma 2.5 ([18]) If $k \geq 2$ and G^{\prime} is a subgraph of G, then $\psi_{k}(G) \geq \psi_{k}\left(G^{\prime}\right)$.
Lemma 2.6 ([18]) If $2 \leq k<n$, then $\psi_{k}\left(W_{n+1}\right)=\left\lceil\frac{n}{k}\right\rceil+1$.

3. Main results

Let us first introduce the following notions. For any vertex $u \in V(G)$, the set $u \times V(H)$ is called H-layer of $G \square H$, denoted by ${ }^{u} H$. Analogously, for any vertex $v \in V(H)$, the set $v \times V(G)$ is called G-layer of $G \square H$, denoted by G^{v}. Obviously, in Cartesian product graphs, every H layer $(G$-layer) is isomorphic to $H(G)$.

Theorem 3.1 For positive integer $1 \leq n \leq k$, we have
(i) $\psi_{3}\left(P_{2 n+1} \square C_{3 k}\right)=3 n k+k, \psi_{3}\left(P_{2 n} \square C_{3 k}\right)=3 n k$.
(ii) $\psi_{3}\left(P_{2 n+1} \square C_{3 k+1}\right)=n(3 k+1)+k+1, \psi_{3}\left(P_{2 n} \square C_{3 k+1}\right)=n(3 k+1)$.
(iii) $\psi_{3}\left(P_{2 n+1} \square C_{3 k+2}\right)=n(3 k+2)+k+1, \psi_{3}\left(P_{2 n} \square C_{3 k+2}\right)=n(3 k+2)$.

Proof Use $u_{1}, u_{2}, \ldots, u_{m}$ to mark the vertices of P_{m}, and $v_{1}, v_{2}, \ldots, v_{n}$ to mark the vertices of C_{n}, respectively. With the mark, the vertex $\left(u_{i}, v_{j}\right) \in V\left(P_{m} \square C_{n}\right)$ is both on the i-th ${ }^{u_{i}} C_{n}$-layer and the j-th ${ }^{v_{j}} P_{m}$-layer $(1 \leq i \leq m, 1 \leq j \leq n)$.
(i) Let

$$
S=\left\{\left(u_{2 i-1}, v_{3 j}\right),\left(u_{2 i}, v_{3 j-2}\right),\left(u_{2 i}, v_{3 j-1}\right) \mid \text { for applicable indices } i \text { and } j\right\}
$$

The set S is a 3-path vertex cover of $P_{2 n+1} \square C_{3 k}$ since every 3-path contains at least one vertex from S (see Figure 1). Then $\psi_{3}\left(P_{2 n+1} \square C_{3 k}\right) \leq 3 n k+k$.

Due to $P_{2 n+1} \square P_{3 k} \subset P_{2 n+1} \square C_{3 k}$, we can obtain that $\psi_{3}\left(P_{2 n+1} \square C_{3 k}\right) \geq \psi_{3}\left(P_{2 n+1} \square P_{3 k}\right)$ by Lemma 2.5. And $\psi_{3}\left(P_{2 n+1} \square P_{3 k}\right)=3 n k+k$ in Lemma 2.3, then $\psi_{3}\left(P_{2 n+1} \square C_{3 k}\right) \geq 3 n k+k$. Hence, $\psi_{3}\left(P_{2 n+1} \square C_{3 k}\right)=3 n k+k$.

Similarly, we follow the same way as shown above, then $\psi_{3}\left(P_{2 n} \square C_{3 k}\right)=3 n k$.
(ii) According to (i), we can get the 3-path vertex cover set S of $P_{2 n+1} \square C_{3 k+1}$ by adding vertices $\left(u_{2 i-1}, v_{1}\right)$ and deleting vertices $\left(u_{2 i}, v_{1}\right)$ (for suitable i) as follows

$$
S=\left\{\left(u_{2 i-1}, v_{1}\right),\left(u_{2 i-1}, v_{3 j}\right),\left(u_{2 i}, v_{2}\right),\left(u_{2 i}, v_{3 j+1}\right),\left(u_{2 i}, v_{3 j+2}\right) \mid \text { for applicable indices } i \text { and } j\right\}
$$

$$
|S|=n(3 k+1)+\left\lfloor\frac{3 k+1}{3}\right\rfloor+1=n(3 k+1)+k+1
$$

Obviously, the set S is a 3-path vertex cover of $P_{2 n+1} \square C_{3 k+1}$ since every 3-path contains at least one vertex from S (see Figure 2). Then

$$
\psi_{3}\left(P_{2 n+1} \square C_{3 k+1}\right) \leq n(3 k+1)+k+1
$$

Due to $P_{2 n+1} \square P_{3 k+1} \subset P_{2 n+1} \square C_{3 k+1}$, then

$$
\psi_{3}\left(P_{2 n+1} \square C_{3 k+1}\right) \geq \psi_{3}\left(P_{2 n+1} \square P_{3 k+1}\right)=n(3 k+1)+k
$$

by Lemma 2.3. Assume that it has a 3 -path vertex cover $T^{\prime},\left|T^{\prime}\right| \leq n(3 k+1)+k$, we can always find a path with order greater than or equal to 3 , a contradiction, then

$$
\psi_{3}\left(P_{2 n+1} \square C_{3 k+1}\right) \geq n(3 k+1)+k+1
$$

Therefore,

$$
\psi_{3}\left(P_{2 n+1} \square C_{3 k+1}\right)=n(3 k+1)+k+1
$$

Similarly, we follow the same way as shown above, then $\psi_{3}\left(P_{2 n} \square C_{3 k+1}\right) \leq n(3 k+1)$. By Lemmas 2.3 and 2.5, we have

$$
\psi_{3}\left(P_{2 n} \square C_{3 k+1}\right) \geq \psi_{3}\left(P_{2 n} \square P_{3 k+1}\right)=n(3 k+1) .
$$

Therefore,

$$
\psi_{3}\left(P_{2 n} \square C_{3 k+1}\right)=n(3 k+1) .
$$

(iii) The proof process is as (ii).

Figure 1 3-path vertex cover of $P_{2 n+1} \square C_{3 k}$

Figure 2 3-path vertex cover of $P_{2 n+1} \square C_{3 k+1}$

Theorem 3.2 For integer $k \geq 3$, let (a, b) be the middle D_{k-1} pair. We have

$$
\psi_{k}\left(P_{m} \square C_{n}\right) \leq \min \left\{\left(\left\lfloor\frac{n-1}{a+1}\right\rfloor+1\right) m+\left\lfloor\frac{m}{b+1}\right\rfloor(n-1)-2\left\lfloor\frac{n-1}{a+1}\right\rfloor\left\lfloor\frac{m}{b+1}\right\rfloor\right.
$$

$$
\left.\left(\left\lfloor\frac{n-1}{b+1}\right\rfloor+1\right) m+\left\lfloor\frac{m}{a+1}\right\rfloor(n-1)-2\left\lfloor\frac{n-1}{b+1}\right\rfloor\left\lfloor\frac{m}{a+1}\right\rfloor\right\} .
$$

For the notion of D_{i} pair, the introduction is as follows. The D_{i} denotes the set of all divisors of i. Let $a \leq b$, where a is the largest factor in D_{i} less than or equal to \sqrt{i}, and b is the smallest factor in D_{i} greater than or equal to \sqrt{i}. The pair (a, b) is called the middle D_{i} pair [17]. Generally, we can see that $a \cdot b=i$.

Figure $3 k$-path vertex cover of $P_{m} \square C_{n}$
Proof Use $u_{1}, u_{2}, \ldots, u_{m}$ to mark the vertices of P_{m}, and $v_{1}, v_{2}, \ldots, v_{n}$ to mark the vertices of C_{n}, respectively.

Let

$$
\begin{gathered}
S_{1}=\left\{\left(u_{i}, v_{j}\right) \in P_{m} \square C_{n} \mid j \in[1, n-1] \text { and } i \equiv 0(\bmod a+1)\right\}, \\
S_{2}=\left\{\left(u_{i}, v_{j}\right) \in P_{m} \square C_{n} \mid i \in[1, m] \text { and } j \equiv 0(\bmod b+1)\right\} .
\end{gathered}
$$

The set $S=\left(S_{1} \bigcup S_{2} \bigcup\left(u_{i}, v_{n}\right)\right) \backslash\left(S_{1} \bigcap S_{2}\right)(i=1,2, \ldots, m)$ is a k-path vertex cover of $P_{m} \square C_{n}$, because the remaining largest connected subgraph of $P_{m} \square C_{n}$ is isomorphic to $P_{a} \square P_{b}$. What's more, $P_{a} \square P_{b}$ contains the longest path with $a \cdot b \leq k-1$ vertices (see Figure 3).

In every P_{m}-layer, we choose to cover every $(a+1)$-th vertex. There are $n-1$ layers, then $\left|S_{1}\right| \leq\left\lfloor\frac{m}{a+1}\right\rfloor(n-1)$. Similarly, we cover every $(b+1)$-th vertex in every C_{n}-layer, then $\left|S_{2}\right| \leq\left\lfloor\frac{n-1}{b+1}\right\rfloor m$. The vertices $\left(u_{i}, v_{j}\right)$ in $S_{1} \cap S_{2}$ cannot be covered, because its neighbor vertices are all in $S .\left|S_{1} \cap S_{2}\right| \leq\left\lfloor\frac{m}{a+1}\right\rfloor\left\lfloor\frac{n-1}{b+1}\right\rfloor$ and we count such $\left(u_{i}, v_{j}\right)$ in the intersection twice. Thus,

$$
|S| \leq\left\lfloor\frac{m}{a+1}\right\rfloor(n-1)+\left(\left\lfloor\frac{n-1}{b+1}\right\rfloor+1\right) m-2\left\lfloor\frac{n-1}{b+1}\right\rfloor\left\lfloor\frac{m}{a+1}\right\rfloor .
$$

Similarly, we can also construct a k-path vertex cover with

$$
\left\lfloor\frac{m}{b+1}\right\rfloor(n-1)+\left(\left\lfloor\frac{n-1}{a+1}\right\rfloor+1\right) m-2\left\lfloor\frac{n-1}{a+1}\right\rfloor\left\lfloor\frac{m}{b+1}\right\rfloor
$$

vertices.
When $a+2 b+2 \leq m-1$, we have the following formula

$$
\left\lfloor\frac{m}{b+1}\right\rfloor(n-1)+\left(\left\lfloor\frac{n-1}{a+1}\right\rfloor+1\right) m-2\left\lfloor\frac{n-1}{a+1}\right\rfloor\left\lfloor\frac{m}{b+1}\right\rfloor
$$

$$
\begin{aligned}
& \leq \frac{m n}{b+1}+\frac{n+a}{a+1} \cdot m-2\left\lfloor\frac{n-1}{a+1}\right\rfloor\left\lfloor\frac{m}{b+1}\right\rfloor \\
& \leq \frac{n(a+1)+(n+a)(b+1)}{(a+1)(b+1)} \cdot m-2\left\lfloor\frac{n-1}{a+1}\right\rfloor\left\lfloor\frac{m}{b+1}\right\rfloor \\
& <\frac{m n}{k} \cdot(a+2 b+2)<\left\lceil\frac{m^{2} n}{k}\right\rceil .
\end{aligned}
$$

Hence, the upper bound is always better than the result of [18].

Figure 4 4-path vertex cover of $P_{6} \square W_{10}$
In [18], if $2 \leq k \leq\left\lceil\frac{n+1}{2}\right\rceil$ and integer $m \geq 2$, then the set $S=\sum_{i=1}^{m} S_{i}$ is a k-path vertex cover of $P_{m} \square W_{n+1}$. Moreover

$$
S_{i}=\left\{\left(u_{i}, v_{0}\right),\left(u_{i}, v_{j}\right),\left(u_{i}, v_{j}^{\prime}\right) \in V\left(P_{m} \square W_{n+1}\right) \mid j=1+l k, j^{\prime}=\left\lceil\frac{k+2}{2}\right\rceil+l k, 0 \leq l \leq\left\lceil\frac{n}{k}\right\rceil-1\right\}
$$

for odd i, and

$$
S_{i}=\left\{\left(u_{i}, v_{0}\right),\left(u_{i}, v_{j}\right),\left(u_{i}, v_{j}^{\prime}\right) \in V\left(P_{m} \square W_{n+1}\right) \mid j=1+l k, j^{\prime}=\left\lfloor\frac{k+2}{2}\right\rfloor+l k, 0 \leq l \leq\left\lceil\frac{n}{k}\right\rceil-1\right\}
$$

for even i, where $i=1,2, \ldots, m, \psi_{k}\left(P_{m} \square W_{n+1}\right) \leq m\left(2\left\lceil\frac{n}{k}\right\rceil+1\right)$. According to the above method, when $m=6, n=9, \psi_{4}\left(P_{6} \square W_{10}\right) \leq 30$, there exists the path with more than four vertices (see Figure 4), a contradiction.

Next, we will research it again.
Theorem 3.3 For $2<m<k$, we have $m\left(1+\left\lceil\frac{n}{k}\right\rceil\right) \leq \psi_{k}\left(P_{m} \square W_{n+1}\right) \leq\left\lceil\frac{m^{2} n}{k}\right\rceil+m$.
Proof Use $u_{1}, u_{2}, \ldots, u_{m}$ to mark the vertices of P_{m}, and $v_{0}, v_{1}, \ldots, v_{n}$ to mark the vertices of W_{n+1}, respectively. Take any vertex $\left(u_{1}, v_{j}\right)$ in ${ }^{u_{1}} W_{n+1}$ and choose another vertex $\left(u_{1}, v_{j+t+1}\right)$ in ${ }^{u_{1}} W_{n+1}$ with $t=\left\lfloor\frac{k}{m}\right\rfloor$. Construct $S^{\prime}=S_{1} \bigcup S_{2} \bigcup\left(u_{i}, v_{0}\right)(i=1,2, \ldots, m)$ with

$$
\begin{gathered}
S_{1}=\left\{\left(u_{i}, v_{j}\right) \in V\left(P_{m} \square W_{n+1}\right) \mid i \text { is odd }\right\} \\
S_{2}=\left\{\left(u_{i}, v_{j+t+1}\right) \in V\left(P_{m} \square W_{n+1}\right) \mid i \text { is even }\right\} .
\end{gathered}
$$

It is a k-path vertex cover set of $P_{m} \square W_{n+1}$, and $\left|S_{1} \bigcup S_{2}\right|=m$. By this same step, there are $\frac{m n}{k}$ sets that are copies of every k-path in the same layer. $\left|S^{\prime}\right|=\left|S_{1}\right|+\left|S_{2}\right|+m \leq\left\lceil\frac{m^{2} n}{k}\right\rceil+m$, then the upper $\psi_{k}\left(P_{m} \square W_{n+1}\right) \leq\left\lceil\frac{m^{2} n}{k}\right\rceil+m$.

We get the lower bound of $\psi_{k}\left(P_{m} \square W_{n+1}\right)$ by partitioning $P_{m} \square W_{n+1}$ into m disjoint subgraphs that are isomorphic to W_{n+1}. It is easy to get

$$
\psi_{k}\left(P_{m} \square W_{n+1}\right) \geq m\left(1+\left\lceil\frac{n}{k}\right\rceil\right)
$$

by Lemma 2.5. The result above corrects the one in [18, Theorem 2.8].
Theorem 3.4 If integer $m, n \geq 4$, and m is an even, we have $\psi_{2}\left(P_{m} \square K_{n, n}\right)=m n$.
Proof Mark the vertices of P_{m} with $u_{i}(i=1,2, \ldots, m)$ and $K_{n, n}$ with $x_{j}(j=1,2, \ldots, n)$ and $y_{j}(j=1,2, \ldots, n)$, respectively.

By the definition of $K_{n, n}$, we can easily get that $C_{2 m n}$ is a subgraph of $P_{m} \square K_{n, n}$. Then

$$
\psi_{2}\left(P_{m} \square K_{n, n}\right) \geq \psi_{2}\left(C_{2 m n}\right)=\left\lceil\frac{2 m n}{2}\right\rceil=m n
$$

by Lemma 2.5. Next, construct a 2 -path vertex cover to prove that $\psi_{2}\left(P_{m} \square K_{n, n}\right) \leq m n$ in the following way. Let

$$
\begin{gathered}
S_{i}=\left\{\left(u_{i}, y_{j}\right) \in P_{m} \square K_{n, n}(j=1,2, \ldots, n) \mid \text { for even } i\right\}, \\
S_{i}=\left\{\left(u_{i}, x_{j}\right) \in P_{m} \square K_{n, n}(j=1,2, \ldots n) \mid \text { for odd } i\right\} .
\end{gathered}
$$

Let $S=\bigcup_{i=m}^{m} S_{i}$. Clearly, the set S is a 2 -path vertex cover of $P_{m} \square K_{n, n}$ since the degrees of the remaining uncovered vertices are all 0 . Therefore, $\psi_{2}\left(P_{m} \square K_{n, n}\right)=m n$.

Theorem 3.5 If integer $m, n \geq 4$, and m is an even, we have
(i) For integer $3 \leq k \leq n+1$, then

$$
\psi_{k}\left(P_{m} \square K_{n, n}\right) \leq m n-\frac{m}{2}\left(\left\lfloor\frac{k}{2}\right\rfloor-1\right) .
$$

(ii) For integer $n+2 \leq k \leq 2 n+1$, then

$$
m\left(n+1-\left\lfloor\frac{k}{2}\right\rfloor\right) \leq \psi_{k}\left(P_{m} \square K_{n, n}\right) \leq \frac{3}{4} m n .
$$

(iii) For integer $k \geq 2 n+1$, then

$$
\psi_{k}\left(P_{m} \square K_{n, n}\right) \geq\left\lceil\frac{2 m n}{k}\right\rceil .
$$

Proof (i) Let

$$
\begin{aligned}
& S_{2 i}=\left\{\left(u_{2 i}, y_{j}\right) \in P_{m} \square K_{n, n} \mid j=1,2, \ldots, n\right\}, \\
& S_{2 i-1}=\left\{\left(u_{2 i-1}, x_{j}\right) \in P_{m} \square K_{n, n} \mid j=1,2, \ldots, n-\left\lfloor\frac{k}{2}\right\rfloor+1\right\}, \\
& S_{2 i+1}=\left\{\left(u_{2 i+1}, x_{j}\right) \in P_{m} \square K_{n, n} \left\lvert\, j=\left\lfloor\frac{k}{2}\right\rfloor\right.,\left\lfloor\frac{k}{2}\right\rfloor+1, \ldots, n\right\},
\end{aligned}
$$

where

$$
\left|S_{2 i}\right|=n,\left|S_{2 i-1}\right|=\left|S_{2 i+1}\right|=n-\left\lfloor\frac{k}{2}\right\rfloor+1, \quad i \in\left[1, \frac{m}{2}\right] .
$$

It is easy to see that $S=\bigcup_{i=m}^{m} S_{i}$ is a k-path vertex cover set since the largest uncovered path has at most $2\left(\left\lfloor\frac{k}{2}\right\rfloor-1\right)+1 \leq k-1$ vertices. Therefore,

$$
\psi_{k}\left(P_{m} \square K_{n, n}\right) \leq m n-\frac{m}{2}\left(\left\lfloor\frac{k}{2}\right\rfloor-1\right) .
$$

If m is odd, we follow the same way as shown above, then

$$
\psi_{k}\left(P_{m} \square K_{n, n}\right) \leq m n-\frac{m+1}{2}\left(\left\lfloor\frac{k}{2}\right\rfloor-1\right) .
$$

(ii) Let

$$
\begin{aligned}
& S_{2 i}=\left\{\left(u_{2 i}, y_{j}\right) \in P_{m} \square K_{n, n} \mid j=1,2, \ldots, n\right\}, \\
& S_{2 i-1}=\left\{\left(u_{2 i-1}, x_{j}\right) \in P_{m} \square K_{n, n} \mid j=1,2, \ldots,\left\lfloor\frac{n}{2}\right\rfloor\right\}, \\
& S_{2 i+1}=\left\{\left(u_{2 i+1}, x_{j}\right) \in P_{m} \square K_{n, n} \left\lvert\, j=\left\lfloor\frac{n}{2}\right\rfloor\right.,\left\lfloor\frac{n}{2}\right\rfloor+1, \ldots, n\right\} .
\end{aligned}
$$

The set $S=\bigcup_{i=1}^{m} S_{i}$ is the k-path vertex cover of $P_{m} \square K_{n, n}$, because the largest uncovered path has $2\left(n-\left\lfloor\frac{n}{2}\right\rfloor\right)+1 \leq n+1 \leq k-1$ vertices. $\left|S_{2 i}\right|=n,\left|S_{2 i-1}\right|+\left|S_{2 i+1}\right|=n, i \in\left[1, \frac{m}{2}\right]$, $\left|S_{2 i}\right|$ is an arithmetic sequence, so the upper $\psi_{k}\left(P_{m} \square K_{n, n}\right) \leq \frac{m}{2}\left(n+\left\lfloor\frac{n}{2}\right\rfloor\right) \leq \frac{3}{4} m n$. If m is odd, we follow the same way as shown above similarly, then

$$
\psi_{k}\left(P_{m} \square K_{n, n}\right) \leq \frac{m+1}{2}\left(n+\left\lfloor\frac{n}{2}\right\rfloor\right)-n .
$$

For the lower, we can partition $P_{m} \square K_{n, n}$ into m subgraphs $K_{n, n}$, thus we will get the lower bound $\psi_{k}\left(P_{m} \square K_{n, n}\right) \geq m\left(n+1-\left\lfloor\frac{k}{2}\right\rfloor\right)$ by using Lemma 2.4.
(iii) For $k \geq 2 n+1$, it is clear that $C_{2 m n}$ is a subgraph of $P_{m} \square K_{n, n}$, then

$$
\psi_{k}\left(P_{m} \square K_{n, n}\right) \geq \psi_{k}\left(C_{2 m n}\right)=\left\lceil\frac{2 m n}{k}\right\rceil .
$$

All of proofs are completed.
Acknowledgements We thank the referees for their time and comments.

References

[1] M. NOVOTNÝ. Design and analysis of a generalized canvas protocol. Proceedings of WISTP. LNCS, Springer-Verlag., 2010, 6033: 106-121.
[2] Jianhua TU, Wenli ZHOU. A factor 2 approximation algorithm for the vertex cover P_{3} problem. Inform. Process. Lett., 2011, 111(14): 683-686.
[3] J. HARANT, M. A. HENNING, D. RAUTENBACH, et al. Independence number in graphs of maximum degree three. Discrete Math., 2008, 308(23): 5829-5833.
[4] M. YANNAKAKIS. Node-deletion problem on bipartite graphs. SIAM J. Comput., 1981, 10(2): 310-324.
[5] R. BOLIAC, K. CAMERON, V. V. LOZIN. On computing the dissociation number and the induced matching number of bipartite graphs. Ars Combin., 2004, 72: 241-253.
[6] Y. ORLOVICH, A. DOLGUIB, G. FINKEC, et al. The complexity of dissociation set problems in graphs. Discrete Appl. Math., 2011, 159(13): 1352-1366.
[7] Lei ZHANG, An ZHANG, Yong CHEN, et al. On the Vertex Cover P_{3} Problem in Cubic Graphs. J. Hangzhou Dianzi University (Natural Science), 2019, 39(5): 94-97. (in Chinese)
[8] Jianhua TU, Fengmei YANG. The vertex cover P3 problem in cubic graphs. Inform. Process. Lett., 2013, 113(13): 481-485.
[9] J. KATRENIČ. A faster FPT algorithm for 3-path vertex cover. Inform. Process. Lett., 2016, 116(4): 273278.
[10] D. TSUR. Parameterized algorithm for 3-path vertex cover. Theoret. Comput. Sci., 2019, 783: 1-8.
[11] Jianhua TU, Yongtang SHI. An efficient polynomial time approximation scheme for the vertex cover P_{3} problem on planar graphs. Discuss. Math. Graph Theory, 2019, 39(1): 55-65.
[12] B. BREŠAR, F. KARDOš, J. KATRENIČ, et al. Minimum k-path vertex cover. Discrete Appl. Math., 2011, 159(12): 1189-1195.
[13] B. BREŠAR, M. JAKOVAC, J. KATRENIČ, et al. On the vertex k-path cover. Discrete Appl. Math., 2013, 161(13-14): 1943-1949.
[14] Xianliang LIU, Hongliang LU, Wei WANG, et al. PTAS for the minimum k-path connected vertex cover problem in unit disk graphs. J. Global Optim., 2013, 56(2): 449-458.
[15] B. BREŠAR, R. KRIVOŠ-BELLUŠ, G. SEMANIŠIN, et al. On the weighted k-path vertex cover problem. Discrete Appl. Math., 2014, 177: 14-18.
[16] Xiaosong LI, Zhao ZHANG, Xiaohui HUANG. Approximation algorithms for minimum (weight) connected k-path vertex cover. Discrete Appl. Math., 2016, 205: 101-108.
[17] M. JAKOVAC, A. TARANENKO. On the k-path vertex cover of some graph products. Discrete Math., 2013, 313: 94-100.
[18] Zhao LI, Liancui ZUO. The k-path vertex cover in Cartesian product graphs and complete bipartite graphs. Appl. Math. Comput., 2018, 331: 69-79.
[19] M. JAKOVAC. The k-path vertex cover of rooted product graphs. Discrete Appl. Math., 2015, 187: 111-119.
[20] V. ROSENFELD. The independence polynomial of rooted products of graphs. Discrete Appl. Math., 2010, 158: 551-558.
[21] Bitao ZHANG. The k-Path Vertex Cover of Some Product Graphs. Tianjin Normal University Press, Tianjin, 2016. (in Chinese)
[22] V. V. LOZIN, D. RAUTENBACH. Some results on graphs without long induced paths. Inform. Process. Lett., 2003, 88(4): 167-171.
[23] Jianhua TU. Efficient algorithm for the vertex cover P_{k} problem on cacti. Appl. Math. Comput., 2017, 311: 217-222.

