Journal of Mathematical Research with Applications Jul., 2021, Vol. 41, No. 4, pp. 340–348 DOI:10.3770/j.issn:2095-2651.2021.04.002 Http://jmre.dlut.edu.cn

Minimum k-Path Vertex Cover in Cartesian Product Graphs

Huiling YIN¹, Binbin HAO², Xiaoyan SU¹, Jingrong CHEN^{1,*}

1. School of Mathematics and Physics, Lanzhou Jiaotong University, Gansu 730070, P. R. China;

2. School of Traffic and Transportation, Lanzhou Jiaotong University, Gansu 730070, P. R. China

Abstract For the subset $S \subseteq V(G)$, if every path with k vertices in a graph G contains at least one vertex from S, we call that S is a k-path vertex cover set of the graph G. Obviously, the subset is not unique. The cardinality of the minimum k-path vertex cover set of a graph G is called the k-path vertex cover number, we denote it by $\psi_k(G)$. In this paper, a lower or upper bound of ψ_k for some Cartesian product graphs is presented.

Keywords k-path vertex cover; Cartesian product graphs; bound

MR(2020) Subject Classification 05C69; 05C70; 05C76

1. Introduction

All graphs we consider in this paper are finite, undirected, and simple. For a graph G = (V, E), the vertex set and edge set of G are denoted by V = V(G) and E = E(G), respectively. For a subset $S \subset V(G)$, the subgraph of G induced by S is denoted by G[S]. A path with k vertices is called a k-path. For a graph G, the k-path vertex cover problem in G is to find a subset $S \subset V$ (which is called a k-path vertex cover set) such that the removal of S from G results in a graph that does not contain any k-path, i.e., any path in $G[V \setminus S]$ only contains less than k vertices. The k-path vertex cover number of a graph G, denoted by $\psi_k(G)$, is the cardinality of a minimum k-path vertex cover set of G.

The motivation for this research is from the following two aspects. One is the communication of wireless sensor network, by K-generalized Canvas Scheme, and we use it to integrate the data in [1]; the other is the intelligent traffic control, such as installing multiple cameras problem in the crossing roads [2].

For the k-path vertex cover problem, we ignore the problem for k = 1 because $\psi_1(G) = |V(G)|$. For k = 2, it is easy to see that $\psi_2(G)$ is related to maximum independent set problem, i.e.,

$$\psi_2(G) = |V(G)| - \alpha(G),$$

where $\alpha(G)$ denotes the maximum independent number of G. There are many related studies about independent number in [3]. In particular, we calculate $\psi_2(G)$ by finding its maximum

* Corresponding author

Received November 27, 2020; Accepted April 7, 2021

Supported by the National Natural Science Foundation of China (Grant Nos. 61463026; 61463027).

E-mail address: chenjr@mail.lzjtu.cn (Jingrong CHEN)

matching when a graph is a bipartite graph. For k = 3, there is also a known concept of dissociation number related to $\psi_3(G)$ in [4–6]. The so-called dissociation number is the maximum cardinality of an induced subgraph of G whose maximum degree is less than or equal to 1, and we denote it by diss(G). Hence,

$$\psi_3(G) = |V(G)| - \operatorname{diss}(G).$$

At present, many researchers studied the value $\psi_3(G)$ in various ways [2,7-9]. Tsur [10] gave a parameterized algorithm with time complexity $O^*(1.713^k)$. In [11], the authors presented an efficient polynomial time approximation scheme for the 3-path vertex cover problem (VCP₃) on planar graphs. In 2011, Tu et al. gave a 2-approximation algorithm, and proposed a primaldual approximation algorithm [2]; In 2013, they mainly studied cubic graphs and gave a 1.57approximation algorithm for the VCP₃ problem. Later, Zhang et al. [7] improved Tu's upper bound and obtained a 1.5-approximation algorithm.

For $k \geq 3$, Brešar et al. [12] gave some efficient algorithms for trees, outerplanar graphs, and obtained a general result of connected graphs. Brešar et al. [13] also presented $\psi_k(G) \geq \frac{d-k+2}{2d-k+2}|V(G)|$ for $d \geq k-1$, where G is a d-regular graph. Later, Liu et al. [14] added connectivity to the k-path vertex cover problem and presented a polynomial time approximation scheme of unit disk graphs. In 2014, the authors added a new factor, weight, and studied weighted versions of minimum k-path vertex cover problem for trees, cycles and complete graphs in [15]. Then, Li et al. [16] gave an approximation algorithm for minimum (weighted) connected k-path vertex cover problem.

Recently, the k-path vertex cover problem was studied in many classes of graph products, such as [13], and [17–21], respectively. For the lexicographic product of arbitrary two graphs, Tu and Zhou [2] gave an approximation result of $\psi_k(G)$. For the Cartesian product of two paths, Brešar et al. [13] gave an exact value of $\psi_3(G)$. Li et al. [18] studied Cartesian product of path and cycle, wheel, complete bipartite graph, respectively. Then, Jakovac [19] obtained a lower and an upper bound of the k-path vertex cover number of rooted product graphs.

In this paper, we mainly make a further research based on [18]. In the next section, we show some known related results. In Section 3, we obtain an exact value of $\psi_3(P_m \Box C_n)$ for positive mand n, provide a better way for calculating $\psi_k(P_m \Box C_n)$, correct $\psi_k(P_m \Box W_{n+1})$'s upper bound, and generalize the result in [18, Theorem 2.16] to m dimension.

2. Preliminary knowledge

A cycle of length n is denoted by C_n . A wheel W_{n+1} is obtained from C_n by adding a new vertex, say v_0 , such that v_0 is connected to every vertex of C_n . A bipartite graph is a graph whose vertex set can be divided into two disjoint subsets called bipartition, denoted by (X, Y), so that the two ends of every edge are contained in different subsets. A complete bipartite graph with the bipartition (X, Y), denoted by $K_{m,n}$, is a bipartite graph such that |X| = m, |Y| = n, and every vertex of X is connected to every vertex of Y.

For two graphs G = (V(G), E(G)) and H = (V(H), E(H)), the Cartesian product $G \square H$ has

vertex set $V(G) \times V(H)$, and vertices (u, v), (x, y) are adjacent whenever u = x and $vy \in E(H)$ or $ux \in E(G)$ and v = y (see [17]).

Some known results are shown as follows.

Lemma 2.1 ([12]) If a graph G does not contain isolated vertices, then

$$\psi_k(G) \le |V(G)| - \frac{k-1}{k} \sum_{u \in V(G)} \frac{2}{1+d(u)}.$$

Lemma 2.2 ([13]) For positive integers $k \ge 2$ and $n \ge k$, the following results hold:

$$\psi_k(C_n) = \lceil \frac{n}{k} \rceil, \quad \psi_k(P_n) = \lfloor \frac{n}{k} \rfloor.$$

Lemma 2.3 ([13]) For positive integers $n, k \ge 1$, we have

$$\begin{split} \psi_3(P_{2n+1} \Box P_{2k}) &= 2nk + \lfloor \frac{2k}{3} \rfloor, \\ \psi_3(P_{2n} \Box P_{2k}) &= 2nk, \\ \psi_3(P_{2n+1} \Box P_{2k+1}) &= n(2k+1) + \lfloor \frac{2k+1}{3} \rfloor \ (1 \le n \le k). \end{split}$$

Lemma 2.4 ([18]) If $m \ge 4$, $m+2 \le k < 2m$, then $\psi_k(K_{m,m}) = m+1-\lfloor \frac{k}{2} \rfloor$.

Lemma 2.5 ([18]) If $k \ge 2$ and G' is a subgraph of G, then $\psi_k(G) \ge \psi_k(G')$.

Lemma 2.6 ([18]) If $2 \le k < n$, then $\psi_k(W_{n+1}) = \lceil \frac{n}{k} \rceil + 1$.

3. Main results

Let us first introduce the following notions. For any vertex $u \in V(G)$, the set $u \times V(H)$ is called *H*-layer of $G \square H$, denoted by ^{*u*}*H*. Analogously, for any vertex $v \in V(H)$, the set $v \times V(G)$ is called *G*-layer of $G \square H$, denoted by G^v . Obviously, in Cartesian product graphs, every *H*layer(*G*-layer) is isomorphic to H(G).

Theorem 3.1 For positive integer $1 \le n \le k$, we have

- (i) $\psi_3(P_{2n+1} \Box C_{3k}) = 3nk + k, \ \psi_3(P_{2n} \Box C_{3k}) = 3nk.$
- (ii) $\psi_3(P_{2n+1} \square C_{3k+1}) = n(3k+1) + k + 1, \ \psi_3(P_{2n} \square C_{3k+1}) = n(3k+1).$
- (iii) $\psi_3(P_{2n+1} \square C_{3k+2}) = n(3k+2) + k + 1, \ \psi_3(P_{2n} \square C_{3k+2}) = n(3k+2).$

Proof Use u_1, u_2, \ldots, u_m to mark the vertices of P_m , and v_1, v_2, \ldots, v_n to mark the vertices of C_n , respectively. With the mark, the vertex $(u_i, v_j) \in V(P_m \square C_n)$ is both on the *i*-th $u_i C_n$ -layer and the *j*-th $v_j P_m$ -layer $(1 \le i \le m, 1 \le j \le n)$.

(i) Let

 $S = \{(u_{2i-1}, v_{3j}), (u_{2i}, v_{3j-2}), (u_{2i}, v_{3j-1}) | \text{ for applicable indices } i \text{ and } j\}.$

The set S is a 3-path vertex cover of $P_{2n+1} \square C_{3k}$ since every 3-path contains at least one vertex from S (see Figure 1). Then $\psi_3(P_{2n+1} \square C_{3k}) \leq 3nk + k$.

Due to $P_{2n+1} \Box P_{3k} \subset P_{2n+1} \Box C_{3k}$, we can obtain that $\psi_3(P_{2n+1} \Box C_{3k}) \ge \psi_3(P_{2n+1} \Box P_{3k})$ by Lemma 2.5. And $\psi_3(P_{2n+1} \Box P_{3k}) = 3nk + k$ in Lemma 2.3, then $\psi_3(P_{2n+1} \Box C_{3k}) \ge 3nk + k$. Hence, $\psi_3(P_{2n+1} \Box C_{3k}) = 3nk + k$.

Similarly, we follow the same way as shown above, then $\psi_3(P_{2n} \square C_{3k}) = 3nk$.

(ii) According to (i), we can get the 3-path vertex cover set S of $P_{2n+1} \square C_{3k+1}$ by adding vertices (u_{2i-1}, v_1) and deleting vertices (u_{2i}, v_1) (for suitable i) as follows

$$S = \{(u_{2i-1}, v_1), (u_{2i-1}, v_{3j}), (u_{2i}, v_2), (u_{2i}, v_{3j+1}), (u_{2i}, v_{3j+2}) | \text{ for applicable indices } i \text{ and } j\}.$$
$$|S| = n(3k+1) + \lfloor \frac{3k+1}{3} \rfloor + 1 = n(3k+1) + k + 1.$$

Obviously, the set S is a 3-path vertex cover of $P_{2n+1} \square C_{3k+1}$ since every 3-path contains at least one vertex from S (see Figure 2). Then

$$\psi_3(P_{2n+1} \square C_{3k+1}) \le n(3k+1) + k + 1.$$

Due to $P_{2n+1} \square P_{3k+1} \subset P_{2n+1} \square C_{3k+1}$, then

$$\psi_3(P_{2n+1} \square C_{3k+1}) \ge \psi_3(P_{2n+1} \square P_{3k+1}) = n(3k+1) + k$$

by Lemma 2.3. Assume that it has a 3-path vertex cover T', $|T'| \le n(3k+1) + k$, we can always find a path with order greater than or equal to 3, a contradiction, then

$$\psi_3(P_{2n+1} \square C_{3k+1}) \ge n(3k+1) + k + 1.$$

Therefore,

$$\psi_3(P_{2n+1} \square C_{3k+1}) = n(3k+1) + k + 1.$$

Similarly, we follow the same way as shown above, then $\psi_3(P_{2n} \Box C_{3k+1}) \leq n(3k+1)$. By Lemmas 2.3 and 2.5, we have

$$\psi_3(P_{2n} \square C_{3k+1}) \ge \psi_3(P_{2n} \square P_{3k+1}) = n(3k+1).$$

Therefore,

$$\psi_3(P_{2n} \square C_{3k+1}) = n(3k+1).$$

(iii) The proof process is as (ii). \Box

Figure 1 3-path vertex cover of $P_{2n+1} \square C_{3k}$ Figure 2 3-path vertex cover of $P_{2n+1} \square C_{3k+1}$

Theorem 3.2 For integer
$$k \ge 3$$
, let (a,b) be the middle D_{k-1} pair. We have
 $\psi_k(P_m \Box C_n) \le \min\{(\lfloor \frac{n-1}{a+1} \rfloor + 1)m + \lfloor \frac{m}{b+1} \rfloor (n-1) - 2\lfloor \frac{n-1}{a+1} \rfloor \lfloor \frac{m}{b+1} \rfloor, \}$

Huiling YIN, Binbin HAO, Xiaoyan SU and et al.

$$(\lfloor \frac{n-1}{b+1} \rfloor + 1)m + \lfloor \frac{m}{a+1} \rfloor (n-1) - 2\lfloor \frac{n-1}{b+1} \rfloor \lfloor \frac{m}{a+1} \rfloor \}$$

For the notion of D_i pair, the introduction is as follows. The D_i denotes the set of all divisors of i. Let $a \leq b$, where a is the largest factor in D_i less than or equal to \sqrt{i} , and b is the smallest factor in D_i greater than or equal to \sqrt{i} . The pair (a, b) is called the middle D_i pair [17]. Generally, we can see that $a \cdot b = i$.

Figure 3 k-path vertex cover of $P_m \Box C_n$

Proof Use u_1, u_2, \ldots, u_m to mark the vertices of P_m , and v_1, v_2, \ldots, v_n to mark the vertices of C_n , respectively.

Let

$$S_1 = \{ (u_i, v_j) \in P_m \square C_n | j \in [1, n-1] \text{ and } i \equiv 0 \pmod{a+1} \},$$

$$S_2 = \{ (u_i, v_j) \in P_m \square C_n | i \in [1, m] \text{ and } j \equiv 0 \pmod{b+1} \}.$$

The set $S = (S_1 \bigcup S_2 \bigcup (u_i, v_n)) \setminus (S_1 \bigcap S_2)$ (i = 1, 2, ..., m) is a k-path vertex cover of $P_m \square C_n$, because the remaining largest connected subgraph of $P_m \square C_n$ is isomorphic to $P_a \square P_b$. What's more, $P_a \square P_b$ contains the longest path with $a \cdot b \leq k - 1$ vertices (see Figure 3).

In every P_m -layer, we choose to cover every (a + 1)-th vertex. There are n - 1 layers, then $|S_1| \leq \lfloor \frac{m}{a+1} \rfloor (n-1)$. Similarly, we cover every (b + 1)-th vertex in every C_n -layer, then $|S_2| \leq \lfloor \frac{n-1}{b+1} \rfloor m$. The vertices (u_i, v_j) in $S_1 \cap S_2$ cannot be covered, because its neighbor vertices are all in S. $|S_1 \cap S_2| \leq \lfloor \frac{m}{a+1} \rfloor \lfloor \frac{n-1}{b+1} \rfloor$ and we count such (u_i, v_j) in the intersection twice. Thus,

$$|S| \leq \lfloor \frac{m}{a+1} \rfloor (n-1) + (\lfloor \frac{n-1}{b+1} \rfloor + 1)m - 2\lfloor \frac{n-1}{b+1} \rfloor \lfloor \frac{m}{a+1} \rfloor.$$

Similarly, we can also construct a k-path vertex cover with

$$\lfloor \frac{m}{b+1} \rfloor (n-1) + (\lfloor \frac{n-1}{a+1} \rfloor + 1)m - 2\lfloor \frac{n-1}{a+1} \rfloor \lfloor \frac{m}{b+1} \rfloor$$

vertices.

When $a + 2b + 2 \le m - 1$, we have the following formula

$$\lfloor \frac{m}{b+1} \rfloor (n-1) + (\lfloor \frac{n-1}{a+1} \rfloor + 1)m - 2\lfloor \frac{n-1}{a+1} \rfloor \lfloor \frac{m}{b+1} \rfloor$$

344

Minimum k-path vertex cover in Cartesian product graphs

$$\leq \frac{mn}{b+1} + \frac{n+a}{a+1} \cdot m - 2\lfloor \frac{n-1}{a+1} \rfloor \lfloor \frac{m}{b+1} \rfloor$$

$$\leq \frac{n(a+1) + (n+a)(b+1)}{(a+1)(b+1)} \cdot m - 2\lfloor \frac{n-1}{a+1} \rfloor \lfloor \frac{m}{b+1} \rfloor$$

$$< \frac{mn}{k} \cdot (a+2b+2) < \lceil \frac{m^2n}{k} \rceil.$$

Hence, the upper bound is always better than the result of [18]. \square

Figure 4 4-path vertex cover of $P_6 \square W_{10}$

In [18], if $2 \le k \le \lceil \frac{n+1}{2} \rceil$ and integer $m \ge 2$, then the set $S = \sum_{i=1}^{m} S_i$ is a k-path vertex cover of $P_m \square W_{n+1}$. Moreover

$$S_i = \{(u_i, v_0), (u_i, v_j), (u_i, v_j') \in V(P_m \Box W_{n+1}) | j = 1 + lk, j' = \lceil \frac{k+2}{2} \rceil + lk, 0 \le l \le \lceil \frac{n}{k} \rceil - 1\}$$

for odd i, and

$$S_i = \{(u_i, v_0), (u_i, v_j), (u_i, v_j') \in V(P_m \Box W_{n+1}) | j = 1 + lk, j' = \lfloor \frac{k+2}{2} \rfloor + lk, 0 \le l \le \lceil \frac{n}{k} \rceil - 1\}$$

for even *i*, where i = 1, 2, ..., m, $\psi_k(P_m \Box W_{n+1}) \le m(2\lceil \frac{n}{k} \rceil + 1)$. According to the above method, when m = 6, n = 9, $\psi_4(P_6 \Box W_{10}) \le 30$, there exists the path with more than four vertices (see Figure 4), a contradiction.

Next, we will research it again.

Theorem 3.3 For 2 < m < k, we have $m(1 + \lceil \frac{n}{k} \rceil) \le \psi_k(P_m \Box W_{n+1}) \le \lceil \frac{m^2 n}{k} \rceil + m$.

Proof Use u_1, u_2, \ldots, u_m to mark the vertices of P_m , and v_0, v_1, \ldots, v_n to mark the vertices of W_{n+1} , respectively. Take any vertex (u_1, v_j) in ${}^{u_1}W_{n+1}$ and choose another vertex (u_1, v_{j+t+1}) in ${}^{u_1}W_{n+1}$ with $t = \lfloor \frac{k}{m} \rfloor$. Construct $S' = S_1 \bigcup S_2 \bigcup (u_i, v_0)$ $(i = 1, 2, \ldots, m)$ with

$$S_1 = \{ (u_i, v_j) \in V(P_m \Box W_{n+1}) | i \text{ is odd} \}$$
$$S_2 = \{ (u_i, v_{j+t+1}) \in V(P_m \Box W_{n+1}) | i \text{ is even} \}.$$

It is a k-path vertex cover set of $P_m \square W_{n+1}$, and $|S_1 \bigcup S_2| = m$. By this same step, there are

 $\frac{mn}{k}$ sets that are copies of every k-path in the same layer. $|S'| = |S_1| + |S_2| + m \le \lceil \frac{m^2n}{k} \rceil + m$, then the upper $\psi_k(P_m \Box W_{n+1}) \le \lceil \frac{m^2n}{k} \rceil + m$.

We get the lower bound of $\psi_k(P_m \Box W_{n+1})$ by partitioning $P_m \Box W_{n+1}$ into *m* disjoint subgraphs that are isomorphic to W_{n+1} . It is easy to get

$$\psi_k(P_m \Box W_{n+1}) \ge m(1 + \lceil \frac{n}{k} \rceil)$$

by Lemma 2.5. The result above corrects the one in [18, Theorem 2.8]. \Box

Theorem 3.4 If integer $m, n \ge 4$, and m is an even, we have $\psi_2(P_m \Box K_{n,n}) = mn$.

Proof Mark the vertices of P_m with u_i (i = 1, 2, ..., m) and $K_{n,n}$ with x_j (j = 1, 2, ..., n) and y_j (j = 1, 2, ..., n), respectively.

By the definition of $K_{n,n}$, we can easily get that C_{2mn} is a subgraph of $P_m \square K_{n,n}$. Then

$$\psi_2(P_m \Box K_{n,n}) \ge \psi_2(C_{2mn}) = \lceil \frac{2mn}{2} \rceil = mn$$

by Lemma 2.5. Next, construct a 2-path vertex cover to prove that $\psi_2(P_m \Box K_{n,n}) \leq mn$ in the following way. Let

$$S_{i} = \{(u_{i}, y_{j}) \in P_{m} \Box K_{n,n} \ (j = 1, 2, ..., n) | \text{ for even } i\},\$$
$$S_{i} = \{(u_{i}, x_{j}) \in P_{m} \Box K_{n,n} \ (j = 1, 2, ..., n) | \text{ for odd } i\}.$$

Let $S = \bigcup_{i=m}^{m} S_i$. Clearly, the set S is a 2-path vertex cover of $P_m \Box K_{n,n}$ since the degrees of the remaining uncovered vertices are all 0. Therefore, $\psi_2(P_m \Box K_{n,n}) = mn$. \Box

Theorem 3.5 If integer $m, n \ge 4$, and m is an even, we have

(i) For integer $3 \le k \le n+1$, then

$$\psi_k(P_m \Box K_{n,n}) \le mn - \frac{m}{2}(\lfloor \frac{k}{2} \rfloor - 1).$$

(ii) For integer $n+2 \le k \le 2n+1$, then

$$m(n+1-\lfloor\frac{k}{2}\rfloor) \le \psi_k(P_m \Box K_{n,n}) \le \frac{3}{4}mn.$$

(iii) For integer $k \ge 2n+1$, then

$$\psi_k(P_m \Box K_{n,n}) \ge \lceil \frac{2mn}{k} \rceil.$$

Proof (i) Let

$$S_{2i} = \{ (u_{2i}, y_j) \in P_m \Box K_{n,n} | j = 1, 2, \dots, n \},$$

$$S_{2i-1} = \{ (u_{2i-1}, x_j) \in P_m \Box K_{n,n} | j = 1, 2, \dots, n - \lfloor \frac{k}{2} \rfloor + 1 \},$$

$$S_{2i+1} = \{ (u_{2i+1}, x_j) \in P_m \Box K_{n,n} | j = \lfloor \frac{k}{2} \rfloor, \lfloor \frac{k}{2} \rfloor + 1, \dots, n \},$$

where

$$|S_{2i}| = n, |S_{2i-1}| = |S_{2i+1}| = n - \lfloor \frac{k}{2} \rfloor + 1, i \in [1, \frac{m}{2}].$$

346

Minimum k-path vertex cover in Cartesian product graphs

It is easy to see that $S = \bigcup_{i=m}^{m} S_i$ is a k-path vertex cover set since the largest uncovered path has at most $2(\lfloor \frac{k}{2} \rfloor - 1) + 1 \le k - 1$ vertices. Therefore,

$$\psi_k(P_m \Box K_{n,n}) \le mn - \frac{m}{2}(\lfloor \frac{k}{2} \rfloor - 1).$$

If m is odd, we follow the same way as shown above, then

$$\psi_k(P_m \Box K_{n,n}) \le mn - \frac{m+1}{2}(\lfloor \frac{k}{2} \rfloor - 1).$$

(ii) Let

$$S_{2i} = \{ (u_{2i}, y_j) \in P_m \Box K_{n,n} | j = 1, 2, \dots, n \},$$

$$S_{2i-1} = \{ (u_{2i-1}, x_j) \in P_m \Box K_{n,n} | j = 1, 2, \dots, \lfloor \frac{n}{2} \rfloor \},$$

$$S_{2i+1} = \{ (u_{2i+1}, x_j) \in P_m \Box K_{n,n} | j = \lfloor \frac{n}{2} \rfloor, \lfloor \frac{n}{2} \rfloor + 1, \dots, n \}$$

The set $S = \bigcup_{i=1}^{m} S_i$ is the k-path vertex cover of $P_m \Box K_{n,n}$, because the largest uncovered path has $2(n - \lfloor \frac{n}{2} \rfloor) + 1 \le n + 1 \le k - 1$ vertices. $|S_{2i}| = n$, $|S_{2i-1}| + |S_{2i+1}| = n$, $i \in [1, \frac{m}{2}]$, $|S_{2i}|$ is an arithmetic sequence, so the upper $\psi_k(P_m \Box K_{n,n}) \le \frac{m}{2}(n + \lfloor \frac{n}{2} \rfloor) \le \frac{3}{4}mn$. If m is odd, we follow the same way as shown above similarly, then

$$\psi_k(P_m \Box K_{n,n}) \le \frac{m+1}{2}(n+\lfloor \frac{n}{2} \rfloor)-n.$$

For the lower, we can partition $P_m \Box K_{n,n}$ into m subgraphs $K_{n,n}$, thus we will get the lower bound $\psi_k(P_m \Box K_{n,n}) \ge m(n+1-\lfloor \frac{k}{2} \rfloor)$ by using Lemma 2.4.

(iii) For $k \ge 2n+1$, it is clear that C_{2mn} is a subgraph of $P_m \square K_{n,n}$, then

$$\psi_k(P_m \Box K_{n,n}) \ge \psi_k(C_{2mn}) = \lceil \frac{2mn}{k} \rceil$$

All of proofs are completed. \square

Acknowledgements We thank the referees for their time and comments.

References

- M. NOVOTNÝ. Design and analysis of a generalized canvas protocol. Proceedings of WISTP. LNCS, Springer-Verlag., 2010, 6033: 106–121.
- Jianhua TU, Wenli ZHOU. A factor 2 approximation algorithm for the vertex cover P₃ problem. Inform. Process. Lett., 2011, 111(14): 683–686.
- [3] J. HARANT, M. A. HENNING, D. RAUTENBACH, et al. Independence number in graphs of maximum degree three. Discrete Math., 2008, 308(23): 5829–5833.
- [4] M. YANNAKAKIS. Node-deletion problem on bipartite graphs. SIAM J. Comput., 1981, 10(2): 310–324.
- [5] R. BOLIAC, K. CAMERON, V. V. LOZIN. On computing the dissociation number and the induced matching number of bipartite graphs. Ars Combin., 2004, 72: 241–253.
- Y. ORLOVICH, A. DOLGUIB, G. FINKEC, et al. The complexity of dissociation set problems in graphs. Discrete Appl. Math., 2011, 159(13): 1352–1366.
- [7] Lei ZHANG, An ZHANG, Yong CHEN, et al. On the Vertex Cover P₃ Problem in Cubic Graphs. J. Hangzhou Dianzi University (Natural Science), 2019, 39(5): 94–97. (in Chinese)
- [8] Jianhua TU, Fengmei YANG. The vertex cover P₃ problem in cubic graphs. Inform. Process. Lett., 2013, 113(13): 481–485.
- J. KATRENIČ. A faster FPT algorithm for 3-path vertex cover. Inform. Process. Lett., 2016, 116(4): 273– 278.

- [10] D. TSUR. Parameterized algorithm for 3-path vertex cover. Theoret. Comput. Sci., 2019, 783: 1–8.
- [11] Jianhua TU, Yongtang SHI. An efficient polynomial time approximation scheme for the vertex cover P₃ problem on planar graphs. Discuss. Math. Graph Theory, 2019, **39**(1): 55–65.
- [12] B. BREŠAR, F. KARDOŠ, J. KATRENIČ, et al. Minimum k-path vertex cover. Discrete Appl. Math., 2011, 159(12): 1189–1195.
- B. BREŠAR, M. JAKOVAC, J. KATRENIČ, et al. On the vertex k-path cover. Discrete Appl. Math., 2013, 161(13-14): 1943–1949.
- [14] Xianliang LIU, Hongliang LU, Wei WANG, et al. PTAS for the minimum k-path connected vertex cover problem in unit disk graphs. J. Global Optim., 2013, 56(2): 449–458.
- [15] B. BREŠAR, R. KRIVOŠ-BELLUŠ, G. SEMANIŠIN, et al. On the weighted k-path vertex cover problem. Discrete Appl. Math., 2014, 177: 14–18.
- [16] Xiaosong LI, Zhao ZHANG, Xiaohui HUANG. Approximation algorithms for minimum (weight) connected k-path vertex cover. Discrete Appl. Math., 2016, 205: 101–108.
- [17] M. JAKOVAC, A. TARANENKO. On the k-path vertex cover of some graph products. Discrete Math., 2013, 313: 94–100.
- [18] Zhao LI, Liancui ZUO. The k-path vertex cover in Cartesian product graphs and complete bipartite graphs. Appl. Math. Comput., 2018, 331: 69–79.
- [19] M. JAKOVAC. The k-path vertex cover of rooted product graphs. Discrete Appl. Math., 2015, 187: 111–119.
- [20] V. ROSENFELD. The independence polynomial of rooted products of graphs. Discrete Appl. Math., 2010, 158: 551–558.
- [21] Bitao ZHANG. The k-Path Vertex Cover of Some Product Graphs. Tianjin Normal University Press, Tianjin, 2016. (in Chinese)
- [22] V. V. LOZIN, D. RAUTENBACH. Some results on graphs without long induced paths. Inform. Process. Lett., 2003, 88(4): 167–171.
- [23] Jianhua TU. Efficient algorithm for the vertex cover P_k problem on cacti. Appl. Math. Comput., 2017, **311**: 217–222.