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Abstract For the subset S C V(G), if every path with k vertices in a graph G contains at least
one vertex from S, we call that S is a k-path vertex cover set of the graph G. Obviously, the
subset is not unique. The cardinality of the minimum k-path vertex cover set of a graph G is
called the k-path vertex cover number, we denote it by 1% (G). In this paper, a lower or upper
bound of 9y, for some Cartesian product graphs is presented.

Keywords k-path vertex cover; Cartesian product graphs; bound

MR(2020) Subject Classification 05C69; 05C70; 05C76

1. Introduction

All graphs we consider in this paper are finite, undirected, and simple. For a graph G =
(V, E), the vertex set and edge set of G are denoted by V = V(G) and E = E(G), respectively.
For a subset S C V(G), the subgraph of G induced by S is denoted by G[S]. A path with &
vertices is called a k-path. For a graph G, the k-path vertex cover problem in G is to find a subset
S C V (which is called a k-path vertex cover set) such that the removal of S from G results in
a graph that does not contain any k-path, i.e., any path in G[V\S] only contains less than k
vertices. The k-path vertex cover number of a graph G, denoted by 91 (G), is the cardinality of
a minimum k-path vertex cover set of G.

The motivation for this research is from the following two aspects. One is the communication
of wireless sensor network, by K-generalized Canvas Scheme, and we use it to integrate the data
in [1]; the other is the intelligent traffic control, such as installing multiple cameras problem in
the crossing roads [2].

For the k-path vertex cover problem, we ignore the problem for & = 1 because ¢ (G) =
|[V(G)|. For k =2, it is easy to see that 1)2(G) is related to maximum independent set problem,
ie.,

2(G) = [V(G)] — (@),
where «(G) denotes the maximum independent number of G. There are many related studies

about independent number in [3]. In particular, we calculate ¥5(G) by finding its maximum
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matching when a graph is a bipartite graph. For k = 3, there is also a known concept of
dissociation number related to ¢3(G) in [4-6]. The so-called dissociation number is the maximum
cardinality of an induced subgraph of G whose maximum degree is less than or equal to 1, and
we denote it by diss(G). Hence,

¥3(G) = [V(G)| — diss(G).

At present, many researchers studied the value 13(G) in various ways [2,7-9]. Tsur [10] gave
a parameterized algorithm with time complexity O*(1.713%). In [11], the authors presented an
efficient polynomial time approximation scheme for the 3-path vertex cover problem (VCPs) on
planar graphs. In 2011, Tu et al. gave a 2-approximation algorithm, and proposed a primal-
dual approximation algorithm [2]; In 2013, they mainly studied cubic graphs and gave a 1.57-
approximation algorithm for the VCP; problem. Later, Zhang et al. [7] improved Tu’s upper
bound and obtained a 1.5-approximation algorithm.

For k > 3, Bresar et al. [12] gave some efficient algorithms for trees, outerplanar graphs,
and obtained a general result of connected graphs. Bresar et al. [13] also presented ¢ (G) >
chif_kkfé |[V(G)| for d > k—1, where G is a d-regular graph. Later, Liu et al. [14] added connectivity
to the k-path vertex cover problem and presented a polynomial time approximation scheme of

unit disk graphs. In 2014, the authors added a new factor, weight, and studied weighted versions
of minimum k-path vertex cover problem for trees, cycles and complete graphs in [15]. Then,
Li et al. [16] gave an approximation algorithm for minimum (weighted) connected k-path vertex
cover problem.

Recently, the k-path vertex cover problem was studied in many classes of graph products,
such as [13], and [17-21], respectively. For the lexicographic product of arbitrary two graphs, Tu
and Zhou [2] gave an approximation result of ¢, (G). For the Cartesian product of two paths,
Bresar et al. [13] gave an exact value of ¥3(G). Li et al. [18] studied Cartesian product of path
and cycle, wheel, complete bipartite graph, respectively. Then, Jakovac [19] obtained a lower
and an upper bound of the k-path vertex cover number of rooted product graphs.

In this paper, we mainly make a further research based on [18]. In the next section, we show
some known related results. In Section 3, we obtain an exact value of ¢3(P,,0C,,) for positive m
and n, provide a better way for calculating ¥y (P,,,0C,, ), correct g (P, 0W,41)’s upper bound,

and generalize the result in [18, Theorem 2.16] to m dimension.

2. Preliminary knowledge

A cycle of length n is denoted by C,,. A wheel W, is obtained from C,, by adding a new
vertex, say vg, such that vy is connected to every vertex of C,. A bipartite graph is a graph
whose vertex set can be divided into two disjoint subsets called bipartition, denoted by (X,Y),
so that the two ends of every edge are contained in different subsets. A complete bipartite graph
with the bipartition (X,Y), denoted by K, », is a bipartite graph such that |X| = m, Y| = n,
and every vertex of X is connected to every vertex of Y.

For two graphs G = (V(G), E(G)) and H = (V(H), E(H)), the Cartesian product GOH has
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vertex set V(G) x V(H), and vertices (u,v),(x,y) are adjacent whenever u = x and vy € E(H)
or ux € E(G) and v =y (see [17]).

Some known results are shown as follows.

Lemma 2.1 ([12]) If a graph G does not contain isolated vertices, then

k—1 2
< - — —_—.
ueV(QG)
Lemma 2.2 ([13]) For positive integers k > 2 and n > k , the following results hold:
n n

Lemma 2.3 ([13]) For positive integers n,k > 1, we have

2k
3(Popt10Poy) = 2nk + | —

x,
’lﬁg(PgnDPQk) = 27’Ll€,
2k+1
3

Lemma 2.4 ([18]) If m >4, m+2 < k < 2m, then ¢y,(Kpm) =m—+1— %]

1/)3(P2n+1DP2k+1) = n(2k+ 1) + L J (1 <n< k)

Lemma 2.5 ([18]) If k > 2 and G’ is a subgraph of G, then ¥ (G) > i (G").

Lemma 2.6 ([18]) If2 <k <n, then ¢,(Wyp1) = [£] + 1.

3. Main results

Let us first introduce the following notions. For any vertex u € V(G), the set u x V(H) is
called H-layer of GOH, denoted by “H. Analogously, for any vertex v € V(H), the set v x V(G)
is called G-layer of GOH, denoted by G". Obviously, in Cartesian product graphs, every H-
layer(G-layer) is isomorphic to H(G).

Theorem 3.1 For positive integer 1 < n < k, we have
(i) ¥3(Pen+10C3) = 3nk + k, 13(P2,0Cs;) = 3nk.
(i) ¥3(Pan+10Csk41) = n(Bk+ 1) + k + 1, 3(P2,0C5,41) = n(3k + 1).
(iii) ¥3(Pop+10C5542) = n(3k +2) + k + 1, ¥3(P2,0C5542) = n(3k + 2).

Proof Use uy,us,...,u, to mark the vertices of P,,, and vy, vo,...,v, to mark the vertices of
C,,, respectively. With the mark, the vertex (u;,v;) € V(P,,0C,,) is both on the i-th “iC),-layer
and the j-th ¥ P,,-layer (1 <i<m,1 < j <n).

(i) Let

S = {(ugi—1,vs5), (u2i, v3j—2), (U2, v3;—1)| for applicable indices ¢ and j}.

The set S is a 3-path vertex cover of Ps,.10C5; since every 3-path contains at least one
vertex from S (see Figure 1). Then ¢3(Pay+10Cs;) < 3nk + k.
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Due to Pap10Ps; C Pap10C5,, we can obtain that ¢3(Pay+10C3;) > ¥3(Pant10P3;) by
Lemma 2.5. And v3(Psy,10Ps;) = 3nk + k in Lemma 2.3, then ¢3(Pa2,+10Cs;) > 3nk + k.
Hence, ¥3(P2yp+10Cs;) = 3nk + k.

Similarly, we follow the same way as shown above, then 3(Ps,0C5;) = 3nk.

(ii) According to (i), we can get the 3-path vertex cover set S of Pa,10C3,4+1 by adding

vertices (u2;—1,v1) and deleting vertices (ug;,v1) (for suitable i) as follows

S = {(’U,Qi,h ’Ul), (’U,Qi,h Ugj), ('LLQZ', ’02), ('LLQZ', Ugj+1), (Ugi, Ugj+2)| for applicable indices i and ]}
3k+1
3

S| =nBk+1)+ | J+1=nBk+1)+k+1.

Obviously, the set S is a 3-path vertex cover of Py, 110C5,41 since every 3-path contains at least

one vertex from S (see Figure 2). Then
1/)3(P2n+1 DCngrl) < TL(3I€ + 1) +k+1.
Due to Pap410Ps5+1 C Pon10Csk41, then

P3(Pop10C3k41) > V3(Popy10Ps3p41) =n(3k+1) +k

by Lemma 2.3. Assume that it has a 3-path vertex cover T, |T’| < n(3k+ 1) + k, we can always

find a path with order greater than or equal to 3, a contradiction, then
V3(Pon10Csk41) > n(Bk +1) + k+ 1.

Therefore,
1/)3(P2n+1 DCngrl) = TL(3/€ + 1) +k+1.

Similarly, we follow the same way as shown above, then 13(P2,0C5,+1) < n(3k 4+ 1). By

Lemmas 2.3 and 2.5, we have

wS(P2nDCSk+1) Z 1/13(P2nDP3k+1) = n(3k + 1).

Therefore,
Y3(Pap0C5541) = n(3k + 1).

(ili) The proof process is as (ii). O

Figure 1 3-path vertex cover of Po,410C3k Figure 2 3-path vertex cover of Pop+10C3k64+1

Theorem 3.2 For integer k > 3, let (a,b) be the middle Dy_; pair. We have

Yr(PnCy) < min{(LZT_iJ FDm ot [ = 1) 2 i -
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m n—1)—

a+1

(0 b+1 a+1 b+1 I}
For the notion of D; pair, the introduction is as follows. The D; denotes the set of all

divisors of i. Let a < b, where a is the largest factor in D; less than or equal to v/, and b is
the smallest factor in D; greater than or equal to v/i. The pair (a,b) is called the middle D;

pair [17]. Generally, we can see that a - b = i.

a

=
-
Fo
-
&
e
e

Uy Uy Uz Uy Us Ug Uy Ug Ug U
Figure 3 k-path vertex cover of P, 0C,

Proof Use uy,us,...,u, to mark the vertices of P,,, and vy, v, ...,v, to mark the vertices of
C.,, respectively.
Let
St = {(u;,v;) € P,0C,|j € [1,n—1] and i =0 (moda + 1)},

So = {(u;,v;) € Pp0Cy|i € [1,m] and j =0 (mod b+ 1)}.

The set S = (51U S2 U(ui,vn))\(S1NS2) (i = 1,2,...,m) is a k-path vertex cover of
P,,0C,,, because the remaining largest connected subgraph of P,,0C,, is isomorphic to P,0F;.
What’s more, P,00P, contains the longest path with a-b < k — 1 vertices (see Figure 3).

In every P,,-layer, we choose to cover every (a + 1)-th vertex. There are n — 1 layers,
then [S1| < [;95](n —1). Similarly, we cover every (b+ 1)-th vertex in every Cj-layer, then

|S2| < [ 2= |m. The vertices (u;,v;) in S N Sz cannot be covered, because its neighbor vertices

b1
are all in S. [S1N Sa| < |55 ] LZT_IIJ and we count such (u;, v;) in the intersection twice. Thus,
m n—1 n—1 m
S| < |—— -1 1 -2 .
S < 1= = 1) + (5 + Dm =2 =
Similarly, we can also construct a k-path vertex cover with
m n—1 n—1 m
—|(n—1 1)m —2 —
gl =D+ (g + Um =215 3]
vertices.
When a 4+ 20+ 2 < m — 1, we have the following formula
m n—1 n—1 m
— |(n—1 Dm —2 —
gl = D+ Gz Um =25
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mn n+a n—1 m
< TR o o
So71 T arr " el
nla+1)+(n+a)(b+1) n—1  m
= @+ 1)b+1) m =2l
2
<%~(a+2b+2)<[m]€"1.

Hence, the upper bound is always better than the result of [18]. O
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Figure 4 4-path vertex cover of PsOOWig

In [18], if 2 < k < [%F1] and integer m > 2, then the set S = }I" | S; is a k-path vertex
cover of P,,0W,,4+1. Moreover

k+2
Si = {(us,v0), (s, v3), (i, v}) € V(PuOW1)j = 1+ 1k, j' = | ;r 14102 1< 7] -1}

for odd i, and

k42
S; = {(’U,i,’l)o), (ui,vj), (ui,U;) S V(PmDWn+1)|j =1+ lk7j/ = \_ ;_ J +1k,0<1< (——| — 1}

for even i, where i = 1,2,...,m, Yp(PpOWy 1) <m(2[#]+41). According to the above method,
when m =6, n =9, ¥4(Ps DWlo) < 30, there exists the path with more than four vertices (see
Figure 4), a contradiction.

Next, we will research it again.

Theorem 3.3 For 2 < m <k, we have m(1 + [}]) < Yp(PpnOWpy1) < fm:

2]+ m.

Proof Use uy,us,...,u, to mark the vertices of P,,, and vg,v1,...,v, to mark the vertices of
W1, respectively. Take any vertex (u1,v;) in “*W,, 41 and choose another vertex (w1, vj4¢41)
in W41 with t = [£]. Construct S’ = S |JS2 U(ui, vo) (i =1,2,...,m) with

S1 = {(ui,vj) € V(P OW,p41)] 7 is odd}
Sy = {(UZ,UJthJrl) S V( mDWn+1)| i 18 even}.

It is a k-path vertex cover set of P,,0W,, 11, and |S1|J S2| = m. By this same step, there are
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mn

TR sets that are copies of every k-path in the same layer. [S’| = [S1] + [S2| +m < [mTQﬂ +m,
2
then the upper ¢, (PnOWyi1) < [B2] 4+ m.
We get the lower bound of ¢y (P,,0W,,4+1) by partitioning P,,,0W,,+1 into m disjoint sub-
graphs that are isomorphic to W, ;1. It is easy to get

k(P OWigr) 2 m(1+ [2])

by Lemma 2.5. The result above corrects the one in [18, Theorem 2.8]. O
Theorem 3.4 If integer m,n > 4, and m is an even, we have Vs ( P, 0K, ) = mn.

Proof Mark the vertices of P, with u; (i =1,2,...,m) and K, , with z; (j =1,2,...,n) and
y; (7 =1,2,...,n), respectively.
By the definition of K, ,, we can easily get that Cy,,, is a subgraph of F,,,0K,, . Then

2mn
2

by Lemma 2.5. Next, construct a 2-path vertex cover to prove that o (P,, 0K, ,) < mn in the

wQ(PmDKn,n) > ¢2(02mn) = ’— -| =mn

following way. Let
Si = {(ui,y;) € PpOK,, (j =1,2,...,n)| for even i},
Si = {(ui,zj) € PpOK,, (5 =1,2,..n)| for odd i}.

Let S = U?im Si. Clearly, the set S is a 2-path vertex cover of P,,0K,, , since the degrees

of the remaining uncovered vertices are all 0. Therefore, 12 (P,, 0Ky, ) = mn. O

Theorem 3.5 If integer m,n > 4, and m is an even, we have
(i) For integer 3 < k <n+ 1, then
m, k
(ii)) For integer n +2 < k < 2n+ 1, then

k 3
m(n+1— Lij) < Y (PpOK, ) < 7mn
(iii) For integer k > 2n + 1, then

2mn

Vi (PmOKyn) > fTT
Proof (i) Let
S2i - {(’LLQi, yj) € P’mDK’n,nU = 15 27 .. '777’}5

. k
SQi—l = {(UQi_l,,Tj) (S PmDKn,n|.7 = 1,2, e, = |_§J + 1},

. k k
Saiv1 = {(u2i41,25) € PnOKynlj = LEJ, L§J +1,...,n},
where

!

k . m
|S2i| = n, [S2i—1| = |S2ip1| = n — L§J +1, 1€, 5
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It is easy to see that S = J.", S; is a k-path vertex cover set since the largest uncovered path
has at most 2(| 4] — 1) +1 < k — 1 vertices. Therefore,

V(P ) < mn = (1K) 1),
If m is odd, we follow the same way as shown above, then
V(POK ) <mn = PEL 2 )
(i) Let
Soi = {(u2:,y;) € PnOKpn)j =1,2,...,n},
Saimt = {(uzi-1,3;) € PnOKnnli = 1,2, |5},
Saitt = {(w2i+1,2}) € PuOKnli = |51, 5] + 1. ).

The set S = U;’il S; is the k-path vertex cover of P,, 0K, ,, because the largest uncovered
path has 2(n — [§]) +1 <n+1 < k — 1 vertices. [Soi| = n, |[So;—1] + [S2iq1| = n, i € [1, 5],
|Sa;| is an arithmetic sequence, so the upper ¥y (PpOKy,) < 2(n+ [2]) < 2mn. If m is odd,
we follow the same way as shown above similarly, then

m+1 n

For the lower, we can partition P, 0K, , into m subgraphs K, ,, thus we will get the lower
bound ¢y (Pr0K, ) > m(n+1— [£]) by using Lemma 2.4.

(iii) For k > 2n+ 1, it is clear that Cay,, is a subgraph of P, 0K, ., then

2mn

1/)k(})mljf(n,n) > 1/}k(02mn) = [71

All of proofs are completed. O
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