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Abstract For the subset S ⊆ V (G), if every path with k vertices in a graph G contains at least

one vertex from S, we call that S is a k-path vertex cover set of the graph G. Obviously, the

subset is not unique. The cardinality of the minimum k-path vertex cover set of a graph G is

called the k-path vertex cover number, we denote it by ψk(G). In this paper, a lower or upper

bound of ψk for some Cartesian product graphs is presented.

Keywords k-path vertex cover; Cartesian product graphs; bound

MR(2020) Subject Classification 05C69; 05C70; 05C76

1. Introduction

All graphs we consider in this paper are finite, undirected, and simple. For a graph G =

(V,E), the vertex set and edge set of G are denoted by V = V (G) and E = E(G), respectively.

For a subset S ⊂ V (G), the subgraph of G induced by S is denoted by G[S]. A path with k

vertices is called a k-path. For a graph G, the k-path vertex cover problem in G is to find a subset

S ⊂ V (which is called a k-path vertex cover set) such that the removal of S from G results in

a graph that does not contain any k-path, i.e., any path in G[V \S] only contains less than k

vertices. The k-path vertex cover number of a graph G, denoted by ψk(G), is the cardinality of

a minimum k-path vertex cover set of G.

The motivation for this research is from the following two aspects. One is the communication

of wireless sensor network, by K-generalized Canvas Scheme, and we use it to integrate the data

in [1]; the other is the intelligent traffic control, such as installing multiple cameras problem in

the crossing roads [2].

For the k-path vertex cover problem, we ignore the problem for k = 1 because ψ1(G) =

|V (G)|. For k = 2, it is easy to see that ψ2(G) is related to maximum independent set problem,

i.e.,

ψ2(G) = |V (G)| − α(G),

where α(G) denotes the maximum independent number of G. There are many related studies

about independent number in [3]. In particular, we calculate ψ2(G) by finding its maximum
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matching when a graph is a bipartite graph. For k = 3, there is also a known concept of

dissociation number related to ψ3(G) in [4–6]. The so-called dissociation number is the maximum

cardinality of an induced subgraph of G whose maximum degree is less than or equal to 1, and

we denote it by diss(G). Hence,

ψ3(G) = |V (G)| − diss(G).

At present, many researchers studied the value ψ3(G) in various ways [2, 7–9]. Tsur [10] gave

a parameterized algorithm with time complexity O∗(1.713k). In [11], the authors presented an

efficient polynomial time approximation scheme for the 3-path vertex cover problem (V CP3) on

planar graphs. In 2011, Tu et al. gave a 2-approximation algorithm, and proposed a primal-

dual approximation algorithm [2]; In 2013, they mainly studied cubic graphs and gave a 1.57-

approximation algorithm for the V CP3 problem. Later, Zhang et al. [7] improved Tu’s upper

bound and obtained a 1.5-approximation algorithm.

For k ≥ 3, Brešar et al. [12] gave some efficient algorithms for trees, outerplanar graphs,

and obtained a general result of connected graphs. Brešar et al. [13] also presented ψk(G) ≥
d−k+2
2d−k+2 |V (G)| for d ≥ k−1, whereG is a d-regular graph. Later, Liu et al. [14] added connectivity

to the k-path vertex cover problem and presented a polynomial time approximation scheme of

unit disk graphs. In 2014, the authors added a new factor, weight, and studied weighted versions

of minimum k-path vertex cover problem for trees, cycles and complete graphs in [15]. Then,

Li et al. [16] gave an approximation algorithm for minimum (weighted) connected k-path vertex

cover problem.

Recently, the k-path vertex cover problem was studied in many classes of graph products,

such as [13], and [17–21], respectively. For the lexicographic product of arbitrary two graphs, Tu

and Zhou [2] gave an approximation result of ψk(G). For the Cartesian product of two paths,

Brešar et al. [13] gave an exact value of ψ3(G). Li et al. [18] studied Cartesian product of path

and cycle, wheel, complete bipartite graph, respectively. Then, Jakovac [19] obtained a lower

and an upper bound of the k-path vertex cover number of rooted product graphs.

In this paper, we mainly make a further research based on [18]. In the next section, we show

some known related results. In Section 3, we obtain an exact value of ψ3(Pm2Cn) for positive m

and n, provide a better way for calculating ψk(Pm2Cn), correct ψk(Pm2Wn+1)’s upper bound,

and generalize the result in [18, Theorem 2.16] to m dimension.

2. Preliminary knowledge

A cycle of length n is denoted by Cn. A wheel Wn+1 is obtained from Cn by adding a new

vertex, say v0, such that v0 is connected to every vertex of Cn. A bipartite graph is a graph

whose vertex set can be divided into two disjoint subsets called bipartition, denoted by (X,Y ),

so that the two ends of every edge are contained in different subsets. A complete bipartite graph

with the bipartition (X,Y ), denoted by Km,n, is a bipartite graph such that |X | = m, |Y | = n,

and every vertex of X is connected to every vertex of Y .

For two graphs G = (V (G), E(G)) and H = (V (H), E(H)), the Cartesian product G2H has
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vertex set V (G) × V (H), and vertices (u, v),(x, y) are adjacent whenever u = x and vy ∈ E(H)

or ux ∈ E(G) and v = y (see [17]).

Some known results are shown as follows.

Lemma 2.1 ([12]) If a graph G does not contain isolated vertices, then

ψk(G) ≤ |V (G)| − k − 1

k

∑

u∈V (G)

2

1 + d(u)
.

Lemma 2.2 ([13]) For positive integers k ≥ 2 and n ≥ k , the following results hold:

ψk(Cn) = ⌈n
k
⌉, ψk(Pn) = ⌊n

k
⌋.

Lemma 2.3 ([13]) For positive integers n, k ≥ 1, we have

ψ3(P2n+12P2k) = 2nk + ⌊2k
3
⌋,

ψ3(P2n2P2k) = 2nk,

ψ3(P2n+12P2k+1) = n(2k + 1) + ⌊2k + 1

3
⌋ (1 ≤ n ≤ k).

Lemma 2.4 ([18]) If m ≥ 4, m+ 2 ≤ k < 2m, then ψk(Km,m) = m+ 1− ⌊k
2 ⌋.

Lemma 2.5 ([18]) If k ≥ 2 and G′ is a subgraph of G, then ψk(G) ≥ ψk(G
′).

Lemma 2.6 ([18]) If 2 ≤ k < n, then ψk(Wn+1) = ⌈n
k
⌉+ 1.

3. Main results

Let us first introduce the following notions. For any vertex u ∈ V (G), the set u × V (H) is

called H-layer of G2H , denoted by uH . Analogously, for any vertex v ∈ V (H), the set v×V (G)

is called G-layer of G2H , denoted by Gv. Obviously, in Cartesian product graphs, every H-

layer(G-layer) is isomorphic to H(G).

Theorem 3.1 For positive integer 1 ≤ n ≤ k, we have

(i) ψ3(P2n+12C3k) = 3nk + k, ψ3(P2n2C3k) = 3nk.

(ii) ψ3(P2n+12C3k+1) = n(3k + 1) + k + 1, ψ3(P2n2C3k+1) = n(3k + 1).

(iii) ψ3(P2n+12C3k+2) = n(3k + 2) + k + 1, ψ3(P2n2C3k+2) = n(3k + 2).

Proof Use u1, u2, . . . , um to mark the vertices of Pm, and v1, v2, . . . , vn to mark the vertices of

Cn, respectively. With the mark, the vertex (ui, vj) ∈ V (Pm2Cn) is both on the i-th uiCn-layer

and the j-th vjPm-layer (1 ≤ i ≤ m, 1 ≤ j ≤ n).

(i) Let

S = {(u2i−1, v3j), (u2i, v3j−2), (u2i, v3j−1)| for applicable indices i and j}.

The set S is a 3-path vertex cover of P2n+12C3k since every 3-path contains at least one

vertex from S (see Figure 1). Then ψ3(P2n+12C3k) ≤ 3nk + k.
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Due to P2n+12P3k ⊂ P2n+12C3k, we can obtain that ψ3(P2n+12C3k) ≥ ψ3(P2n+12P3k) by

Lemma 2.5. And ψ3(P2n+12P3k) = 3nk + k in Lemma 2.3, then ψ3(P2n+12C3k) ≥ 3nk + k.

Hence, ψ3(P2n+12C3k) = 3nk + k.

Similarly, we follow the same way as shown above, then ψ3(P2n2C3k) = 3nk.

(ii) According to (i), we can get the 3-path vertex cover set S of P2n+12C3k+1 by adding

vertices (u2i−1, v1) and deleting vertices (u2i, v1) (for suitable i) as follows

S = {(u2i−1, v1), (u2i−1, v3j), (u2i, v2), (u2i, v3j+1), (u2i, v3j+2)| for applicable indices i and j}.

|S| = n(3k + 1) + ⌊3k + 1

3
⌋+ 1 = n(3k + 1) + k + 1.

Obviously, the set S is a 3-path vertex cover of P2n+12C3k+1 since every 3-path contains at least

one vertex from S (see Figure 2). Then

ψ3(P2n+12C3k+1) ≤ n(3k + 1) + k + 1.

Due to P2n+12P3k+1 ⊂ P2n+12C3k+1, then

ψ3(P2n+12C3k+1) ≥ ψ3(P2n+12P3k+1) = n(3k + 1) + k

by Lemma 2.3. Assume that it has a 3-path vertex cover T ′, |T ′| ≤ n(3k+1)+ k, we can always

find a path with order greater than or equal to 3, a contradiction, then

ψ3(P2n+12C3k+1) ≥ n(3k + 1) + k + 1.

Therefore,

ψ3(P2n+12C3k+1) = n(3k + 1) + k + 1.

Similarly, we follow the same way as shown above, then ψ3(P2n2C3k+1) ≤ n(3k + 1). By

Lemmas 2.3 and 2.5, we have

ψ3(P2n2C3k+1) ≥ ψ3(P2n2P3k+1) = n(3k + 1).

Therefore,

ψ3(P2n2C3k+1) = n(3k + 1).

(iii) The proof process is as (ii). 2

Figure 1 3-path vertex cover of P2n+12C3k Figure 2 3-path vertex cover of P2n+12C3k+1

Theorem 3.2 For integer k ≥ 3, let (a, b) be the middle Dk−1 pair. We have

ψk(Pm2Cn) ≤ min{(⌊n− 1

a+ 1
⌋+ 1)m+ ⌊ m

b+ 1
⌋(n− 1)− 2⌊n− 1

a+ 1
⌋⌊ m

b+ 1
⌋,
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(⌊n− 1

b+ 1
⌋+ 1)m+ ⌊ m

a+ 1
⌋(n− 1)− 2⌊n− 1

b+ 1
⌋⌊ m

a+ 1
⌋}.

For the notion of Di pair, the introduction is as follows. The Di denotes the set of all

divisors of i. Let a ≤ b, where a is the largest factor in Di less than or equal to
√
i, and b is

the smallest factor in Di greater than or equal to
√
i. The pair (a, b) is called the middle Di

pair [17]. Generally, we can see that a · b = i.

Figure 3 k-path vertex cover of Pm2Cn

Proof Use u1, u2, . . . , um to mark the vertices of Pm, and v1, v2, . . . , vn to mark the vertices of

Cn, respectively.

Let

S1 = {(ui, vj) ∈ Pm2Cn|j ∈ [1, n− 1] and i ≡ 0 (mod a+ 1)},

S2 = {(ui, vj) ∈ Pm2Cn|i ∈ [1,m] and j ≡ 0 (mod b+ 1)}.

The set S = (S1

⋃
S2

⋃
(ui, vn))\(S1

⋂
S2) (i = 1, 2, . . . ,m) is a k-path vertex cover of

Pm2Cn, because the remaining largest connected subgraph of Pm2Cn is isomorphic to Pa2Pb.

What’s more, Pa2Pb contains the longest path with a · b ≤ k − 1 vertices (see Figure 3).

In every Pm-layer, we choose to cover every (a + 1)-th vertex. There are n − 1 layers,

then |S1| ≤ ⌊ m
a+1⌋(n − 1). Similarly, we cover every (b + 1)-th vertex in every Cn-layer, then

|S2| ≤ ⌊n−1
b+1 ⌋m. The vertices (ui, vj) in S1 ∩ S2 cannot be covered, because its neighbor vertices

are all in S. |S1 ∩ S2| ≤ ⌊ m
a+1⌋⌊n−1

b+1 ⌋ and we count such (ui, vj) in the intersection twice. Thus,

|S| ≤ ⌊ m

a+ 1
⌋(n− 1) + (⌊n− 1

b+ 1
⌋+ 1)m− 2⌊n− 1

b+ 1
⌋⌊ m

a+ 1
⌋.

Similarly, we can also construct a k-path vertex cover with

⌊ m

b+ 1
⌋(n− 1) + (⌊n− 1

a+ 1
⌋+ 1)m− 2⌊n− 1

a+ 1
⌋⌊ m

b+ 1
⌋

vertices.

When a+ 2b+ 2 ≤ m− 1, we have the following formula

⌊ m

b+ 1
⌋(n− 1) + (⌊n− 1

a+ 1
⌋+ 1)m− 2⌊n− 1

a+ 1
⌋⌊ m

b+ 1
⌋
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≤ mn

b+ 1
+
n+ a

a+ 1
·m− 2⌊n− 1

a+ 1
⌋⌊ m

b+ 1
⌋

≤ n(a+ 1) + (n+ a)(b + 1)

(a+ 1)(b+ 1)
·m− 2⌊n− 1

a+ 1
⌋⌊ m

b+ 1
⌋

<
mn

k
· (a+ 2b+ 2) < ⌈m

2n

k
⌉.

Hence, the upper bound is always better than the result of [18]. 2

Figure 4 4-path vertex cover of P62W10

In [18], if 2 ≤ k ≤ ⌈n+1
2 ⌉ and integer m ≥ 2, then the set S =

∑m

i=1 Si is a k-path vertex

cover of Pm2Wn+1. Moreover

Si = {(ui, v0), (ui, vj), (ui, v′j) ∈ V (Pm2Wn+1)|j = 1 + lk, j′ = ⌈k + 2

2
⌉+ lk, 0 ≤ l ≤ ⌈n

k
⌉ − 1}

for odd i, and

Si = {(ui, v0), (ui, vj), (ui, v′j) ∈ V (Pm2Wn+1)|j = 1 + lk, j′ = ⌊k + 2

2
⌋+ lk, 0 ≤ l ≤ ⌈n

k
⌉ − 1}

for even i, where i = 1, 2, . . . ,m, ψk(Pm2Wn+1) ≤ m(2⌈n
k
⌉+1). According to the above method,

when m = 6, n = 9, ψ4(P62W10) ≤ 30, there exists the path with more than four vertices (see

Figure 4), a contradiction.

Next, we will research it again.

Theorem 3.3 For 2 < m < k, we have m(1 + ⌈n
k
⌉) ≤ ψk(Pm2Wn+1) ≤ ⌈m2n

k
⌉+m.

Proof Use u1, u2, . . . , um to mark the vertices of Pm, and v0, v1, . . . , vn to mark the vertices of

Wn+1, respectively. Take any vertex (u1, vj) in
u1Wn+1 and choose another vertex (u1, vj+t+1)

in u1Wn+1 with t = ⌊ k
m
⌋. Construct S′ = S1

⋃
S2

⋃
(ui, v0) (i = 1, 2, . . . ,m) with

S1 = {(ui, vj) ∈ V (Pm2Wn+1)| i is odd}

S2 = {(ui, vj+t+1) ∈ V (Pm2Wn+1)| i is even}.

It is a k-path vertex cover set of Pm2Wn+1, and |S1

⋃
S2| = m. By this same step, there are
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mn
k

sets that are copies of every k-path in the same layer. |S′| = |S1|+ |S2|+m ≤ ⌈m2n
k

⌉+m,

then the upper ψk(Pm2Wn+1) ≤ ⌈m2n
k

⌉+m.

We get the lower bound of ψk(Pm2Wn+1) by partitioning Pm2Wn+1 into m disjoint sub-

graphs that are isomorphic to Wn+1. It is easy to get

ψk(Pm2Wn+1) ≥ m(1 + ⌈n
k
⌉)

by Lemma 2.5. The result above corrects the one in [18, Theorem 2.8]. 2

Theorem 3.4 If integer m,n ≥ 4, and m is an even, we have ψ2(Pm2Kn,n) = mn.

Proof Mark the vertices of Pm with ui (i = 1, 2, . . . ,m) and Kn,n with xj (j = 1, 2, . . . , n) and

yj (j = 1, 2, . . . , n), respectively.

By the definition of Kn,n, we can easily get that C2mn is a subgraph of Pm2Kn,n. Then

ψ2(Pm2Kn,n) ≥ ψ2(C2mn) = ⌈2mn
2

⌉ = mn

by Lemma 2.5. Next, construct a 2-path vertex cover to prove that ψ2(Pm2Kn,n) ≤ mn in the

following way. Let

Si = {(ui, yj) ∈ Pm2Kn,n (j = 1, 2, . . . , n)| for even i},

Si = {(ui, xj) ∈ Pm2Kn,n (j = 1, 2, ...n)| for odd i}.

Let S =
⋃m

i=m Si. Clearly, the set S is a 2-path vertex cover of Pm2Kn,n since the degrees

of the remaining uncovered vertices are all 0. Therefore, ψ2(Pm2Kn,n) = mn. 2

Theorem 3.5 If integer m,n ≥ 4, and m is an even, we have

(i) For integer 3 ≤ k ≤ n+ 1, then

ψk(Pm2Kn,n) ≤ mn− m

2
(⌊k
2
⌋ − 1).

(ii) For integer n+ 2 ≤ k ≤ 2n+ 1, then

m(n+ 1− ⌊k
2
⌋) ≤ ψk(Pm2Kn,n) ≤

3

4
mn.

(iii) For integer k ≥ 2n+ 1, then

ψk(Pm2Kn,n) ≥ ⌈2mn
k

⌉.

Proof (i) Let

S2i = {(u2i, yj) ∈ Pm2Kn,n|j = 1, 2, . . . , n},

S2i−1 = {(u2i−1, xj) ∈ Pm2Kn,n|j = 1, 2, . . . , n− ⌊k
2
⌋+ 1},

S2i+1 = {(u2i+1, xj) ∈ Pm2Kn,n|j = ⌊k
2
⌋, ⌊k

2
⌋+ 1, . . . , n},

where

|S2i| = n, |S2i−1| = |S2i+1| = n− ⌊k
2
⌋+ 1, i ∈ [1,

m

2
].
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It is easy to see that S =
⋃m

i=m Si is a k-path vertex cover set since the largest uncovered path

has at most 2(⌊k
2⌋ − 1) + 1 ≤ k − 1 vertices. Therefore,

ψk(Pm2Kn,n) ≤ mn− m

2
(⌊k
2
⌋ − 1).

If m is odd, we follow the same way as shown above, then

ψk(Pm2Kn,n) ≤ mn− m+ 1

2
(⌊k
2
⌋ − 1).

(ii) Let

S2i = {(u2i, yj) ∈ Pm2Kn,n|j = 1, 2, . . . , n},
S2i−1 = {(u2i−1, xj) ∈ Pm2Kn,n|j = 1, 2, . . . , ⌊n

2
⌋},

S2i+1 = {(u2i+1, xj) ∈ Pm2Kn,n|j = ⌊n
2
⌋, ⌊n

2
⌋+ 1, . . . , n}.

The set S =
⋃m

i=1 Si is the k-path vertex cover of Pm2Kn,n, because the largest uncovered

path has 2(n − ⌊n
2 ⌋) + 1 ≤ n + 1 ≤ k − 1 vertices. |S2i| = n, |S2i−1| + |S2i+1| = n, i ∈ [1, m2 ],

|S2i| is an arithmetic sequence, so the upper ψk(Pm2Kn,n) ≤ m
2 (n+ ⌊n

2 ⌋) ≤ 3
4mn. If m is odd,

we follow the same way as shown above similarly, then

ψk(Pm2Kn,n) ≤
m+ 1

2
(n+ ⌊n

2
⌋)− n.

For the lower, we can partition Pm2Kn,n into m subgraphs Kn,n, thus we will get the lower

bound ψk(Pm2Kn,n) ≥ m(n+ 1− ⌊k
2 ⌋) by using Lemma 2.4.

(iii) For k ≥ 2n+ 1, it is clear that C2mn is a subgraph of Pm2Kn,n, then

ψk(Pm2Kn,n) ≥ ψk(C2mn) = ⌈2mn
k

⌉.

All of proofs are completed. 2
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