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Abstract In the present paper, we have discussed the commutativity of prime rings and extend-

ed some well known results concerning derivation and generalized derivations to b-generalized

derivations.
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1. Introduction

Throughout this paper, unless otherwise mentioned, R will represent associative ring center

Z(R). Recall that a ring R is prime if for any a, b ∈ R, aRb = (0) implies a = 0 or b = 0 and is

semiprime if for any a ∈ R, aRa = {0} implies a = 0. If R is a prime ring, the symbol Q = Qmr

means it is maximal right Martindale quotient ring. The center of Q, denoted by C, is called

the extended centroid of R and RC is said to be the central closure of R. It is remarked that

R is a prime ring if and only if C is a field (we refer the reader to [1] for these objects). For

any x, y ∈ R, the symbol [x, y] and x ◦ y stand for Lie product xy − yx and Jordan product

xy + yx, respectively. We denote the identity mapping of a ring R by Iid, that is, the mapping

Iid : R −→ R is defined as Iid(x) = x for all x ∈ R. By a derivation on R we mean an additive

mapping d : R −→ R such that d(xy) = d(x)y + xd(y) holds for all x, y ∈ R. In particular d is

called an inner derivation induced by an element a ∈ R, if d(x) = [a, x] = Ia(x) for all x ∈ R.

An additive mapping F : R −→ R is called a generalized derivation if there exists a derivation

d : R −→ R such that F (xy) = F (x)y+xd(y) holds for all x, y ∈ R, and d is called the associated

derivation of F . Note that if F = d, then F is just an ordinary derivation. In a recent paper

of Kosan and Lee [2], the authors propose the definition of b-generalized derivation: An additive

mapping F : R −→ Q is called a b-generalized derivation of R with the associated map d if

F (xy) = F (x)y + bxd(y) holds for all x, y ∈ R and b ∈ Q. In the same paper, it is proved that

if R is a prime ring and b 6= 0, then d is a derivation of R. Clearly, a generalized derivation is a

1-generalized derivation. The following example demonstrates that b-generalized derivations in

rings do exist. Let S be any ring and R =
{(

x y
m n

)

|x, y,m, n ∈ S
}

. Define maps F : R → R

by F
(

x y
m n

)

=
(

x+n y
0 0

)

. Then it is easy to check that F is a b-generalized derivation of R,
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where b =
(

0 1
0 0

)

. From the above, one may observe that the concept of b-generalized derivations

includes the concept of derivations and generalized derivations. The b-generalized derivations

appeared canonically in [3] and were studied by several authors [4, 5]. A classical problem in

ring theory is to investigate and extend conditions under which a ring becomes commutative. So

far the best tools found for this purpose are the derivations on rings and also on their modules.

Many results in literature indicate that the global structure of a ring R is often lightly connected

to the behavior of additive mappings defined on R. The first result in this topic is due to

Divinsky [6] who proved that the simple Artinian ring is commutative if it has a commuting

nontrivial automorphism. Two years later, Posner proved in [7] that if a prime ring R admits a

nonzero derivation d satisfying [d(x), x] ∈ Z(R) for all x ∈ R, then R is commutative. As is well

known, this theorem was regarded as the starting point of many papers concerning the study of

various kinds of additive mappings satisfying appropriate algebraic conditions on some subsets

of prime and semiprime rings.

Over the last few decades, several authors have investigated the relationship between the

commutativity of the ring R and certain specific types of derivations acting on appropriate

subsets of the rings [8–12], where further references can be found). Moreover, many of the results

obtained extended other ones proven previously just for the action of the considered mappings

on the entire ring. In the year 2002, Ashraf and Rehman [13] proved that if R is a prime ring,

I a nonzero ideal of R and d is a derivation of R such that d(x ◦ y) ± x ◦ y = 0 for all x, y ∈ I,

then R is commutative. Later, in [14] this result was also extended to the case of generalized

derivations. More precisely, Rehman proved that if a prime ring R admits a generalized derivation

F associated with derivation d such that F (x ◦ y)± x ◦ y = 0 for all x, y ∈ I, a nonzero ideal I

of R, and if F = 0 or d 6= 0, then R is commutative. In the above results, the authors applied

an elementary calculation to obtain commutativity theorems instead of differential identities.

Therefore, it should be interesting to extend some results concerning derivations and generalized

derivations to b-generalize derivations. Motivated by these observations, in the present paper we

would like to extend some commutativity results for derivations and generalized derivations to

b-generalized derivations.

2. Some preliminaries

In the present paper, we shall make some extensive use of the following basic identities

without any specific mention:

[xy, z] = x[y, z] + [x, z]y and [x, yz] = y[x, z] + [x, y]z,

xo(yz) = (xoy)z − y[x, z] = y(xoz) + [x, y]z,

(xy)oz = x(yoz)− [x, z]y = (xoz)y + x[y, z].

We begin with several known results which will be used in the sequel to prove our theorems.

Lemma 2.1 ([15, Lemma 2]) Let F : R −→ RC be an additive map such that F (xy) = F (x)y
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for all x, y ∈ R. Then there exists q ∈ Qmr(RC) such that F (x) = qx for all x ∈ R.

Lemma 2.2 ([16, Lemma 3]) If a prime R contains a nonzero commutative right ideal, then R

is commutative.

Lemma 2.3 ([17, Theorem 2]) Let R be a prime ring with maximal right Martindale quotient

ring Q, and I a two-sided ideal of R. Then I, R and Q satisfy the same differential identities.

Lemma 2.4 ([1, Proposition 2.5.1]) Any derivation d of a semiprime ring R can be extended

uniquely to a derivation of Qmr.

Lemma 2.5 ([7, Lemma 1]) Let d be a derivation of a prime ring and a be an element of R. If

ad(x) = 0 for all x ∈ R, then either a = 0 or d is zero.

3. Main results

We are now in a position to prove our main result.

Theorem 3.1 Let R be a prime ring and I be a nonzero ideal of R. Suppose that F is a nonzero

b-generalized derivation of R such that F (x ◦ y) = 0 for all x, y ∈ I, then R is commutative.

Proof By the definition of F , we have F (xy) = F (x)y + bxd(y) for all x, y ∈ I and some

b ∈ Q. If b = 0 or d = 0, then F (xy) = F (x)y for all x, y ∈ I. Since F 6= 0, by Lemma 2.1,

there exists q ∈ Qmr(RC) − {0} such that F (x) = qx for all x ∈ I. In this case, F (x ◦ y) = 0

implies that q(x ◦ y) = 0 for all x, y ∈ I. Replacing y by yz in the last equation, we find that

0 = q(x ◦ (yz)) = q((x ◦ y)z − y[x, z]) = q(x ◦ y)z − qy[x, z] and hence −qy[x, z] = 0 for all

x, y, z ∈ I. This means that qI[x, z] = 0 for all x, z ∈ I. The primeness of I forces that either

q = 0 or [x, z] = 0 for all x, z ∈ I. Since q 6= 0, then [I, I] = 0. Hence, by application of Lemma

2.2, R is commutative. Hence onward, we assume that both b 6= 0 and d 6= 0. We are given that

F (x ◦ y) = 0 for all x, y ∈ I. (3.1)

Replacing y by yx in (3.1), we obtain that 0 = F ((x ◦ y)x) = F (x ◦ y)x+ b(x ◦ y)d(x) for all

x, y ∈ I. Using the fact that F (x ◦ y) = 0, the above equation reduces to

b(x ◦ y)d(x) = 0 for all x, y ∈ I. (3.2)

Replace y by yz in (3.2) to get

by(x ◦ z)d(x) + b[x, y]zd(x) = 0 for all x, y, z ∈ I. (3.3)

By Lemma 2.3, I and Q satisfy the same differential identities, so (3.3) is also satisfied by Q.

Replacing y by b in (3.3), we get

b2(x ◦ z)d(x) + b[x, b]zd(x) = 0 for all x, z ∈ Q. (3.4)

Combining (3.2) with (3.4), we find that b[x, b]zd(x) = 0 for all x, z ∈ Q.

b[x, b]zd(x) = 0 for all x, z ∈ Q. (3.5)
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The above relation yields that b[x, b]Qd(x) = 0 for all x ∈ Q. The primeness of Q forces that,

for each x ∈ Q, either b[x, b] = 0 or d(x) = 0. The set of x ∈ Q for which these two properties

hold are additive subgroups of Q. It is well known that a group cannot be the union of two

proper subgroups and d can also be regarded as a derivation of Q by Lemma 2.4. Therefore,

b[x, b] = 0 for all x ∈ Q or d(x) = 0 for all x ∈ Q. In the first case, we have bIb(x) = 0

for all x ∈ Q. By Lemma 2.5, we arrive at b ∈ C − {0}. Now recalling (3.2), we find that

(x ◦ y)d(x) = 0 for all x, y ∈ Q since b is invertible in C. Replace y by yz in the last relation to

get 0 = (x◦(yz))d(x) = y(x◦z)d(x)+[x, y]zd(x) = [x, y]zd(x) for all x, y, z ∈ Q. This implies that

[x, y]Qd(x) = 0 for all x, y ∈ Q. Hence, either [x, y] = 0 or d(x) = 0. Let Q1 = {x ∈ Q|[x, y] = 0}

and Q2 = {x ∈ Q|d(x) = 0}. Then, Q1 and Q2 are both additive subgroups of Q such that

Q = Q1∪Q2. By Brauer’s trick, we have either Q1 = Q or Q2 = Q. On the one hand, if Q1 = Q,

then [x, y] = 0 for all x, y ∈ Q, that is, [Q,Q] = 0. By virtue of Lemma 2.2, Q is commutative

and so R. On the other hand, if Q2 = Q, then d(Q) = 0. Therefore, d = 0, a contradiction. �

Corollary 3.2 Let R be a prime ring and I be a nonzero ideal of R. Suppose that F is a

nonzero b-generalized derivation of R such that F (x2) = 0 for all x ∈ I, then R is commutative.

Proof By the assumption, we get F (x2) = 0 for all x ∈ I. Linearization of the above equation

gives that F (x2)+F (y2)+F (x◦ y) = 0 for all x, y ∈ I. This equation can reduce to F (x◦ y) = 0

for all x ∈ I. It follows from Theorem 3.1 that R is commutative. �

Theorem 3.3 Let R be a prime ring and I be a nonzero ideal of R. Suppose that F is a nonzero

b-generalized derivation of R such that [F (x), x] = 0 for all x ∈ I, then R is commutative.

Proof We are given that

[F (x), x] = 0 for all x ∈ I. (3.6)

Replacing x by x+ y in (3.6) and using (3.6), we obtain

[F (x), y] + [F (y), x] = 0 for all x, y ∈ I. (3.7)

Substitute yx for y in (3.7) and use (3.7) to get

by[d(x), x] + [by, x]d(x) = 0 for all x, y ∈ I. (3.8)

Once again replacing y by yz in (3.8) and using (3.8), we have [b, x]bzd(x) = 0 for all x, z ∈ I.

This is the same as Eq. (3.5). Hence, repeating the same process, we get the required result. �

Theorem 3.4 Let R be a prime ring and I be a nonzero ideal of R. Suppose that F 6= Iid is a

b-generalized derivation of R such that F (x ◦ y) = x ◦ y for all x, y ∈ I, then R is commutative.

Proof We divide the proof into two cases.

Case 1. If F = 0, then x◦ y = 0 for all x, y ∈ I. Taking y instead of yz, we get 0 = x◦ (yz) =

(x ◦ y)z − y[x, z] for all x, y, z ∈ I. This implies that y[x, z] = 0 for all x, y, z ∈ I, namely,

IR[I, I] = 0. The primeness of R forces that [I, I] = 0 since I 6= 0. Accordingly, we are done by

Lemma 2.2.
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Case 2. Now, let F 6= 0. If b = 0 or d = 0, then F (xy) = F (x)y for all x, y ∈ I. Since F 6= 0,

by Lemma 2.1, there exists q ∈ Qmr(RC) − {0} such that F (x) = qx for all x ∈ I. Therefore,

(q − 1)(x ◦ y) = 0 for all x, y ∈ I. Note that the arguments given in the proof of Theorem 3.1

are still valid in the present situation and we can conclude that either q − 1 = 0 or [x, z] = 0

for all x, z ∈ I. If q − 1 = 0, then F (x) = x for all x ∈ I. For all x ∈ I and r ∈ R, we get

rx = F (rx) = F (r)x + brd(x) = F (r)x since b = 0 or d = 0. Thus, (F (r) − r)x = 0 for all x ∈ I

and r ∈ R. That is (F (r) − r)RI = 0 for all r ∈ R. This forces that F (r) = r for all r ∈ R, a

contradiction. If b 6= 0 and d 6= 0, we have

F (x ◦ y) = x ◦ y for all x, y ∈ I. (3.9)

Writing yx instead of y in (3.9), we find that

F (x ◦ y)x+ b(x ◦ y)d(x) = (x ◦ y)x for all x, y ∈ I. (3.10)

Application of (3.9) gives that b(x ◦ y)d(x) = 0 for all x, y ∈ I, which is the same as Eq. (3.2),

proving the theorem. �

Corollary 3.5 Let R be a prime ring and I be a nonzero ideal of R. Suppose that F 6= Iid is

a b-generalized derivation of R such that F (x2) = x2 for all x ∈ I, then R is commutative.

Theorem 3.6 Let R be a prime ring and I be a nonzero ideal of R. Suppose that F 6= Iid is a

b-generalized derivation of R such that F (x◦y)+x◦y = 0 for all x, y ∈ I, then R is commutative.

Proof Since F is a b-generalized derivation of R such that F (x◦y)+x◦y = 0, then −F (x◦y)−

x ◦ y = 0 for all x, y ∈ I. This implies that −F is also a b-generalized derivation of R satisfying

(−F )(x ◦ y) = x ◦ y for all x, y ∈ I. In view of Theorem 3.4, we get the required result. �

Corollary 3.7 Let R be a prime ring and I be a nonzero ideal of R. Suppose that F 6= Iid is

a b-generalized derivation of R such that F (x2) + x2 = 0 for all x ∈ I, then R is commutative.

The following example shows that the above results cannot be proved for semiprime rings.

Example 3.8 Let R1 and R2 be prime rings, where R1 is noncommutative and put R = R1⊕R2.

It is clear that R is a semiprime ring. Let F1 : R1 −→ R1 be a nonzero b-generalized derivation

satisfying the hypothesis of Theorem 3.1, that is, F1(x◦y) = 0 for all x, y ∈ R1. Then the mapping

F : R −→ R defined by F ((r1, r2)) = (F1(r1), 0) is a nonzero (b, 0)-generalized derivation of R

such that F (X ◦ Y ) = 0 for all X,Y ∈ R. However, R is not commutative.
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