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Abstract In this paper, we introduce certain subclasses of harmonic univalent functions asso-
ciated with the Janowski functions, which are defined by using generalized (p, g)-post quantum
calculus operators. Sufficient coefficient conditions, extreme points, distortion bounds and partial
sums properties for the functions belonging to the subclasses are obtained.
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1. Introduction and preliminaries

An analytic function s : U = {2z : |2|] < 1} — C is subordinate to an analytic function
t : U — C, if there is a function v satisfying v(0) = 0 and |v(z)] < 1 (z € U), such that
s(z) = t(v(z)) (z € U). Note that s(z) < t(z). Especially, if ¢ is univalent in U, then the

following conclusion is true [1]:
s(z) < t(z) <= s(0) =t(0) and s(U) C t(U).

Let A define the class of functions h that are analytic in U of the form
h(z) = z—i—Zakzk. (1.1)
k=2

The theory of (p, ¢)-calculus (or post quantum calculus [2]) operators is widely used in many
fields of science. In recent years, there are also related researches in the theory of geometric
functions. In 1991, Chakrabarti and Jagannathan [3] introduced the (p, ¢)-derivative operator
D, 4 by

D, h(z) = Med Lozl - ptgz 0, 12)
Pt dim MelERen) g s, '

q—p
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where 0 < ¢ <p<1andhe A
Substituting (1.1) into (1.2), we obtain

Dpgh(z) =14 [k]p qarz""", (1.3)
k=2
where
& —1 k—4 #
P, pFG
[k]p,q = =1
kpt1, p=q

From (1.3), we have

lir% D, h(z) =1, lim D, ,h(z) = Di1h(z) = 1'(z),
Z2—

p—1—

Dy h(z) = Dih(z), t € (0,1) (see Jackson [4,5], Aral et al. [6]).

Recently, many scholars have discussed the properties of some geometric analytic function
classes with the help of the operators Dy, D, 4 and achieved some important results (see [7-17]).
Let A\ >0,0<¢<p<1,keN meNy=NU{0} and h € A. We introduce the generalized
normalization (p, ¢)-post quantum calculus operators Jﬁz’)‘ : A — A as follows:
Tpg M(z) = (2),
sz{;IAh(z) = (1= N)zDp ¢h(z) + Az2(2D, 4h(2))) = jpfqh(z), (1.4)
Jp%’q’\h(z) = jp/\,q(jp):qh(z))
and in general,

TAR(z) = TN (Tt AR(2)), 2 € UL (1.5)

After a simple calculation, we can obtain the following conclusion,
Ty h(z) = 2+ Y {[L+ (k = DA|[k]p.q} "arz". (1.6)
k=1

For ease of notations, we let
wr(Aip,q) = [14 (b — 1)A] [k]pyq- (1.7)

Obviously, 7 h(z) = D™h(z) (see Saldgean operator [18]).
For analytic functions h(z) and g(z) (z € U), let Sy denote the class of harmonic univalent

functions f = h + g, which are sense preserving in U, that is
F2)=h(z)+9(z) =2+ az"+ > bzt (1.8)
k=2 k=1

It is well known that the necessary and sufficient condition for f = h + g to be locally
univalent and sense preserving in U is |h/(2)| > |¢'(2)] (z € U) (see [19,20]).

A harmonic function F' is given by

F(z2)=H(2)+G(z) =2+ »_ Az"+ ) Biz*,[By| < 1.
k=2 k=1
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We define the convolution (or Hadamard product) of f and F by

(f*F)(2) =2+ iakAkzk + ikaka = (F*[)(2).

k=2 k=1

Let f € Sy. We now define the operator jp’ﬁf : Sy — Sy as

Ty F(2) = T h(z) + (1) T 9 =), (1.9)
where -
jp%)‘h(z) =z+ Zw}e’l(z\;paQ)akzk, Jp"f])‘g Zwk (\;p, q)br2", (1.10)
k=2
with wg(A;p, ¢) defined by (1.7).
Let . .
z):z—l—Zukzk—l—ZW (1.11)
k=2 k=1

be harmonic in U with u > 0 and v > 0.
Take
L f(2)=2h'(2) = 29'(2), Lif(2) = Lu(Luf(2), | € Sn.
Throughout this paper, we assume m € Ng, A > 1,0<¢<p<1, -1<B<A<-B<I;
ug > 0 and vy > 0.
Now, using the operator J,’* f(z) and Janowski functions [21], we define the following two

classes.

Definition 1.1 Let f € Sg be of the form (1.8). Then f(z) € Sp*(\,m, A, B) iff
LT f+0)(2) 1+ Az

: 1.12
Joi fxo(z)  1+Bz (112
and also f(z) € Kp(\,m, A, B) iff
2 m,A
‘CH(j;D?;;zA *(;5)(2’) = 1+AZ, (1'13)
La(Tpg" [*¢)(z) 1+ Bz
where
TN *9)(2) = 2 + Zwk (AP, Qurarz" + ( Zwk (AP, q)orbi (1.14)

k=2 k=1
and wi(A; p, q) is defined by (1.7).
The classes Sg’q()\, m, A, B) and KZ'“(\,m, A, B) reduce to the well-known classes of Sy as

well as many new ones. For example,

51 ! ,0,1—28,-1) = HS*(8 Sy : Re (2) -
A (0,0,1—23,-1) = {f € Su:Re| Em g(z) ] > B},
1,1 Com 1\ _ _ Re h"(2) + 1 (2) + 29" (2) + ¢'(2)
Kliﬁliz (0,1,1-28,-1)=CH(B) ={f € Su : R iz o -0 > B3}

where 8 € [0,1).
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In particular, the classes HS* = HS*(0) (harmonic starlike functions) and CH = CH(0)
(harmonic convex functions) were studied by Jahangiri [22-27].

Also, we denote by T™ the subclass of Sy, the function f of which is expressed as
FE) =h(z)+9(G) =2=)lalz" + (=1)™ D> [ba[z*, |bu| <1, z€U. (1.15)
k=2 k=1

We let
S0\ m, A, B) = T™ N SPU(A\,m, A, B),

Ky'(\m,A,B) =T™"" 0 KPY(\,m, A,B).

In this paper, the necessary and sufficient conditions of coefficient are obtained. As what we
have hoped, distortion estimates, extreme points and properties of partial sums for the above-

defined classes are also obtained.

2. Basic properties

First of all, we provide the sufficient conditions of coefficients for the classes defined in
Definition 1.1.

Theorem 2.1 Let f = h+g be given by (1.8) and wi(X; p, q) given by (1.7).
(i) The sufficient condition for f to be sense-preserving and harmonic univalent in U and
feSyi(\m,A,B) is
(&' lak| + pi'bel) < 2, (2.1)
k=1

where a1 = u; = 1 and

m . ukwp (Ap,g)[k(1-B)—(1-A)]
Bsgl== ]; S ’ (2.2)
k S M;cn = Vg Wy ()‘§P7‘Z)KCEJEB)+(1_A)] .

(ii) The sufficient condition for f to be sense-preserving and harmonic univalent in U and
fe Kg’q()\,m,A,B) is
D k(i anl + i lbx]) < 2, (2:3)
k=1

where a1 = u; = 1,&* and u}* are given by (2.2).

Proof (i) Let f =h+7g € Spu be of the form (1.8). In 1999, Jahangiri [23, Theorem 1, o = 0]
obtained that f is univalent and sense-preserving in U if Y7, k(|ag| + |bi]) < 2.
Using (2.1) and (2.2), we have

> klar] +10el) < D (6 ar! + pil'lbe]) < 2.
k=1 =1

Therefore, it can be deduced that f(z) is univalent and sense-preserving in U. By means of
Definition 1.1 and the relationship of subordination, the function f € S’g’q(/\,m, A, B) iff there
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exists an analytic function w(z) satisfying w(0) = 0, |w(z)| <1 (z € U) such that

Lu(F ' f+d)(z) _ 1+ Aw(z)
T2 () 1+ Bw(z)’

or equivalently

| Lu(Tgf *0)(z) = T f * 6(2)
ATy 8(2) = BLu(T5q f * 0)(2)

We only need to show that

| <1 (2.4)

|ATA f 5 d(2) = BLu (TN % 0)(2)| = 1La (Tt [+ 9)(2) = Ty fd(2)] > 0, 2z € U. (2.5)
Let

, : (2.6)
ek,j - szn()\;pu Q) + (_1)']“2”()‘;297 q)u J= 17 2.

Therefore, from (2.1), we get

{ rj = BEw*(Nip, q) + (—1)7 Aw*(Nsp,q), J=1,2,

|ATT A f % 6(2) = BLu(Ty ' f * 9)(2)] = |La (Tl  f + 6)(2) = Tyl f+ 6(2)]

= |z — Zﬁk 1ukakz —|— Z’ﬂk QUk;kak — ’ Z ok 1ukakz + ( m+1 Z okvzvkbkzk
k=2 k=1
> (A= B+ > Dol + 3 Savelbellzl — S G uelagl |z — S O sv el 21*
k=2 k=1 k=2 k=1
= (A= B)la|[1 = 3 lanll=*t = D pplowll=*]
k=2 k=1

> (A= B)J|[1= Y€l = > ui ol | > 0.
k=2 k=1

Hence, we complete the proof of (i). Also, applying the same method as (i), we can obtain (ii). O

Theorem 2.2 Let a; =u; =1 and f = h+g be given by (1.15). Then
(i) fe gp’q()\ m, A, B) iff (2.1) holds true.
(ii) fe K" (\,m,A,B) iff (2.3) holds true.

Proof (i) It appears from (1.15) that gg’q()\ m, A, B) C Sp*(\,m, A, B). In view of Theorem
2.1, it is straightforward to show that if f € Sg’q(/\ m, A, B), then (2.1) holds true. Next, we
use the methods in [28] to prove.
Let f € ?Z’q()\,m, A, B). Then it satisfies (1.12) or equivalently
> oney Ok auklag| 2" + 5000 ) Ok gk |be |2
| (A= B) + 3520 Ok aurlar|2F 1 4+ 37071 Ok 20k b
where 9y ;, 0, ; are given by (2.6).

gk—1| <1, z€eT, (2.7)

From (2.7), we get

e Ok ur|ak|z 7 + 307 Ok ok be 2T
(A= B) + 372, Ok auglag |28 =1 + 372 ) O gvp|br| 251

Re{ b <1, (2.8)
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which holds for all z € U. Taking z =17 (0 <r < 1) in (2.8), we get

> one o Ok auplag|r® ™t 4+ 3707 Oy gk |brrF

S = < L 2.9
(A= B) + >0l Ok aup|ag|rd =1 + 372 O 2vp b |rk—1 (2.9)
Thus, from (2.9) we have
S (e ar] + ppbe)rt Tt <2, 0<r <1, (2.10)
k=1

where £ and pu}* are given by (2.2).

Let Sy =325 (& lak] + 157 be])-

For the series > po; &rlak] + Y poq i |bi], {Sn} is the nondecreasing sequence of partial
sums of it. Moreover, by (2.10) it is bounded by 2. Therefore, it is convergent and

oo

D (& lar] + ' bel) = lim S, < 2.
k=1

Thus, we get the inequality (2.1). Similarly, it is easy to prove (ii) of Theorem 2.2. O

Clearly, from Theorem 2.2, we have
Kg’q(,\, m, A, B) C S5%(\,m, A, B). (2.11)
Next, we give the extreme points of these classes.

Theorem 2.3 Let X, > 0,Y, > 0,507, X+ Y poq Yi = 1,& and p}* be given by (2.2).
(i) If f € gg’q(A,m,A,B), then f € clcoS'p’q(A,m,A,B) iff

> [Xihi + Yigi], z€TU, (2.12)
k=1

where

m B 2.13)
L D™k (
gk = 2+ g P

{ hlzzhk:z—g%zk, k> 2,
Sk

(i) If f € I_(g’q()\,m,A,B), then f € clcoI_{g’q(A,m,A,B) iff the condition (2.12) holds and

hi=2zhy=2— —L-2F k> 2,

ke < =
m 2.14
gk—z—i—( 1) sz, k>1. ( )
Proof (i) From (2.12), we get
oo 1 .
Fz) = (Z[Xk—kYk)z—ngsz (=)™ Zu_mykzk.
k=1 k=1""k

Since, 0 < X, <1 (k=1,2,...), we obtain

ng ch-f-ZMk k:ZXk—FZYk:l—Xlgl,

It follows from (i) of Theorem 2.2 that f € S5?(\,m, A, B).
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Conversely, if f € gg’q(/\,m,A,B), then

0] < ) B] < —.
k My

Putting Xy, = & ax|, Vi = p*|br] and 300 5 X +> 5o Ve =1 — X1 (0 < X3 < 1), we obtain

—Z—Z|ak|z +( Z|bk|
ZX]C+YI€Z_Z X;CZ + Zim
— Mg

[hi(2) X5k + gr(2)Yk).

MS i

E
Il

1

Thus f can be expressed in the form of (2.12). The remainder of the proof is analogous to
(1) in Theorem 2.3 and so we omit. O

Next, using Theorems 2.2, we proceed to give the distortion theorems for functions of these

classes.

Theorem 2.4 Let f = h+ g be of the form (1.15), |z| = r, £ and p}* are defined by (2.2),
{&"} and {pu}'} are non-decreasing sequences.
(i) If f € SP(\,m, A, B), then

r2 r2

1—|))r— ———~ 1+ b _ .
(=l = e << At T
(ii) If f € f(g’q()\,m,A,B), then

r2 r2

(1= [b1])r — T {&y iy - SUfE) < (A4 [br])r + Ymin{ey, iy}

Proof (i) For f € gp’q()\,m,A,B), using Theorem 2.2 and (2.1), we have

|—‘Z—Z|ak|z + ( Z|bk|zk’

1
<A+ bi)r 4+ ———e > (7 ar| + 1D
(1 + [ba]) ln{§27u2}25k|k| it bk )7
1
< (1 + |bi])r + 2

min{&y, u "
and
1
- 3 m m T2
mln{§2 ) Mo }

= (1= oy = (D Jawl + D2 Ioal)r2 = (1 = [bayr

k=2 k=2
The result is sharp and the extremal function is

)=z~ min{&3", 5}

Similarly, it is easy to prove the remainder of Theorem 2.4. O

22+ |bl|§.

Using Theorem 2.4, it is trivial to show the covering results.
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Theorem 2.5 Let & and uj* be given by (2.2).
(i) If f € S5\, m, A, B), then
1

w:lwl <1—1|b| - —m—
bl <=l = ey

}c f(U).

(ii) If f € f(g’q()\,m,A,B), then

1
2min{&3", u5'}
Theorem 2.6 The classes gg’q()\,m, A, B) and I_(g’q()\, m, A, B) are closed under convex com-

binations.

{w:|w| <1—|b1] -

}c f(U).

Remark 2.7 By taking the special value of the parameters A\, p,q, m, A, B and ¢ in Theorems
2.1-2.6, it is easy to show the corresponding results for the classes HS*(3) and CH(f).

3. Partial sums properties

Next, we will consider the properties of partial sums of the classes studied in this article.

The partial sums of the harmonic function classes of the form (1.8) are defined as follows.

P 00
fol2) = hol2) + 90 = 2+ Yzt + Y bk,
k=2 k=1

fo(2) zh(z)—l—%—(z):z—i-Zakzk—i—ZW
k=2 k=1

and

P o
for(2) = hp(2) + 90 (2) = hp(2) + go(2) = 2+ D> arz® + > b2k,
k=2 k=1

where |b1] <1, p,o € Nand p > 2 (see [29-33]).
In order to obtain the properties of partial sums for functions belonging to the classes
gg’q()\,m,A,B) and l_(g’q()\,m,A,B), we introduce a new class of harmonic functions as fol-

lows.

Definition 3.1 Let § € Ny and f = h+7 be given by (1.15). Then f € Zj;”"’(A,m,A, B) if and
only if

oo

D OEG ag] + Y R uibe| <1, (3.1)
k=1

k=2
where " and ujl* are defined by (2.2).
Obviously, for any positive integer §, we have the following inclusion relation:
57\ m, A, B) C Tu"(\,m, 4, B) = K% (\,m, A, B)
C TP (A, m, A, B) = 55 (\,m, A, B).

By Definition 3.1, we obtain the following conclusion.
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Theorem 3.2 Let f(z) € I_f;’p’q()\,m, A, B), & and p* be given by (2.2) witha; = u; = v, = 1.
(i) If {k°¢™} is a non-decreasing sequence, then

f(z) 1
Re{ P>l (3.2)
fp( ) ( + 1) p+1
fo(2) (p+1)° §p+1
Re{ } > . (3.3)
)77 1+ (p+1)°60
(i) If {k°ui} is a non-decreasing sequence, then
f(z) 1
Re >1— ——, 3.4
LR CE Y o)
fo(2) (0 +1)°ugs
Re > . 3.5
{f(z) } L+ (o +1)°ur (3:5)
The estimates of (3.2) and (3.3) are sharp for the function given by
1 p+1
= —_— 3.6
1=~ o (3.)
Also, the estimates of (3.4) and (3.5) are sharp for the function given by
f2)=z+ (ZD™ e (3.7)

=) 5
(0 +1)°ugs
Proof (i) Let

A = 6 DGl = 0~ i)
—1_ (p+ 1)6§p+1 Ek:p—i—l lag|2*
2= 30 laklZF + (1) S |bk|Z¢

To prove that the inequality (3.2) is true, we only need to show that Fj(z) satisfies the

following condition |§1(2+1| <1 (z € U). Since

Fi(2) — L (P 4+ 120 20 e lan]
Fi(z) +10 7 2= 2320 o an| + 3202, 1ok]) — (p+ 12607 3202 4y laxl’

the inequality (3.8) is bounded above by 1, if and only if

Z|ak|+2|bk|+ (p+1)°€n, Z la| < 1. (3.9)

k=p+1

| (3.8)

According to Definition 3.1 and the increasing sequence {k‘;f,zn} with & > k and p* > k for
k > 1, we have

Z|ak|+2|bk|+ (p+1)°€m, Z |ak|<Zk5§k |ak|+2k5 b < 1. (3.10)

k=p+1

For the function f(z) = z — Wzﬁl given by (3.6), let z = re s and r — 1~. We
p+1

f(2) _ 1 27i

= =1- 77”)6 _
fo(2) (p+1)°6%, (1,

have
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which shows that the bound in (3.2) is sharp.
Similarly, let

5
F(z) =1+ (p+ 1)652%1)[?((2)) 1 ip(:i)lfpﬂﬂ

n (14 (p+ 1)) D pi1 |ay|2*
2= Y pes lag|zF + (=1)™ 3002 [b| 2

]

We have
|F2(z)—1| < (1+(p+1)° ﬁ-l)z?p+1|ak|
Fa(2) + 1 7 2 =230 larl + 3202 [bel) = ((p+1)°67% s — 1) 300 41 laxl

This last expression is bounded above by 1, if and only if

Z|ak|+2|bk|+ (p+1)° i Z lak| < 1.

k=p+1

According to Definition 3.1 and the increasing sequence {k‘;f}gn} with £ > k and uj* > k
for k£ > 1, we have

Z|ak|+2|bk|+ (p+1)°6)% Z |ak|<zk6§k |ak|+zk6lt |b| < 1.

k=p+1

For the function f(z) = z — 2" given by (3.6), let z = re and r — 1=. We have

1
(p+1)°€7" 4
fP(Z) _ 1 (p+ 1) p+1

- —
f&) 1 grmgyrre™ 1+ (1G]

which shows that the bound in (3.3) is sharp result.
Proof of (ii) is similar to that of (i), it is not difficult but too lengthy to give here. This

completes the proof. O

Using the analogous methods to the proof in Theorem 3.2, we obtain the following Theorem.

Theorem 3.3 Let & and u* be given by (2.2) and f(z) € Ei’p’q(}\,m,A,B). If {k°¢™} and

{k° i} are non-decreasing sequence, then

f(z) 1
Re {f,m( )} T (PESL FNCESV I (3.11)
fp, ( ) mln{(p—|—1) p+17(0+1)6/i?+1}
Re{ ) }> T+ min{ (p + %60, (0 + 1o} (3.12)
Proof Note that M = min{(p + 1)° oo+ 1% .}
(i) Let
B =M 2@ aoLyoig M (= 558 o lanls® 4+ (1) SR 4 br]2*).

PO S ST E N ST S
To prove inequality (3.11), we only need to show that
F3 (Z) —1

<1 U.
F3(Z)-‘r1|_ » 2€
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Since
|F3(Z) — 1| < M(Z?:pﬂ lak] + 220 41 [0k]) (3.13)
Fa(2) + 1 7= 2 =230 g lar] + 3272 1ow]) = M2y lan] + 32024 10k])
the inequality (3.13) is bounded above by 1 if and only if
zp:|ak|+2|bk|+M( S oal+ ) |bk|) <1 (3.14)
k=2 k=1 k=p+1 k=o-+1

According to Definition 3.1 and the increasing sequence {k°¢"} and {k°u*} with & > k
and pp* > k for k > 1, we have

P o [e’e] [e'e] [e’e] ']
Slanl+ 3 Joul+ M (Y a0 Iel) < DR axl + D R i bel < 1.
k=2 k=1 k=p+1 k=o+1 k=2 k=1

If min{(p+ 1)55;}11, (c+1)°um ) = (p+ 1)55;}11, we take the function f(z) = z — szﬂ

) p+1
and let z = reL;” with » — 17. Then

f(2) 1 ) 1

—1- P P
foo(2) (p+1)°¢", (p+1)°8,

(c+1)°um } = (0 +1)°u, ,, we take the function

If min{(p+ 1)°€7 .

1 _o+1
R e T

(m—1)mi

and let z =re o+2  with » — 17. Then

m 1 —o+1
f(2) z+(-1) (ST * 1
- Sl
foo(2) z (0 +1)°ugyy
It shows that the bound in (3.11) is sharp result.
(i) Let
f(Z) M M(_ E;O:erl |aklzk + (_1)m EzO:ngl |bk|2k)

Fy(z) =1+ M)| =1+

_ ( = —
foo(2) "1+ M 2= ks a2 + (1) 25y [bi|2*

To prove inequality (3.12), we only need to show that

I%| <1, zeU.
Since
Fale) -1, (1 + M) ] + 3552511 [bk]) (3.15)
Fy(z) +1 2- 2(22:2 |lak| + ZZ:1 |br]) — (M — 1)(21?;,)4-1 lak| + Z;i“;aﬂ bk )’
the inequality (3.15) is bounded above by 1 if and only if
ijlalirZIblirM( S al+ Y |ka) <1 (3.16)
k=2 k=1 k=p+1 k=o+1

According to Definition 3.1 and the increasing sequence {k°¢"} and {k°u[*} with & > k
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and pp* > k for k > 1, we have

P o [e'e] [e'e] [e%e] [e’e]
S lanl+ D loul+ M (Y Jal+ 0 lel) < DR axl + D R bel < 1.
k=2 k=1 k=2

k=p+1 k=c+1 k=1
If min{(p + 1)55;}11, (c+1)0ur = (p+ 1)55;}11, we take the function

1 p+1

f(Z)ZZ—mZ

and let z = re%i with » — 17. Then

fp,a(z) _ 1 (p+ 1)5 ’7)11

= - .
f(z) l—mzp L+ (p+1)°&,

If min{(p + 1)° b1, (0 + 1)°um  } = (o +1)°u, 1, we take the function

f(z)=z+ (—1)mm7”1

(m—2)mi

and let z =re o+2  with » — 17. Then

fool2) _ : oD,
f(Z) z+ (—1)”%7’"‘1 1 + (0' + 1)5/14?_,’_1

It shows that the bound in (3.12) is sharp result. This completes the proof. O

Remark 3.4 (i) Taking § = 0 and § = 1 in Theorems 3.2 and 3.3, we get partial sums properties
of the classes K’g’q(/\,m,A, B) and M}Z’q()\, m, A, B), respectively.

(ii) Selecting different parameters X, p,q,m, A, B and ¢ in Theorems 3.2 and 3.3, we can
deduce new results for univalent harmonic function classes HS*(5) and CH(S) mentioned in

Section 1.
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