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Abstract In this paper, we consider the positive steady state solutions of a predator-prey

model with Holling type II functional response and cross-diffusion, where two cross-diffusion

rates represent the tendency of prey to keep away from its predator and the tendency of the

predator to chase its prey, respectively. Applying the fixed point index theory, some sufficient

conditions for the existence of positive steady state solutions are established. Furthermore, the

non-existence of positive steady state solutions is studied.
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1. Introduction

In ecosystems, whether different species can coexist or not is determined by the combination

of various factors, such as natural environments, interactions between the species, and behavioral

patterns. Therefore, it is important to investigate what effect the above factors will have on

coexistence problems. In this work, we study the effect of cross-diffusion on the existence and

non-existence of positive steady state solutions to the following cross-diffusion predator-prey

system with Holling type II functional response

ut −∆u− γ∆v = u(a− u)− buv

e+ u
, x ∈ Ω, t > 0,

vt + β∆u−∆v = −cv + duv

e+ u
, x ∈ Ω, t > 0,

u = v = 0, x ∈ ∂Ω, t > 0,

u(x, 0) = u0(x) > 0, v(x, 0) = v0(x) > 0, x ∈ Ω,

(1.1)

where u and v stand for the densities of prey and predator, Ω is a bounded domain of RN with

smooth boundary ∂Ω, and a, b, c, d, e are all positive constants, a is the growth rate of the

prey, b and d represent the strength of the relative effect of the interaction on the two species;

the function u/(e+ u) denotes the functional response of the predator to the prey, c is the death
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rate of the predator. The positive constants γ and β are cross-diffusion rates. Biologically, the

introduced cross-diffusion rate γ in (1.1) represents the tendency of the prey to keep away from its

predator, and β represents the tendency of the predator to chase its prey, see for example [1–3].

The initial values u0 and v0 are nonnegative smooth functions which are not identically zero.

The system (1.1) is proposed on the basis of a model with Holling type II functional response
du

dt
= u(a− u)− buv

e+ u
, t > 0,

dv

dt
= −cv + duv

e+ u
, t > 0,

(1.2)

which has been extensively studied by many authors in either qualitative or numerical analysis,

see for example [4–7]. When the densities of the prey and predator are spatially inhomogeneous

in a bounded domain with smooth boundary, one introduces diffusion into system (1.2) to get

the following reaction-diffusion system
ut − d1∆u = u(a− u)− buv

e+ u
, x ∈ Ω, t > 0,

vt − d2∆v = −cv + duv

e+ u
, x ∈ Ω, t > 0.

(1.3)

For the system (1.3) with homogeneous Neumann boundary condition, the properties of solutions

such as stability, bifurcation and spatiotemporal patterns have been well researched [8–11]. For

the system (1.3) with homogeneous Dirichlet boundary condition, there are only a few results.

In [12], Zhou and Mu considered the steady state problem
−∆u = u(a− u)− buv

e+ u
, x ∈ Ω,

−∆v = −cv + duv

e+ u
, x ∈ Ω,

u = v = 0, x ∈ ∂Ω.

(1.4)

By fixed point index theory and bifurcation theory, they proved that system (1.4) admits a

coexistence state if and only if a > λ1 and −λ1 < c < −λ1(− dΘ
Θ+e ), where λ1 denotes the principle

eigenvalue of −∆ with a homogeneous Dirichlet boundary condition and Θ is the unique positive

solution of  −∆ϕ = ϕ(a− ϕ), x ∈ Ω,

ϕ = 0, x ∈ ∂Ω.
(1.5)

In the present paper, we introduce the cross-diffusion to system (1.4) and study the strongly

coupled reaction-diffusion system (1.1). We point out that the cross-diffusion terms introduced

into system (1.1) are different from the cross-diffusion rates of the forms −∆[(1 + γv)u] and

−∆[(1 + βu)v], which are introduced in the previous work [13-15], our main interest focuses on

the effects of cross-diffusion on the existence and non-existence of positive steady state solutions
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of system (1.1). The steady state system of (1.1) is
−∆u− γ∆v = u(a− u)− buv

e+ u
, x ∈ Ω,

β∆u−∆v = −cv + duv

e+ u
, x ∈ Ω,

u = v = 0, x ∈ ∂Ω.

(1.6)

Our results show that system (1.6) has at least one positive solution provided that the cross

diffusion rate β is sufficiently small, a > λ1 and c is small appropriately (see Corollary 3.5).

This paper is organized as follows. In Section 2, some preliminaries are prepared. In Section

3, the sufficient conditions for the existence of positive solutions of system (1.6) are found. In

Section 4, the non-existence theorem for positive solutions to system (1.6) is obtained.

2. Preliminaries and a priori estimates

In this section, some fundamental results are obtained. For simplicity, let

f1(u, v) = u(a− u)− buv

e+ u
, f2(u, v) = −cv + duv

e+ u
.

Then system (1.6) is equivalent to the following system
−∆u =

1

1 + γβ
[f1(u, v)− γf2(u, v)], x ∈ Ω,

−∆v =
1

1 + γβ
[βf1(u, v) + f2(u, v)], x ∈ Ω,

u = v = 0, x ∈ ∂Ω.

(2.1)

We multiply the first equation by δ and subtract it from the second equation in system (2.1), to

get

−∆(v − δu) =
1

1 + γβ
[(β − δ)f1(u, v) + (1 + γδ)f2(u, v)],

where δ is a positive constant which will be determined later. Letting ω := v − δu, system (2.1)

is equivalent to
−∆u =

1

1 + γβ

[
− (1 +

δ(b+ γd)

e+ u
)u2 − (b+ γd)ωu

e+ u
+ au+ cγδu+ cγω

]
, x ∈ Ω,

−∆ω =
1

1 + γβ

[
− cω(1 + γδ) +

d(1 + γδ)− (β − δ)b

e+ u
uω + u(M1 +M2u)

]
, x ∈ Ω,

u = ω = 0, x ∈ ∂Ω,

(2.2)

where

M1 := −c(1 + γδ)δ + a(β − δ), M2 :=
d(1 + γδ)δ

e+ u
− bδ(β − δ)

e+ u
− (β − δ). (2.3)

For convenience, we denote the first and second equations in (2.2) by

−∆u = f̃1(u, ω), −∆ω = f̃2(u, ω).

Obviously, if system (2.2) has a positive solution (u, ω), then system (1.6) has a positive

solution (u, v). Thus we can prove the existence of positive solution of system (2.2) to show that
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system (2.1) has one positive solution at least. For θ ∈ (0, 1], assume that (u, ω) is a positive

solution of the following system
−∆u = θf̃1(u, ω), x ∈ Ω,

−∆ω = θf̃2(u, ω), x ∈ Ω,

u = ω = 0, x ∈ ∂Ω,

(2.4)

we can obtain a priori estimates as follows.

Lemma 2.1 Any positive solution (u, ω) of system (2.4) satisfies

u ≤ ae

bδ + e− a
(1 +

γ(bδ + e)

b(1 + γδ)
) := Q1, ω ≤ ae

bδ + e− a
(
1

γ
+
e

b
+ 2δ) := Q2.

Proof For any θ ∈ (0, 1], we multiply the first equation in system (2.4) by 1 + γδ, the second

by γ, and add them to get

−∆[(1 + γδ)u+ γω] = u
[
a− (1 +

bδ

e+ u
)u− bω

e+ u

]
, x ∈ Ω.

If (1 + γδ)u+ γω achieves its positive maximum at x0 ∈ Ω, then

−∆[(1 + γδ)u(x0) + γω(x0)] = u(x0)
[
a− (1 +

bδ

e+ u(x0)
)u(x0)−

bω(x0)

e+ u(x0)

]
≥ 0, x ∈ Ω.

Therefore,

a− (1 +
bδ

e+ u(x0)
)u(x0)−

bω(x0)

e+ u(x0)
≥ 0,

so that

(1 +
bδ

e+ u(x0)
)u(x0) ≤ a,

bω(x0)

e+ u(x0)
≤ a,

and thus

u(x0) ≤
ae

bδ + e− a
, ω(x0) ≤

a(e+ u(x0))

b
≤ ae

b
(

bδ + e

bδ + e− a
).

These facts imply

max
x∈Ω̄

{(1 + γδ)u(x) + γω(x)} = (1 + γδ)u(x0) + γω(x0)

≤ (1 + γδ)
ae

bδ + e− a
+
γae

b
(

bδ + e

bδ + e− a
),

so we get the desired inequalities

max
x∈Ω̄

u ≤ ae

bδ + e− a
(1 +

γ(bδ + e)

b(1 + γδ)
), max

x∈Ω̄
ω ≤ ae

bδ + e− a
(
1

γ
+
e

b
+ 2δ).

It is easy to see that Q1 > 0 and Q2 > 0 if the parameter e is larger than a. 2
Now, we state the fixed point index theory, which is a fundamental tool in our proofs.

Let E be a real Banach space and W is the natural positive cone of E. For y ∈W , define

Wy = {x ∈ E : y + rx ∈W for some r > 0},

Sy = {x ∈W y : −x ∈W y}.
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Let y∗ be a fixed point of a compact operator A : W → W and L = A′(y∗) be the Fréchet

derivative of A at y∗. We say that L has property α on W y∗ , if there exists a t ∈ (0, 1) and a

y ∈ W y∗ \ Sy∗ such that y − tLy ∈ Sy∗ . For an open subset U ⊂ W , let indW (A, U) be the

Leray-Schauder degree degW (I − A, U, 0), where I is the identity map, the fixed of A at y∗ in

W is defined by

indW (A, y∗) := ind(A, U(y∗),W ),

where U(y∗) is a small open neighborhood of y∗ in W .

The following theorem follows from Lemma 4.1 of [16] (see also [17]).

Theorem 2.2 Assume that I − L is invertible on W y∗ . If L has property α on W y∗ , then

indW (A, y∗) = 0.

We also introduce the following notations.

Notation 2.3 (i) λ1 denotes the principal eigenvalue of −∆ on Ω corresponding to homogeneous

Dirichlet boundary condition, φ1 > 0 is the principal eigenfunction corresponding to λ1.

(ii) E := CD(Ω̄)⊕ CD(Ω̄), where CD(Ω̄) := {ϕ ∈ C(Ω̄) : ϕ = 0 on ∂Ω}.
(iii) N := NQ ⊕NQ, where NQ := {ϕ ∈ CD(Ω̄) : ϕ < max{Q1, Q2}+ 1 in Ω̄}.
(iv) W := K ⊕K, where K := {ϕ ∈ CD(Ω̄) : 0 ≤ ϕ(x), x ∈ Ω̄}.
(v) N ′ := N ∩W .

3. The existence of positive steady-state solution

In this section, we get some sufficient conditions for system (1.6) has a coexistence state by

applying fixed point index theory.

Choose

δ :=
−(a+ c) +

√
(a+ c)2 + 4acγβ

2γc
(3.1)

in (2.3) such that M1 = 0. Therefore,

β − δ =
c(1 + γδ)δ

a
,

M2 =
d(1 + γδ)δ

e+ u
− bδ(β − δ)

e+ u
− (β − δ) =

(1 + γδ)δ

a(e+ u)
[ad− (bδ + e+ u)c].

Take P to be sufficiently large positive constant with

P ≥ 1

1 + γβ
max

{
[1 +

δ(b+ γd)

e
]Q1 +

(b+ dγ)Q2

e
, c(1 + γδ) +

(β − δ)bQ1

e

}
,

such that f̃1(u, ω) + Pu and f̃2(u, ω) + Pω are respectively monotone increasing with respect to

u and ω for all (u, ω) ∈ [0, Q1]× [0, Q2]. Define a compact operator A :W →W by

A(u, ω) := (−∆+ PI)−1

 f̃1(u, ω) + Pu

f̃2(u, ω) + Pω

 .
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Here, W := K ⊕K and K := {ϕ ∈ CD(Ω̄) : 0 ≤ ϕ(x), x ∈ Ω̄}.
If the condition

β ≤ ad

bc
− e+Q1

b
(H)

holds, then β − δ = c(1+γδ)δ
a > 0, and thus M2 ≥ 0. This implies that the operator A is positive

in N ′.

Remark 3.1 Note that system (2.2) is equivalent to (u, ω) = A(u, ω). Therefore, it suffices to

prove that A has a positive fixed point in N ′ to show that system (2.2) has a positive solution.

Since system (2.2) has no semi-trivial solutions, we only need to calculate indW (A, N ′) and

indW (A, (0, 0)) to discuss the existence of positive steady-state solutions.

Lemma 3.2 Assume that (H) holds, then deg(I −A, N ′, 0) = 1.

Proof Define a homotopy Aθ: E → E by

Aθ(u, ω) = (−∆+ PI)−1

(
θ[f̃1(u, ω) + Pu]

θ[f̃2(u, ω) + Pω]

)
for θ ∈ [0, 1]. From Lemma 2.1, it is easy to see that Aθ has no fixed point on ∂N ′, so deg(I −
Aθ, N

′, 0) is well defined and deg(I −Aθ, N
′, 0) is independent of θ. Therefore,

deg(I −A0, N
′, 0) = deg(I −A, N ′, 0).

From the normalization properties of the degree, deg(I − A0, N
′, 0) = 1, which yields the

desired result. 2
Lemma 3.3 Assume that (H) holds. If λ1 <

a+cγδ
1+γβ , then indW (A, (0, 0)) = 0.

Proof A straightforward calculation shows that W (0,0) =W , S(0,0) = {(0, 0)}. Define

L := A′(0, 0) = (−∆+ PI)−1


a+ cγδ

1 + γβ
+ P

γc

1 + γβ

0 −c(1 + γδ)

1 + γβ
+ P

 .

Firstly, we show that I−L is invertible onW . Assume L(ϕ, ψ)
⊤
= (ϕ, ψ)

⊤
for some (ϕ, ψ)

⊤
∈

W , then 
−∆ϕ =

a+ γcδ

1 + γβ
ϕ+

γc

1 + γβ
ψ, x ∈ Ω,

−∆ψ = −c(1 + γδ)

1 + γβ
ψ, x ∈ Ω,

(ϕ, ψ) = (0, 0), x ∈ ∂Ω.

(3.2)

Since all eigenvalues of −∆ under the homogeneous Dirichlet boundary condition are positive,

we conclude that ψ ≡ 0 in Ω from the second equation of system (3.2). Substituting ψ ≡ 0 in

the first equation of system (3.2) and multiplying φ1, and then integrating it on Ω, we have

0 =

∫
Ω

φ1

(
∆ϕ+

a+ γcδ

1 + γβ
ϕ
)
dx =

∫
Ω

ϕ
(
∆φ1 +

a+ γcδ

1 + γβ
φ1

)
dx
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=

∫
Ω

φ1ϕ
(
− λ1 +

a+ γcδ

1 + γβ

)
dx. (3.3)

From the facts λ1 < (a + γcδ)/(1 + γβ) and φ1 > 0 in Ω, we can see that ϕ ≡ 0 in Ω. This

implies that I − L is invertible on W .

Furthermore, we prove that L has property α. In fact, choosing y = (φ1, 0) and

t1 :=
λ1 + P

a+γcδ
1+γβ + P

,

it is easy to check that t1 ∈ (0, 1), (φ1, 0) ∈ W (0,0) \ S(0,0) and (φ1, 0)
⊤ − t1L(φ1, 0)

⊤ ∈ S(0,0).

Thus, indW (A, (0, 0)) = 0 by Theorem 2.2. 2
Now, we can prove that (H) and λ1 <

a+γcδ
1+γβ are the sufficient conditions for system (1.6) to

be of a coexistence state.

Theorem 3.4 If (H) and λ1 <
a+γcδ
1+γβ hold, then system (1.6) has at least one positive solution,

where δ is give in (3.1).

Proof If (H) and λ1 <
a+ γcδ

1 + γβ
hold. By Lemmas 3.2 and 3.3,

deg(I − A, N ′, 0) ̸= indW (A, (0, 0)) = 0,

which implies that system (1.6) has at least one positive solution. 2
Corollary 3.5 (i) If β ≤ min{ad

bc − e+Q1

b , a−λ1

γλ1
}, then system (1.6) has at least one positive

solution.

(ii) If a−λ1

γλ1
< β < min{ad

bc − e+Q1

b , (λ1+c)(a−λ1)
γλ2

1
}, then system (1.6) has at least one positive

solution.

Proof (i) If β ≤ a− λ1
γλ1

, then (1 + γβ)λ1 ≤ a, which implies λ1 <
a+γcδ
1+γβ . From Theorem 3.4,

we can get the desired result.

(ii) If a−λ1

γλ1
< β, then 2λ1(1 + γβ) > 2a > a − c and 2λ1(1 + γβ) − a + c > 0. By a direct

calculation, we find that

λ1(1 + γβ)− a− γcδ =
1

2
(2λ1(1 + γβ)− a+ c−

√
(a+ c)2 + 4acγβ)

and

[2λ1(1 + γβ)− a+ c]2 − (a+ c)2 − 4acγβ = 4(1 + γβ)[λ21γβ − (a− λ1)(λ1 + c)].

Note that the assumption

β <
(λ1 + c)(a− λ1)

γλ21
⇔ λ21γβ − (a− λ1)(λ1 + c) < 0,

so we get

λ1(1 + γβ)− a− γcδ < 0.

From Theorem 3.4, we see that system (1.6) has at least one positive solution. The proof of

Corollary 3.5 is completed. 2
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Remark 3.6 Corollary 3.5 (i) implies that there exists a positive constant β̂ := β̂(a, c, γ, b, d, λ1)

such that system (1.6) has a positive solution provided that β < β̂. Biologically, this means that

the prey and predator species may coexist when the intrinsic growth rate of prey is greater than

some level (i.e., a > max{λ1, (e + Q1)c/d}), provided that the cross-diffusion β is sufficiently

small.

4. The no-existence of positive steady-state solution

In this section, we derive some sufficient conditions which make system (1.1) have no positive

steady state solution.

Theorem 4.1 (i) If λ1 ≥ max{a, ad
e−a (1 +

γe
b )}, then system (1.1) has no positive steady state

solution.

(ii) There exists a positive constant β̄ := β̄(a, c, γ, λ1) such that system (1.1) has no positive

steady state solution provided that β ≥ β̄.

(iii) There exists a positive constant γ̄ := γ̄(a, c, β, λ1) such that system (1.1) has no positive

steady state solution provided that γ ≥ γ̄.

Proof (i) Assume (u, v) is a coexistence state of system (1.6). Multiplying both sides of the

first equation in system (1.6) by u, and integrating by parts on Ω, we have

γ

∫
Ω

∇u∇vdx =

∫
Ω

u2(a− u− bv

e+ u
)dx−

∫
Ω

|∇u|2dx. (4.1)

Similarly, we can get

−β
∫
Ω

∇u∇vdx =

∫
Ω

v2(−c+ du

e+ u
)dx−

∫
Ω

|∇v|2dx. (4.2)

Note that system (1.6) is exactly equivalent to system (2.2) for δ = 0, so Lemma 2.1 implies that

(u, v) satisfies

u ≤ ae

e− a
(1 +

γe

b
) := Q̃1, v ≤ ae

e− a
(
1

γ
+
e

b
) := Q̃2.

Applying the Poincaré inequality to (4.1) and using the given assumption a ≤ λ1, we get

γ

∫
Ω

∇u∇vdx ≤
∫
Ω

u2(a− u)dx−
∫
Ω

bu2v

e+ u
dx− λ1

∫
Ω

u2dx

=

∫
Ω

(a− λ1)u
2dx−

∫
Ω

(u+
bv

e+ u
)u2dx < 0. (4.3)

Then again using the Poincaré inequality for (4.2), we obtain

−β
∫
Ω

∇u∇vdx ≤
∫
Ω

(
du

e+ u
− λ1 − c)v2dx. (4.4)

If du
e+u − λ1 ≤ 0 holds, then the contradiction can be derived from (4.3) and (4.4). In fact, the

given assumption

λ1 ≥ ad

e− a
(1 +

γe

b
)
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implies λ1 ≥ dQ̃1

e , which is a sufficient condition for

du

e+ u
− λ1 ≤ 0.

(ii) To be contrary, assume that system (1.6) has a positive solution (u, v). Multiplying the

first and second equations in system (1.6) by v and u, respectively, and then integrating these

equations over Ω, we get
∫
Ω

∇u∇vdx =

∫
Ω

uv(a− u− bv

e+ u
)dx− γ

∫
Ω

|∇v|2dx,∫
Ω

∇u∇vdx =

∫
Ω

uv(−c+ du

e+ u
)dx+ β

∫
Ω

|∇u|2dx.
(4.5)

Therefore,

γ

∫
Ω

|∇v|2dx+ β

∫
Ω

|∇u|2dx− (a+ c)

∫
Ω

uvdx = −
∫
Ω

uv(u+
bv + du

e+ u
)dx. (4.6)

By using the Poincaré inequality and Young inequality to (4.6), we obtain

γ

∫
Ω

|∇v|2dx+ β

∫
Ω

|∇u|2dx− (a+ c)

∫
Ω

uvdx

≥ (γλ1 −
(a+ c)ϵ

2
)

∫
Ω

v2dx+ (βλ1 −
a+ c

2ϵ
)

∫
Ω

u2dx, (4.7)

where ϵ is a positive constant. Choosing ϵ0 small enough such that

γλ1 −
(a+ c)ϵ0

2
≥ 0,

then the left-hand side of (4.7) is nonnegative for

β ≥ β̂ :=
a+ c

2ϵ0λ1
.

This contradicts the fact that the right-hand side of (4.6) is negative.

(iii) Through some similar arguments as the proof of (ii), we can get the result, and so we

omit here. 2
Remark 4.2 In view of Theorem 4.1, we may conclude that if the cross-diffusion rate of the

prey or its predator is large enough, then the prey and predator species cannot coexist. In other

words, the large cross-diffusion coefficients γ and β tend to mean no positive coexistence.
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