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Abstract In this article, we established the structure of all eigenvalues and the oscillation

property of corresponding eigenfunctions for discrete clamped beam equation ∆4u(k − 2) =

λm(k)u(k), k ∈ [2, N+1]Z, u(0) = ∆u(0) = 0 = u(N+2) = ∆u(N+2) with the weight function

m : [2, N +1]Z → (0,∞), [2, N +1]Z = {2, 3, . . . , N +1}. As an application, we obtain the global

structure of nodal solutions of the corresponding nonlinear problems based on the nonlinearity

satisfying suitable growth conditions at zero and infinity.
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1. Introduction

Nonlinear boundary value problems have important applications to physics, chemistry and

biology. For example, the boundary value problems (shorthand BVPs){
u(4)(t) = m(t)f(u(t)), t ∈ [0, 1],

u(0) = u′(0) = 0 = u(1) = u′(1)
(1.1)

arise in the study of elasticity and have definite physical meanings. The equation in (1.1) is

often referred to as the beam equation, which describes the deflection of a beam under a certain

force. The boundary condition in (1.1) means that the beam is clamped at both end points. The

existence and multiplicity of positive solution for this problem (and its generalizations) have been

widely investigated by many researchers [1–4]. However, there are little result in the literature

for the positive solutions of the discrete analogue of (1.1).

It is well known that difference equations appear in numerous settings and forms, both as a

fundamental tool in the discrete analogue of differential equation and as a useful model for several

economical, medical and population problems [5]. Thus, the nonlinear fourth-order discrete

BVPs have also been widely investigated by many researchers, such as [6–13]. In particular, the

eigenvalues and eigenfunctions of linear BVPs play an important role on the existence of positive

(nodal) solutions of nonlinear BVPs.
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Motivated above, we will devote this paper to establishing the structure of all eigenvalues

and oscillation property of the corresponding eigenfunctions for the linear eigenvalue problem{
∆4u(k − 2) = λm(k)u(k), k ∈ [2, N + 1]Z,

u(0) = ∆u(0) = 0 = u(N + 2) = ∆u(N + 2),
(1.2)

where λ > 0 is a parameter, the forward difference operator ∆ is defined as ∆u(k) = u(k +

1) − u(k), m : [2, N + 1]Z → (0,∞) is a weight function and [2, N + 1]Z := {2, 3, . . . , N,N + 1}
with N ≥ 4 is an integer. The property oscillation matrix and some novel techniques developed

in [9,10] for the BVPs of the fourth order difference equation will be adopted to the new situation

for such a task. Based on it and bifurcation theory, we obtain the global structure of nodal

solutions for the discrete analogue of (1.1) as follows{
∆4u(k − 2) = λm(k)f(u(k)), k ∈ [2, N + 1]Z,

u(0) = ∆u(0) = 0 = u(N + 2) = ∆u(N + 2),
(1.3)

where m : [2, N + 1]Z → (0,∞) and f ∈ C(R,R) with f(s)s > 0, s ̸= 0.

The rest of the paper is organized as follows. In Section 2, we give the structure of eigenvalues

and eigenfunctions for linear problem (1.2), and as application, in Section 3, we discuss global

structure of nodal solutions of (1.3).

2. The structure of eigenvalues and eigenfunctions

In this section, we denote by x∗ the conjugate transpose of a vector x and xT the transpose

of a vector x. A Hermitian matrix A is said to be positive semidefinite if x∗Ax ≥ 0 for any x.

It is said to be positive definite if x∗Ax > 0 for any nonzero x. In what follows we will write

X ≥ Y if X and Y are Hermitian matrices of order n and X − Y is positive semidefinite.

A matrix A = (aik)n×n will be called totally non-negative (or respectively totally positive)

if all its minors of any order are non-negative (or respectively positive):

A

(
i1 i2 · · · ip

k1 k2 · · · kp

)
≥ 0 (resp., > 0) for

(
1 ≤

i1 < i2 < · · · ip

k1 < k2 < · · · kp
≤ n, p = 1, 2, . . . , n

)
.

Obviously, every element of totally positive matrix A is positive [14,15].

From [14, P. 74], we can obtain the simplest properties of totally non-negative matrices.

(1) A product of two totally non-negative matrices is totally non-negative.

(2) A product of a totally positive matrix by a nonsingular totally non-negative matrix is a

totally positive matrix.

Definition 2.1 ([14, P. 76]) A matrix A = (aik)n×n is called oscillatory if A is totally non-

negative and there exists an integer q > 0 such that Aq is totally positive.

The problem (1.2) is equivalent to the linear system

(−D + λM)u = 0, (2.1)

where M = diag(m(2),m(3), . . . ,m(N),m(N + 1)), u = (u(2), u(3), . . . , u(N), u(N + 1))T, and
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D is a banded N ×N matrix given by

D =



6 −4 1 0 0 · · · 0 0 0 0

−4 6 −4 1 0 · · · 0 0 0 0

1 −4 6 −4 1 · · · 0 0 0 0

0 1 −4 6 −4 · · · 0 0 0 0

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·
0 0 0 0 · · · 1 −4 6 −4 1

0 0 0 0 · · · 0 1 −4 6 −4

0 0 0 0 · · · 0 0 1 −4 6


. (2.2)

Obviously, there is a one-to-one corresponding between the solution

u = (u(2), u(3), . . . , u(N), u(N + 1)) (2.3)

of the problem (2.1) and the solution (u(0), u(1), u(2), . . . , u(N +1), u(N +2), u(N +3))T of the

problem (1.2). In that sense, these two problems are equivalent. We will not distinguish one

from the other, denote by u either one of these two vectors in the remainder of this paper, and

say that problems (1.2) and (2.1) are equivalent.

By the similar argument as [9], we can directly obtain the following results.

Lemma 2.2 D is positive definite and D−1 is a totally positive matrix.

Lemma 2.3 If λ is an eigenvalue of the problem (1.2) and u = (u(2), u(3), . . . , u(N), u(N+1))T

is a corresponding eigenvector, then

(i) u∗Mu > 0;

(ii) λ is real and positive;

(iii) If µ ̸= λ is an eigenvalue of the problem (1.2) and v = (v(2), v(3), . . . , v(N), v(N +1))T

is a corresponding eigenvector, then v∗Mu = 0.

Lemma 2.4 ([15, Vol. 2, P. 105]) A totally non-negative matrix A = (aik)n×n is oscillatory if

and only if (i) A is non-singular (|A| > 0); (ii) All the elements of A in the principal diagonal

and the first super-diagonals and sub-diagonals are different from zero (aik > 0 for |i− k| ≤ 1).

Let us consider a vector x = {x1, x2, . . . , xn}, we shall count the number of variations of

sign in the sequence of coordinates x1, x2, . . . , xn of x, attributing arbitrary signs to the zero

coordinates (if any such exist). Depending on what signs we give to the zero coordinates the

number of variations of sign will vary within certain limits. The maximal and the minimal number

of variations of sign so obtained will be denoted by S+
x and S−

x , respectively. If S−
x = S+

x , we

shall speak of the exact number of sign changes and denote it by Sx. Obviously, S−
x = S+

x if and

only if (l) x1 · xn ̸= 0 and (2) xi = 0 (1 < i < n) always implies that xi−1xi+1 < 0.

Let u = (u(2), u(3), . . . , u(N + 1)) be a nontrivial solution of (2.1). We say that u has a

generalized zero at k0 ∈ [2, N + 1]Z in case either u(k0) = 0 or there exists an integer j with

1 ≤ j ≤ k0 − 2 such that

(−1)ju(k0 − j)u(k0) > 0, and u(k) = 0 for k0 − j < k < k0 ( if j > 1).
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We say k0 is a simple zero point if u(k0 − 1)u(k0) ≤ 0 and u(k0 − 1)u(k0 + 1) < 0. If u has

only simple zero points on [2, N + 1]Z, the solution u is called a nodal solution of (2.1). Clearly,

the changing-sign number of nodal solution depends on the numbers of simple zero points in

[2, N + 1]Z. In the following text, the zero point we mean that simple zero point.

Lemma 2.5 ([14, P. 87, Theorem 6], [15, Vol. 2, P. 105, Theorem 13]) (1) An oscillatory matrix

A = (aik)n×n always has n distinct positive characteristic values

µ1 > µ2 > · · · > µn > 0.

(2) The characteristic vector w1 = (w11, w21, . . . , wn1) of A that belongs to the largest

characteristic value µ1 has only non-zero coordinates of like sign; the characteristic vector w2 =

(w12, w22, . . . , wn2) that belongs to the second largest characteristic value µ2 has exactly one vari-

ation of sign in its coordinates; more generally, the characteristic vectorwk = (w1k, w2k, . . . , wnk)

that belongs to the characteristic value µk has exactly k − 1 variation of sign (k = 1, 2, . . . , n).

(3) For arbitrary real numbers cg, cg+1, . . . , ch (1 ≤ g ≤ h ≤ n;
∑h

k=g c
2
k > 0) the number

of variations of sign in the coordinates of the vector

w =
h∑

k=g

ckw
k

lies between g − 1 and h− 1.

Lemma 2.6 Suppose that u = (u(0), u(1), u(2), . . . , u(N +2), u(N +3))T is a nonzero solution

to (1.2). Then u(2) ̸= 0 and u(N + 1) ̸= 0.

Proof Suppose on the contrary that u(2) = 0. Then it is easily seen from the initial conditions

in (1.2) that

∆u(1) = u(2)− u(1) = 0, ∆2u(0) = ∆u(1)−∆u(0) = 0. (2.4)

We claim that u(3) = 0. Suppose on the contrary that u(3) ̸= 0. For simplicity, we recall the

vector u so that u(3) = 1. Therefore, it is seen from (1.2) and (2.4) that

∆u(2) = u(3)−u(2) = 1, ∆2u(1) = ∆u(2)−∆u(1) = 1, ∆3u(0) = ∆2u(1)−∆2u(0) = 1, (2.5)

which further implies that

∆4u(0) = λm(2)u(2) ≥ 0,

∆3u(1) = ∆3u(0) + ∆4u(0) ≥ 1 + 0 ≥ 1,

∆2u(2) = ∆2u(1) + ∆3u(1) ≥ 1 + 1 ≥ 1,

∆u(3) = ∆u(2) + ∆2u(2) ≥ 1 + 1 ≥ 1,

u(4) = u(3) + ∆u(3) ≥ 1 + 1 ≥ 1.

(2.6)

By a similar argument, it follows that

∆4u(1) = λm(3)u(3) ≥ 0, ∆3u(2) ≥ 1, ∆2u(3) ≥ 1, ∆u(4) ≥ 1, u(5) ≥ 1. (2.7)
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Continuing this procedure, we will get that

∆4u(N − 1) = λm(N + 1)u(N + 1) ≥ 0,

∆3u(N) ≥ 1, ∆2u(N + 1) ≥ 1, ∆u(N + 2) ≥ 1, u(N + 3) ≥ 1,
(2.8)

which contradicts the boundary condition ∆u(N + 2) = 0. Therefore, we have u(0) = u(1) =

u(2) = u(3) = 0. The difference equation (1.2) can be rewritten as

u(k + 2) = 4u(k + 1) + (λm(k)− 6)u(k) + 4u(k − 1)− u(k − 2), k ∈ [2, N + 1]Z. (2.9)

Clearly, u(k) = 0 for all k can be deduced recursively from the initial conditions u(0) = u(1) =

u(2) = u(3) = 0. This contradicts the assumption u ̸= 0. Therefore, u(2) ̸= 0. By a similar

argument, it follows that u(N + 1) ̸= 0. 2
Lemma 2.7 Suppose that u = (u(0), u(1), . . . , u(N + 2), u(N + 3))T and v = (v(0), v(1), . . . ,

v(N + 2), v(N + 3))T are nonzero solutions to (1.2) for a fixed λ. Then u and v are linearly

dependent.

Proof It is easy to see from Lemma 2.6 that u(2) ̸= 0 and v(2) ̸= 0. Define y = v(2)u− u(2)v.

Then y is a solution of (1.2) with y(2) = 0. Therefore, in view of Lemma 2.6, y is a trivial

solution, that is y = v(2)u− u(2)v = 0, leading to the desired result. 2
Based on Lemmas 2.5–2.7, it follows that

Theorem 2.8 Let m(i) > 0, i = 2, 3, . . . , N + 1. Then there are N distinct real eigenvalues

λk (k = 1, 2, . . . , N) of the problem (1.2) satisfying

0 < λ1 < λ2 < · · · < λN , (2.10)

and the eigenfunction corresponding to λk changes k − 1 sign in [2, N + 1]Z.

Proof Clearly, (2.1) can be rewritten as

D−1Mu =
1

λ
u. (2.11)

Since D−1 is a totally positive matrix, diagonal matrix M is a nonsingular totally non-negative

matrix, it yields that D−1M is a totally positive matrix. This together with Definition 2.1

concludes that D−1M is an oscillatory matrix. From Lemma 2.5, D−1M has N distinct positive

characteristic values
1

λ1
>

1

λ2
> · · · > 1

λN
> 0,

which means that (2.11) holds. Moreover, the characteristic vector uk = (uk(2), uk(3), . . . , uk(N+

1)) that belongs to the eigenvalue 1
λk

has exactly k − 1 variation of sign (k = 1, 2, . . . , N). That

is,

Duk − λkMuk = 0

and the eigenfunction uk corresponding to λk has exactly k − 1 simple zeros. Therefore, the

problem (1.2) has N distinct positive eigenvalues

0 < λ1 < λ2 < · · · < λN ,
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and the eigenfunction φk = (0, 0, uk(2), uk(3), . . . , uk(N + 1), 0, 0) changes k − 1 sign in [2, N +

1]Z. 2
By the similar argument of [9, Theorem 2.9], we give the eigenvalue comparisons of problem

(1.2) with the weight function m(k) changes.

Let us consider the following eigenvalue problems{
∆4u(k − 2) = λa(k)u(k), k ∈ [2, N + 1]Z,

u(0) = ∆u(0) = 0 = u(N + 2) = ∆u(N + 2),
(2.12)

and {
∆4v(k − 2) = λb(k)v(k), k ∈ [2, N + 1]Z,

v(0) = ∆v(0) = 0 = v(N + 2) = ∆v(N + 2),
(2.13)

where a, b : [2, N + 1]Z → (0,∞) with a(k) ≥ b(k) for k ∈ [2, N + 1]Z.

Theorem 2.9 Assume a, b : [2, N + 1]Z → (0,∞) with a(k) ≥ b(k) for k ∈ [2, N + 1]Z. Let

{λ1 < λ2 < · · · < λN} be the set of all eigenvalues of (2.12) and {µ1 < µ2 < · · · < µN} be the

set of all eigenvalues of (2.13). Then λi ≤ µi for 1 ≤ i ≤ N .

3. Applications

In this section, we consider the global structure of nodal solutions of (1.3), that is, we consider

the nonlinear BVPs as follows{
∆4u(i− 2) = λm(i)f(u(i)), i ∈ [2, N + 1]Z,

u(0) = ∆u(0) = u(N + 2) = ∆u(N + 2) = 0,
(3.1)

where λ > 0 is a parameter, N ≥ 4 is an integer, m : [2, N + 1]Z → (0,∞), f ∈ C(R,R) is

continuous and f(s)s > 0 with s ̸= 0. The problem (3.1) can be viewed as the discrete analogue

of the clamped beam equation (1.1).

By a nodal solution of (3.1) we mean a pair (λ, u), where λ > 0 and u is a nontrivial solution

of (3.1) which has simple zeros in [2, N +1]Z. Based on Theorem 2.8 and bifurcation theory [16],

we establish the global structure of nodal solutions of (3.1) under the following conditions

(A) m : [2, N + 1]Z → (0,∞), f : [2, N + 1]Z × R → R is continuous and f(s)s > 0 with

s ̸= 0.

For convenience, set

f0 = lim
|u|→0+

f(u)

u
, f∞ = lim

|u|→∞

f(u)

u
. (3.2)

Let E = {u : [0, N + 3]Z → R |u(0) = ∆u(0) = u(N + 2) = ∆u(N + 2) = 0}. Then E is

Banach space with the norm ∥u∥ = maxi∈[0,N+3]Z |u(i)|. In addition, E is isomorphic to RN .

Thus, u ∈ E can be rewritten the vector form (u(0), u(1), u(2), . . . , u(N+1), u(N+2), u(N+3)).

This together with (2.1) implies that the vector u = {u(2), u(3), . . . , u(N + 1)} is one-to-one

corresponding vector for u. Therefore, we do not distinguish these two forms. Let S+
k denote the

set of functions in E which have exactly k− 1 interior nodal zeros in [2, N +1]Z and are positive

at i = 2, and set S−
k = −S+

k and Sk = S+
k ∪ S−

k . It is easy to see that S+
k and S−

k are disjoint
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and open in E, here k ∈ {1, 2, . . . , N}. Let S be the closure of the set of nontrivial solutions

pairs of problem (3.1) in R× E.

Theorem 3.1 Assume that (A) and f0 ∈ (0,∞) hold.

(i) If f∞ ∈ (0,∞), then for each 1 ≤ k ≤ N , there are two unbounded component C+
k and

C−
k , of S bifurcating from (λk

f0
, 0), such that C±

k \{(λk

f0
, 0)} ⊆ [0,∞)× S±

k .

(ii) If f∞ = ∞, then for each 1 ≤ k ≤ N , there are two unbounded component C+
k and C−

k ,

of S bifurcating from (λk

f0
, 0), such that C±

k \{(λk

f0
, 0)} ⊆ [0,∞)× S±

k and ProjRC±
k = (0, λk

f0
).

(iii) If f∞ = 0, then for each 1 ≤ k ≤ N , there are two unbounded components C+
k and C−

k ,

of S bifurcating from (λk

f0
, 0), such that C±

k \{(λk

f0
, 0)} ⊆ [0,∞)× S±

k and ProjRC±
k = (λk

f0
,∞).

Corollary 3.2 Assume that (A) and f0 ∈ (0,∞) hold.

(i) If f∞ ∈ (0,∞), then either for any λ ∈ (λk

f0
, λk

f∞
) with f∞ < f0, problem (3.1) has at least

two nodal solutions u±
k ∈ S±

k , or for any λ ∈ ( λk

f∞
, λk

f0
) with f0 < f∞, (3.1) has at least two nodal

solutions u±
k ∈ S±

k which change its sign k − 1 in [2, N + 1]Z.

(ii) If f∞ = ∞, then for any λ ∈ (0, λk

f0
), problem (1.1) has at least two nodal solutions

u±
k ∈ S±

k , which change its sign k − 1 in [2, N + 1]Z.

(iii) If f∞ = 0, then for any λ ∈ (λk

f0
, ∞), problem (1.1) has at least two nodal solutions

u±
k ∈ S±

k , which change its sign k − 1 in [2, N + 1]Z.

First, we give some preliminaries.

Lemma 3.3 Let h : [2, N + 1]Z → R. Then the linear boundary value problem

∆4u(i− 2) = h(i), i ∈ [2, N + 1]Z,

u(0) = u(N + 2) = ∆u(0) = ∆u(N + 2) = 0
(3.3)

has a solution

u(i) =

N+1∑
s=2

G(i, s)h(s), i ∈ [0, N + 3]Z, (3.4)

where

G(i, s) =


s(s− 1)(N + 2− i)(N + 3− i)(3(N + 1)(i− 1)− (N + 1)(s− 2)− 2i(s− 2))

6(N + 1)(N + 2)(N + 3)
, s ≤ i,

i(i− 1)(N + 2− s)(N + 3− s)(3(N + 1)(s− 1)− (N + 1)(i− 2)− 2s(i− 2))

6(N + 1)(N + 2)(N + 3)
, i ≤ s.

(3.5)

Proof By a simple summing computation and u(0) = ∆u(0) = 0, we conclude that

u(i) = ∆2u(0)
(i− 1)i

2
+

i(i− 1)(i− 2)

6
∆3u(0) +

i−1∑
s=2

(i− s)(i− s− 1)(i− s+ 1)

6
h(s).



408 Yanqiong LU and Rui WANG

This together with u(N + 2) = ∆u(N + 2) = 0 leads to

u(i) =

N+1∑
s=2

(N + 2− s)(N + 3− s)i(i− 1)[3(N + 1)(s− 1)− (N + 1)(i− 2)− 2s(i− 2)]

6(N + 1)(N + 2)(N + 3)
h(s)+

i−1∑
s=2

(i− s)(i− s− 1)(i− s+ 1)

6(N + 1)(N + 2)(N + 3)
h(s)

=

N+1∑
s=i

(N + 2− s)(N + 3− s)i(i− 1)[3(N + 1)(s− 1)− (N + 1)(i− 2)− 2s(i− 2)]

6(N + 1)(N + 2)(N + 3)
h(s)+

i−1∑
s=2

(N + 2− i)(N + 3− i)s(s− 1)[3(N + 1)(i− 1)− (N + 1)(s− 2)− 2i(s− 2)]

6(N + 1)(N + 2)(N + 3)
h(s).

Therefore, (3.4) holds. 2
By a simple computation, it follows that G(i, s) satisfies

G(i, s) ≤ Φ(s), for s, i ∈ [1, N + 2]Z,

G(i, s) ≥ c(i)Φ(s), for s, i ∈ [1, N + 2]Z,
(3.6)

where

Φ(s) =


(N + 3− s)(N + 2− s)s(s− 1)2

2(N + 2)(N + 3)
, 1 ≤ i ≤ s ≤ N + 2,

(N + 3− s)2(N + 2− s)s(s− 1)

2(N + 1)(N + 3)
, 1 ≤ s ≤ i ≤ N + 2,

(3.7)

c(i) =


(N + 3− i)(N + 2− i)(i− 1)

3(N + 2)N
, 1 ≤ s ≤ i ≤ N + 2,

(N + 3− i)i(i− 1)

(N + 3)(N + 1)2
, 1 ≤ i ≤ s ≤ N + 2.

Moreover, we have

G(i, s) ≥ σΦ(s), for s ∈ [1, N + 2]Z, i ∈ [2, N + 1]Z, (3.8)

here σ = 2
(N+1)(N+2) .

For any r > 0, let Br = {u ∈ E | ∥u∥ < r} and ∂Br = {u ∈ E | ∥u∥ = r}. We denote by θ the

zero element of E. Define P be a cone in E by

P = {u ∈ E |u(k) ≥ 0, min
k∈[2,N+1]Z

u(k) ≥ σ∥u∥}.

It is well known that (3.1) is equivalent to

u(i) = λ
N+1∑
s=2

G(i, s)m(s)f(u(s)) =: (Au)(i), i ∈ [1, N + 2]Z, (3.9)

where G(i, s) is defined as (3.5).

Define the operator L,F : E → E respectively, by

Lu(i) :=
N+1∑
s=2

G(i, s)m(s)u(s), u ∈ E, i ∈ [1, N + 2]Z, (3.10)
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Fu(i) := f(u(i)), u ∈ E, i ∈ [2, N + 1]Z.

So A = λL ◦ F .

Lemma 3.4 A(P ) ⊂ P and A : P → P is completely continuous.

Proof For any u ∈ P , it follows that

∥Au∥ = max
i∈[1,N+2]Z

λ
N+1∑
s=2

G(i, s)m(s)f(u(s)) ≤ λ
N+1∑
s=2

Φ(s)m(s)f(u(s)),

min
i∈[2,N+1]Z

Au(i) = min
i∈[2,N+1]Z

λ
N+1∑
s=2

G(i, s)m(s)f(u(s)) ≥ σλ
N+1∑
s=2

Φ(s)m(s)f(u(s)) ≥ σ∥Au∥.

So A(P ) ⊂ P . Since E is a finite dimension space and f is continuous, it is easy to prove

A : P → P is completely continuous. 2
It follows from Lemma 3.3 that u = {u(i)}N+3

i=0 is a solution of the problem (3.1) if and only

if u = {u(i)}N+3
i=0 ∈ E is a fixed point of the operator A.

Let us consider the following problem

∆4u(i− 2) = λm(i)f0u(i) + λm(i)ξ(u(i)), u(0) = ∆u(0) = u(N + 2) = ∆u(N + 2) = 0 (3.11)

as a bifurcation problem from the trivial solution u ≡ 0, here ξ ∈ C(R,R) satisfying limu→0
ξ(u)
u =

0. Clearly, (3.11) can be converted to the following operator equation

u(i) = λf0Lu(i) + λ
N+1∑
s=2

G(i, s)m(s)ξ(u(s)).

It follows from Theorem 2.8 that the eigenvalue λk (k ∈ {1, 2, . . . , N}) of the linear operator L is

isolated and has geometric multiplicity 1, this together with Lemma 3.4 yields that the operator

Φλu := u−λf0Lu is completely continuous and the Brouwer degree deg(Φλ, Br, 0) is well defined

(see [17]) for arbitrary Br and λ ̸= λk

f0
.

Lemma 3.5 For any r > 0, we have

deg(Φλ, Br, 0) =

{
1, 0 ≤ λ < λ1

f0
,

(−1)k, λ ∈ (λk

f0
, λk+1

f0
), k ∈ {1, 2, . . . , N − 1}.

Proof Since L is a linear compact operator, it follows from [17, Theorem 8.10] that

deg(Φλ, Br, 0) = (−1)m(λ),

where m(λ) is the sum of algebraic multiplicity of the eigenvalue λ of

u(i) = λf0

N+1∑
s=2

G(i, s)m(s)u(s)

satisfying λ−1 λk

f0
< 1. If λ < λ1

f0
, then there are no such λ at all, hence

deg(Φλ, Br, 0) = (−1)m(λ) = (−1)0 = 1.
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If λ ∈ (λk

f0
, λk+1

f0
) for some k ∈ {1, 2, . . . , N−1}, then λ−1 λj

f0
< 1, j ∈ {1, 2, . . . , k} and λ−1 λk+1

f0
>

1. This together with Theorem 2.8 concludes that deg(Φλ, Br, 0) = (−1)m(λ) = (−1)k. 2
Proposition 3.6 Assume that (A) holds and f0 ∈ (0,∞). Then for each (λk

f0
, 0), k = 1, 2 . . . , N ,

there are two unbounded continua C+
k and C−

k of solutions to the problem (3.1) bifurcated from

(λk

f0
, 0) with Cν

k ⊆ {(λk

f0
, 0)} ∪ (R× Sν

k ), ν ∈ {+,−}.

Proof Lemmas 3.4 and 3.5 together with the results of unilateral global bifurcation [16] and [18,

Theorem1] for (3.11) can be stated as follows: for each integer k ∈ {1, 2, . . . , N}, there are two

distinct continua, C±
k ⊂ [0,∞)×E of solutions to (3.11) bifurcated from (λk

f0
, 0) such that either

they are unbounded, or C+
k ∩ C−

k ̸= {(λk

f0
, 0)}.

By a similar argument of [16, Sections 6.4-6.5], it is not difficult to verify that there is a

neighborhood Ok of (λk

f0
, 0) such that

Cν
k ∩Ok ⊆ {(λk

f0
, 0)} ∪ (R× Sν

k ) or Cν
k ∩Ok ⊆ {(λk

f0
, 0)} ∪ (R× S−ν

k ).

Without loss of generality, we assume that

Cν
k ∩Ok ⊆ {(λk

f0
, 0)} ∪ (R× Sν

k ).

We shall show Cν
k ⊆ {(λk

f0
, 0)}∪(R×Sν

k ). Suppose on the contrary that Cν
k ̸⊆ {(λk

f0
, 0)}∪(R×Sν

k ).

Then there exist (λ, u) ∈ Cν
k ∩ (R× ∂Sν

k ) with (λ, u) ̸= (λk

f0
, 0) and (λn, un) ∈ Cν

k ∩ (R×Sν
k ) with

(λn, un) → (λ, u) as n → ∞. Since u ∈ ∂Sν
k , it’s easy to see that u ≡ 0. Let vn = un

∥un∥ , then

there exists a subsequence and relabelling if necessary, vn, such that vn → v0 as n → ∞, here

∥v0∥ = 1 and v0 satisfies

∆4v0(i− 2) = λm(i)f0u(i), v0(0) = ∆v0(0) = v0(N + 2) = ∆v0(N + 2) = 0.

Hence, we have λ =
λj

f0
for some j ̸= k and u ∈ Sj , which indicates that un ∈ Sj for sufficiently

large n. This yields a contradiction. Thus,

C+
k ∩ C−

k = {(λk

f0
, 0)}.

Therefore, C+
k ∩ C−

k ̸= {(λk

f0
, 0)} is not true, which means that C±

k \ {(λk

f0
, 0)} to infinity in S. 2

Lemma 3.7 Assume that m : [2, N + 1]Z → (0,∞), and gn : [2, N + 1]Z → (0,∞) with

gn(i) ≥ ρ > 0, i ∈ [2, N + 1]Z and ρ is a constant. If there exists a sequence (µn, un) satisfying

∆4un(i− 2) = µnm(i)gn(i)un(i), i ∈ [2, N + 1]Z,

un(0) = ∆un(0) = un(N + 2) = ∆un(N + 2) = 0
(3.12)

such that for any given subinterval of I ⊂ [2, N + 1]Z and sufficiently large enough n ∈ N,

un(i) > 0, i ∈ I or un(i) < 0, i ∈ I,

then there is a positive constant M0 > 0, such that

|µn| ≤ M0, ∀n ∈ N.
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Proof We only show the case un(i) > 0, i ∈ I for n ∈ N sufficiently large enough. The other

case can be true by the similar argument.

Without loss of generality, let for n ∈ N, un(i) > 0, i ∈ I. Set [αn, βn]Z ⊆ [2, N + 1]Z is

a subinterval satisfying (i) I ⊂ [αn, βn]Z, (ii) αn, βn are zero points of un, and (iii) un(i) > 0,

i ∈ [αn, βn]Z. Then it follows from Lemmas 3.3 and 3.4 that for any i ∈ [2, N + 1]Z,

un(i) = µn

N+1∑
s=2

G(i, s)m(s)gn(s)un(s) ≥
2µn

(N + 1)(N + 2)

N+1∑
s=2

G(i, s)m(s)gn(s)∥un∥.

Moreover, for i ∈ [αn, βn]Z,

un(i) ≥
2

(N + 1)(N + 2)
µn

N+1∑
s=2

G(i, s)m(s)gn(s)∥un∥

≥ 2

(N + 1)(N + 2)
µn

βn∑
s=αn

G(i, s)m(s)ρ max
s∈[αn,βn]Z

|un(s)|

≥ 4ρ

(N + 1)2(N + 2)2
µn

βn∑
s=αn

Φ(s)m(s) max
s∈[αn,βn]Z

|un(s)|

Therefore, |µn| ≤ (N+1)2(N+2)2

4ρ [
∑βn

s=αn
Φ(s)m(s)]−1. 2

Lemma 3.8 ([19, Theorem1.2], [20]) Let X be a normal space and let {Cn} be a sequence of

unbounded connected subsets of X. Suppose that

(i) There exists z∗ ∈ limn→+∞ Cn with ∥z∗∥ = +∞;

(ii) There exists a homeomorphism T : X → X such that ∥T (z∗)∥ < +∞ and {T (Cn)} be

a sequence of unbounded connected subsets of X;

(iii) For every R > 0, (∪∞
n=1T (Cn)) ∩ B̄R is a relatively compact set of X.

Then D := lim supn→+∞ Cn is unbounded closed connected.

Proof of Theorem 3.1 Let us consider the bifurcation problem (3.11). From Proposition 3.6,

for each (λk

f0
, 0), k = 1, 2 . . . , N , there are two unbounded continua C±

k of solutions to the problem

(3.1) bifurcated from (λk

f0
, 0) with Cν

k ⊆ {(λk

f0
, 0)} ∪ (R× Sν

k ), ν ∈ {+,−}.
(i) If f∞ ∈ (0,∞), let us consider

∆4u(i− 2) = λm(i)f∞u(i) + λm(i)ζ(u(i)), u(0) = ∆u(0) = u(N + 2) = ∆u(N + 2) = 0 (3.13)

as a bifurcation problem from infinity to (3.1), here ζ ∈ C(R,R) satisfying limu→∞
ζ(u)
u = 0.

Then (3.13) can be converted to the following operator equation

u(i) = λf∞

N+1∑
s=2

G(i, s)m(s)u(s) + λ
N+1∑
s=2

G(i, s)m(s)ζ(u(s)) := λf∞Lu+H(λ, u),

here H(λ, u) := λ
∑N+1

s=2 G(i, s)m(s)ζ(u(s)), by a similar argument of Lemma 3.4, it easy to see

H is completely continuous. Let ζ̃(u) := max0≤|s|≤u |ζ(s)|. Then ζ̃ is nondecreasing with respect

to u and

lim
|s|→∞

ζ̃(s)

s
= 0. (3.14)
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It follows from (3.14) that

|ζ(u)
u

| ≤ ζ̃(|u|)
|u|

≤ ζ̃(∥u∥)
∥u∥

→ 0 as ∥u∥ → ∞. (3.15)

We shall show that the unbounded continua Cν
k joins (λk

f0
, 0) to ( λk

f∞
,∞). Let (µn, un) ∈ Cν

k

satisfy µn + ∥un∥ → ∞. Notice that µn > 0, n ∈ N. Since (0, 0) is the only solution of (3.11) for

λ = 0 and Cν
k ∩ ({0} × E) = ∅.

Case 1. λk

f∞
< λ < λk

f0
.

In this case, we show that ( λk

f∞
, λk

f0
) ⊆ {λ ∈ R | (λ, u) ∈ Cν

k}.
First, we show that if there exists a constant number M > 0 such that 0 < µn ≤ M , then Cν

k

joins (λk

f0
, 0) to ( λk

f∞
,∞). In this case, it follows that ∥un∥ → ∞. Since un satisfies (3.13) with

λ = µn, we divide (3.13) by ∥un∥ and set vn = un/∥un∥, then

∆4vn(i− 2) = µnm(i)[f∞vn(i) +
ζ(un(i))

∥un∥
], vn(0) = ∆vn(0) = vn(N + 2) = ∆vn(N + 2) = 0.

Since vn is bounded in E, choosing a subsequence and relabelling if necessary, it yields that

vn → v0 as n → ∞ for some v0 ∈ E with ∥v0∥ = 1. From the definition of ζ̃ and (3.14), (3.15),

we have that

lim
n→∞

|ζ(un)|
∥un∥

= 0.

Therefore, v0(i) = µ0

∑N+1
s=2 G(i, s)m(s)f∞v0(s), where µ0 = limn→∞ µn. Again choosing a

subsequence and relabelling if necessary gives

∆4v0(i− 2) = µ0m(i)f∞v0(i), v0(0) = ∆v0(0) = v0(N + 2) = ∆v0(N + 2) = 0. (3.16)

We claim that v0 ∈ Sν
k .

Suppose on the contrary that v0 ̸∈ Sν
k . Since v0 ̸= 0 is a solution of (3.16), all zeros of v0

in [2, N + 1] are simple. It follows that v0 ∈ Sι
m for some m ∈ {1, 2, . . . , N} with m ̸= k and

ι ∈ {+,−}. By the openness of Sι
m, there exists a neighborhood U(v0, r) such that U(v0, r) ⊂ Sι

m,

which together with vn → v0 implies that there exists n0 ∈ {1, 2, . . . , N} such that vn ∈ Sι
m,

n ≥ n0. However, this contradicts the fact that vn ∈ Sν
k . Therefore, v0 ∈ Sν

k .

From Theorem 2.8, we have that µ0f∞ = λk, i.e., µ0 = λk

f∞
. Hence, Cν

k joins (λk

f0
, 0) to

( λk

f∞
,∞).

Next, we show that there exists a constant number M > 0 such that 0 < µn ≤ M for all n.

Suppose, to the contrary, there is no such M , then choosing a subsequence and relabelling if

necessary, it follows that

lim
n→∞

µn = ∞.

Let 1 = τ(0, n) < τ(1, n) < · · · < τ(k, n) = N + 2 denote the zeros of un. Then there ex-

ists a subsequence {τ(1, nm)} ⊆ {τ(1, n)} such that limm→∞ τ(1, nm) := τ(1,∞). Clearly,

limm→∞ τ(0, nm) := τ(0,∞). We claim that

τ(1,∞)− τ(0,∞) = 0. (3.17)
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Suppose on the contrary that τ(0,∞) < τ(1,∞). Define a function p : [0,∞) → R as follows

p(u) =

{
f(u)
u , u ̸= 0,

f0, u = 0.

Then there exist two positive numbers ρ1 and ρ2, such that

ρ1 ≤ f(u)

u
≤ ρ2, ∀u ≥ 0.

This together with the fact limn→∞ µnm = ∞ concludes that there exists a closed interval

I1 ⊂ (τ(0,∞), τ(1,∞)) such that

lim
m→∞

µnm
p(unm

(i)) = ∞, for i ∈ I1.

However, since unm satisfies

∆4unm(i− 2) =µnmm(i)p(unm(i))unm(i),

unm(0) = ∆unm(0) =unm(N + 2) = ∆unm(N + 2) = 0,

it follows from Lemma 3.7 that for all n large enough, unm must change sign on I1, which

contradicts the fact that for all m sufficiently large, I1 ⊂ (τ(0,∞), τ(1,∞)) and νunm(i) > 0,

i ∈ (τ(0,∞), τ(1,∞)). Therefore, (3.17) holds. Next, we work with {(τ(1, nm), τ(2, nm))}. Ob-

viously, there is a subsequence {τ(2, nmj )} ⊆ {τ(2, nm)} such that limj→∞ τ(2, nmj ) := τ(2,∞).

Clearly, limj→∞ τ(1, nmj
) := τ(1,∞). By the same argument and comparison results of Theorem

2.9, we show that τ(2,∞)− τ(1,∞) = 0. Similarly, we can show that for each l ∈ {2, . . . , k− 1},

τ(l + 1,∞)− τ(l,∞) = 0.

Taking a subsequence and relabelling it if necessary as (µn, un), we get that for each l ∈
{2, . . . , k − 1},

τ(l + 1, n)− τ(l, n) = 0.

However, it is impossible since 1 = τ(k, n) − τ(0, n) =
∑k−1

l=0 (τ(l + 1, n) − τ(l, n)) for all n.

Therefore, |µn| ≤ M for some constant M > 0, independent of n ∈ N.
Case 2. λk

f0
< λ < λk

f∞
.

In this case, suppose (µn, un) ∈ Cv
k with µn+∥un∥ → ∞. If limn→∞ µn = ∞, then (λk

f0
, λk

f∞
) ⊆

{λ ∈ (0,∞) | (λ, u) ∈ Cν
k}. If there exists M > 0, such that for all n ∈ N, µn ∈ (0,M ]. By a

similar argument of Case 1, after taking a subsequence and relabelling if necessary (µn, un), we

have that (µn, un) → ( λk

f∞
,∞), n → ∞. Therefore, Cν

k joins (λk

f0
, 0) to ( λk

f∞
,∞).

(ii) If f∞ = ∞, define auxiliary function

f̃n(s) =


f(s), s ∈ [−n, n];
ns−f(n)

n (s− n) + f(n), s ∈ (n, 2n);
−ns+f(−n)

n (n+ s) + f(−n), s ∈ (−2n,−n);

ns, s ∈ (−∞,−2n] ∪ [2n,+∞),

then we consider the following problem

∆4u(i− 2) = λm(i)f̃n(u(i)), u(0) = ∆u(0) = u(N + 2) = ∆u(N + 2) = 0. (3.18)
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Then limn→+∞ f̃n(s) = f(s) and

lim
s→0

f̃n(s)

s
= f0, lim

s→+∞

f̃n(s)

s
= n.

Applying the conclusion of (i), there are two unbounded continua Cn,±
k of solutions to the problem

(3.18) bifurcated from (λk

f0
, 0) and join (λk

f0
, 0) to (λk

n ,∞).

Set z∗ = (0,∞). Then it is easy to see that z∗ = lim infn→+∞ Cn,ν
k with ∥z∗∥R×E = +∞. Let

T : R× E → R× E be a mapping defined by

T (λ, u) =


(λ, u

∥u∥2 ), 0 < ∥u∥ < ∞;

(λ, 0), ∥u∥ = +∞;

(λ,∞), ∥u∥ = 0.

It is not difficult to verify that T is homeomorphism and ∥T (z∗)∥R×E = 0. For every R > 0,

the compactness of operator L implies that (∪+∞
n=1T (C

n,ν
k )) ∩ B̄R is a relatively compact set of

R×E. Therefore, the assumption conditions (i)–(iii) in Lemma 3.8 hold, which implies that Cν
k =

lim supn→+∞ Cn,ν
k is unbounded closed connected such that z∗ ∈ Cν

k . Since (
λk

n ,∞) ⊂ ProjRC
n,ν
k ,

we obtain that

ProjRCν
k = (0,

λk

f0
).

(iii) If f∞ = 0, define auxiliary function

f̂n(s) =


f(s), s ∈ [−n, n];
1
n s−f(n)

n (s− n) + f(n), s ∈ (n, 2n);
− 1

n s+f(−n)

n (n+ s) + f(−n), s ∈ (−2n,−n);
1
ns, s ∈ (−∞,−2n] ∪ [2n,+∞),

then we consider the following problem

∆4u(i− 2) = λm(i)f̂n(u(i)), u(0) = ∆u(0) = u(N + 2) = ∆u(N + 2) = 0. (3.19)

Then limn→+∞ f̂n(s) = f(s) and

lim
s→0

f̂n(s)

s
= f0, lim

s→+∞

f̂n(s)

s
=

1

n
.

By the conclusion of (i), there are two unbounded continua C±
k,n of solutions to the problem

(3.19) bifurcated from (λk

f0
, 0) and joining (λk

f0
, 0) to (nλk,∞).

Set z∗ = (∞,∞). It is easy to see that z∗ = lim infn→+∞ Cν
k,n with ∥z∗∥R×E = +∞. Using a

similar argument of the proof of (ii) and applying Lemma 3.8 yields that Cν
k = lim supn→+∞ Cν

k,n

is unbounded closed connected such that z∗ ∈ Cν
k . Since (nλk,∞) ⊂ ProjRCν

k,n, we obtain that

ProjRCν
k = (

λk

f0
,∞). 2

Proof of Corollary 3.2 The conclusions are directly desired from Theorem 3.1, we omit it. 2
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