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generalized countably compact spaces such as quasi-γ spaces, quasi-Nagata spaces, wN -spaces

and wM -spaces in terms of real-valued functions were obtained. In this paper, we shall present

some other forms of characterizations of the spaces mentioned above.
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1. Introduction

Throughout, a space always means a Hausdorff topological space.

Let X be a space. Denote by CX (SX) the family of all compact (sequentially compact)

subsets of X. F0(X) is the family of all decreasing sequences of closed subsets of X with empty

intersection. N is the set of all positive integers and ⟨xn⟩ denotes a sequence.

A real-valued function f on a space X is called upper semi-continuous [1] if for any real

number r, {x ∈ X : f(x) < r} is open. We write U(X) for the set of all upper semi-continuous

functions from X into the interval [0, 1].

A g-function for a space (X, τ) is a map g : N×X → τ such that for each x ∈ X and n ∈ N,
x ∈ g(n+ 1, x) ⊂ g(n, x). For a subset A ⊂ X, let g(n,A) = ∪{g(n, x) : x ∈ A}.

Consider the following conditions:

(q) If xn ∈ g(n, x) for each n ∈ N, then ⟨xn⟩ has a cluster point.

(quasi-γ) If xn ∈ g(n, yn) for each n ∈ N and ⟨yn⟩ converges, then ⟨xn⟩ has a cluster point.

(wγ) If yn ∈ g(n, x) and xn ∈ g(n, yn) for each n ∈ N, then ⟨xn⟩ has a cluster point.

(β) If x ∈ g(n, xn) for each n ∈ N, then ⟨xn⟩ has a cluster point.

(wσ) If x ∈ g(n, yn) and yn ∈ g(n, xn) for each n ∈ N, then ⟨xn⟩ has a cluster point.

(quasi-Nagata) If yn ∈ g(n, xn) for each n ∈ N and ⟨yn⟩ converges, then ⟨xn⟩ has a cluster

point.

(kβ) For each K ∈ CX , if K ∩ g(n, xn) ̸= ∅ for each n ∈ N, then ⟨xn⟩ has a cluster point.

(wcc) If ⟨yn⟩ has a cluster point and yn ∈ g(n, xn) for each n ∈ N, then ⟨xn⟩ has a cluster

point.
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(w∆) If x, xn ∈ g(n, yn) for each n ∈ N, then ⟨xn⟩ has a cluster point.

(wN) If g(n, x) ∩ g(n, xn) ̸= ∅ for each n ∈ N, then ⟨xn⟩ has a cluster point.

A space that has a g-function satisfying condition (q) ((quasi-γ), (wγ), (β), (wσ), (quasi-

Nagata), (kβ), (wcc), (wN)) is called a q-space [2] (quasi-γ space [3], wγ-space [4], β-space [5],

wσ-space [6], quasi-Nagata space [7], kβ-space [8], wcc-space [9], wN -space [4]). w∆-spaces [10]

can be characterized by a g -function satisfying (w∆). The g-function satisfying condition (q) is

called a q-function. The others are defined analogously.

A space X is called an M#-space [11] if there exists a sequence {Fn}n∈N of closure preserving

closed covers of X such that if xn ∈ st(x,Fn) for each n ∈ N, then ⟨xn⟩ has a cluster point.

A space X is called a wM -space [12] if there exists a sequence {Gn}n∈N of open covers of X

such that if xn ∈ st2(x,Gn) for each n ∈ N, then ⟨xn⟩ has a cluster point.

Since every sequence in a countably compact space has a cluster point, all spaces listed above

can be seen as generalizations of countably compact space. The relationships between these

spaces are as follows.

wγ // quasi-γ // q

M# // wM

OO

��

// w∆

88pppppppppppppp
// β

wσ

88pppppppppppppp
quasi-Nagata

OO

wN //

>>||||||||||||||||||||||||||||||||
wcc //

OO

kβ

OO

Diagram 1 The relationships between the spaces listed above

In [13], characterizations of some generalized countably compact spaces such as quasi-γ s-

paces, quasi-Nagata spaces and wM -spaces in terms of real-valued functions were obtained. For

example X is a quasi-Nagata space if and only if for each F ∈ τ c, one can assign a func-

tion fF ∈ U(X) such that (1) F ⊂ f−1
F (0), (2) if F1 ⊂ F2, then fF1 ≥ fF2 and (3) for each

⟨Fn⟩ ∈ F0(X) and S ∈ SX , there is m ∈ N such that inf{fFm(x) : x ∈ S} > 0.

In this paper, we shall continue with the study on the characterizations of some generalized

countably compact spaces with real-valued functions. Some other forms of characterizations of

the corresponding spaces are presented. The main results took the forms: X is a P -space if and

only if for each point x of X, one can assign a function fx ∈ U(X) satisfying the corresponding

conditions formulated with convergence of sequences. The proof of these results is essentially a

process of turning real-valued functions and g-functions into each others. The following notations

will be applied to shorten the expressions of the corresponding results.

Let A be a family of subsets of a space X, F a family of real-valued functions on X and

f : A → F . For A ∈ A, we write fA instead of f(A). For a singleton {x}, we write fx for f{x}.
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For A ⊂ X, denote fx[A] = inf{fx(y) : y ∈ A}. Let ⟨xn⟩, ⟨yn⟩ be two sequences in X. Consider

the following conditions.

(e) fx(x) = 0.

(qf ) If fx(xn) → 0, then ⟨xn⟩ has a cluster point.

(qγf ) If fyn(xn) → 0 and ⟨yn⟩ converges, then ⟨xn⟩ has a cluster point.

(wγf ) If max{fx(yn), fyn(xn)} → 0, then ⟨xn⟩ has a cluster point.

(βf ) If fxn(x) → 0, then ⟨xn⟩ has a cluster point.

(wσf ) If max{fyn(x), fxn(yn)} → 0, then ⟨xn⟩ has a cluster point.

(qNf ) If fxn(yn) → 0 and ⟨yn⟩ converges, then ⟨xn⟩ has a cluster point.

(kβf ) If K ∈ CX and fxn [K] → 0, then ⟨xn⟩ has a cluster point.

(w∆f ) If max{fyn
(x), fyn

(xn)} → 0, then ⟨xn⟩ has a cluster point.

(wNf ) If max{fx(yn), fxn(yn)} → 0, then ⟨xn⟩ has a cluster point.

2. Main results

In this section, we present characterizations of some generalized countably compact spaces

listed in Section 1. The following lemma will be frequently applied to the proof of the corre-

sponding results.

Lemma 2.1 ([14]) Let g be a g-function for X. For each x ∈ X, let

fx = 1−
∞∑

n=1

1

2n
χ

g(n,x)
.

Then fx ∈ U(X) satisfies (e) and for each y ∈ X, fx(y) ≤ 1
2m if and only if y ∈ g(m,x).

Theorem 2.2 For a space X, the following are equivalent.

(a) X is a quasi-γ space.

(b) For each S ∈ SX , there exists fS ∈ U(X) such that (1) S ⊂ f−1
S (0); (2) if S1 ⊂ S2, then

fS1 ≥ fS2 ; (3) if fS(xn) → 0, then ⟨xn⟩ has a cluster point.

(c) For each x ∈ X, there exists fx ∈ U(X) satisfying (e) and (qγf ).

Proof (a) ⇒ (b). Let g be the quasi-γ function for X and define fx ∈ U(X) for each x ∈ X as

that in Lemma 2.1. For each S ∈ SX , let fS = inf{fx : x ∈ S}. Then fS ∈ U(X) and (2) holds.

If y ∈ S, then fS(y) = inf{fx(y) : x ∈ S} = 0.

Suppose that fS(xn) → 0. Then there exists a subsequence ⟨xnk
⟩ of ⟨xn⟩ such that fS(xnk

) <
1
2k

for each k ∈ N. By the definition of fS , there exists a sequence ⟨yk⟩ in S such that fyk
(xnk

) <
1
2k

for each k ∈ N. Since S is sequentially compact, there exists a convergent subsequence ⟨ykj ⟩
of ⟨yk⟩. Then fykj

(xnkj
) < 1

2kj
≤ 1

2j for each j ∈ N. By Lemma 2.1, xnkj
∈ g(j, ykj ) for each

j ∈ N. Thus ⟨xnkj
⟩ has a cluster point which is also a cluster point of ⟨xn⟩.

(b) ⇒ (c). Assume (b). Then for each x ∈ X, there exists fx ∈ U(X) such that fx(x) = 0.

Suppose that yn → x and fyn(xn) → 0. Let S = {yn : n ∈ N} ∪ {x}. Then S ∈ SX . By (2) of

(b), fS(xn) ≤ fyn(xn) for each n ∈ N. From fyn(xn) → 0 it follows that fS(xn) → 0. By (3) of
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(b), ⟨xn⟩ has a cluster point.

(c) ⇒ (a). For each x ∈ X and n ∈ N, let g(n, x) = {y ∈ X : fx(y) < 1
n}. Then g

is a g-function for X. Suppose that ⟨yn⟩ converges and xn ∈ g(n, yn) for each n ∈ N. Then

fyn(xn) <
1
n for each n ∈ N and thus fyn(xn) → 0. By (qγf ), ⟨xn⟩ has a cluster point. Therefore,

X is a quasi-γ space. 2
Theorem 2.3 For a space X, the following are equivalent.

(a) X is a wγ-space.

(b) For each x ∈ X, there exists fx ∈ U(X) satisfying (e) and (†): for each ⟨Fn⟩ ∈ F0(X),

inf{max{fx(xn), fxn
[Fn]} : n ∈ N} > 0.

(c) For each x ∈ X, there exists fx ∈ U(X) satisfying (e) and (wγf ).

(d) For each x ∈ X, there exists fx ∈ U(X) satisfying (e) and (‡): if ⟨yn⟩ has a cluster point

and fyn(xn) → 0, then ⟨xn⟩ has a cluster point.

Proof (a) ⇒ (b). Let g be the wγ-function for X. For each x ∈ X, define fx ∈ U(X) as that

in Lemma 2.1.

Let ⟨Fn⟩ ∈ F0(X) and assume that inf{max{fx(xn), fxn [Fn]} : n ∈ N} = 0. Then there exist

subsequences ⟨xnk
⟩ of ⟨xn⟩ and ⟨Fnk

⟩ of ⟨Fn⟩ such that max{fx(xnk
), fxnk

[Fnk
]} < 1

2k
for each

k ∈ N. Then there exists yk ∈ Fnk
such that fxnk

(yk) <
1
2k
. By Lemma 2.1, xnk

∈ g(k, x) and

yk ∈ g(k, xnk
) for each k ∈ N. Thus ⟨yk⟩ has a cluster point. It follows that

∩
k∈N Fnk

̸= ∅ and

thus
∩

n∈N Fn ̸= ∅, a contradiction.

(b) ⇒ (c). Assume (b). Suppose that max{fx(yn), fyn(xn)} → 0 and let Fn = {xm : m ≥ n}
for each n ∈ N. If ⟨xn⟩ has no cluster point, then ⟨Fn⟩ ∈ F0(X). Since fyn [Fn] ≤ fyn(xn) for each

n ∈ N, we have that max{fx(yn), fyn
[Fn]} → 0 and thus inf{max{fx(yn), fyn

[Fn]} : n ∈ N} = 0,

a contradiction to (†).
(c) ⇒ (d). Assume (c). Suppose that x is a cluster point of ⟨yn⟩ and fyn

(xn) → 0. For each

k ∈ N, {y ∈ X : fx(y) <
1
k} is an open neighborhood of x and thus there exists a subsequence

⟨ynk
⟩ of ⟨yn⟩ such that fx(ynk

) < 1
k for each k ∈ N. This implies that fx(ynk

) → 0 and thus

max{fx(ynk
), fynk

(xnk
)} → 0. By (wγf ), ⟨xnk

⟩ has a cluster point and so does ⟨xn⟩.
(d) ⇒ (a). Define a g-function g for X by letting g(n, x) = {y ∈ X : fx(y) < 1

n} for each

x ∈ X and n ∈ N. Suppose that yn ∈ g(n, x) and xn ∈ g(n, yn) for all n ∈ N. Then fx(yn) → 0

and fyn(xn) → 0. Since fx(yn) → 0, by (‡), ⟨yn⟩ has a cluster point. Now, since fyn(xn) → 0,

⟨xn⟩ has a cluster point by (‡). Thus X is a wγ-space. 2
Analogously, we can prove the following result for q-spaces.

Proposition 2.4 X is a q-space if and only if for each x ∈ X, there exists fx ∈ U(X) satisfying

(e) and (qf ).

Theorem 2.5 For a space X, the following are equivalent.

(a) X is a quasi-Nagata space.

(b) There exists a g-function g for X such that for each S ∈ SX , if S ∩ g(n, xn) ̸= ∅ for each

n ∈ N, then ⟨xn⟩ has a cluster point.
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(c) For each x ∈ X, there exists fx ∈ U(X) satisfying (e) and (♯): if S ∈ SX and fxn [S] → 0,

then ⟨xn⟩ has a cluster point.

(d) For each x ∈ X, there exists fx ∈ U(X) satisfying (e) and (qNf ).

Proof (a) ⇒ (b). Let g be the quasi-Nagata function for X and S ∈ SX . Suppose that

yn ∈ S ∩ g(n, xn) for each n ∈ N. Then there exists a convergent subsequence ⟨ynk
⟩ of ⟨yn⟩.

Since ynk
∈ g(k, xnk

) for each k ∈ N, ⟨xnk
⟩ has a cluster point and so does ⟨xn⟩.

(b) ⇒ (c). Let g be the g-function in (b) and define fx ∈ U(X) for each x ∈ X as that in

Lemma 2.1.

Suppose that S ∈ SX and fxn [S] → 0. Then there exists a subsequence ⟨xnk
⟩ of ⟨xn⟩ such

that fxnk
[S] < 1

2k
for each k ∈ N. Thus there exists ⟨yk⟩ in S such that fxnk

(yk) <
1
2k

for each

k ∈ N. By Lemma 2.1, yk ∈ g(k, xnk
) and hence S ∩ g(k, xnk

) ̸= ∅ for each k ∈ N. By (b), ⟨xnk
⟩

has a cluster point and so does ⟨xn⟩.
(c) ⇒ (d). Suppose that yn → x and fxn(yn) → 0. Let S = {yn : n ∈ N} ∪ {x}. Then

S ∈ SX and fxn [S] ≤ fxn(yn) for each n ∈ N. From fxn(yn) → 0 it follows that fxn [S] → 0. By

(♯), ⟨xn⟩ has a cluster point.

(d) ⇒ (a). Similar to the proof of (c) ⇒ (a) of Theorem 2.2. 2
Theorem 2.6 X is a kβ-space if and only if for each x ∈ X, there exists fx ∈ U(X) satisfying

(e) and (kβf ).

Proof Necessity is similar to the proof of (b) ⇒ (c) of Theorem 2.5.

Conversely, define a g-function g for X by letting g(n, x) = {y ∈ X : fx(y) < 1
n} for each

x ∈ X and n ∈ N. LetK ∈ CX and yn ∈ K∩g(n, xn) for each n ∈ N. Then fxn [K] ≤ fxn(yn) <
1
n

for each n ∈ N which implies that fxn [K] → 0. By (kβf ), ⟨xn⟩ has a cluster point. Thus X is a

kβ-space. 2
For β-spaces, we have the following.

Proposition 2.7 X is a β-space if and only if for each x ∈ X, there exists fx ∈ U(X) satisfying

(e) and (βf ).

Theorem 2.8 X is a wcc-space if and only if for each x ∈ X, there exists fx ∈ U(X) satisfying

(e) and (wccf ): if ⟨yn⟩ has a cluster point and fxn(yn) < 1
2n for each n ∈ N, then ⟨xn⟩ has a

cluster point.

Proof Let g be the wcc-function for X and define fx ∈ U(X) for each x ∈ X as that in Lemma

2.1.

Suppose that ⟨yn⟩ has a cluster point x and fxn(yn) <
1
2n for each n ∈ N. By Lemma 2.1,

yn ∈ g(n, xn) for each n ∈ N. Thus ⟨xn⟩ has a cluster point.

Conversely, define a g-function g for X by letting g(n, x) = {y ∈ X : fx(y) <
1
2n } for each

x ∈ X and n ∈ N. Suppose that ⟨yn⟩ has a cluster point and yn ∈ g(n, xn) for all n ∈ N. Then

fxn(yn) <
1
2n for all n ∈ N. By (wccf ), ⟨xn⟩ has a cluster point. Thus X is a wcc-space. 2
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Theorem 2.9 X is a wσ-space if and only if for each x ∈ X, there exists fx ∈ U(X) satisfying

(e) and (wσf ).

Proof Let g be the wσ-function for X and define fx ∈ U(X) for each x ∈ X as that in Lemma

2.1.

Suppose that max{fyn(x), fxn(yn)} → 0. Then there exist subsequences ⟨xnk
⟩ of ⟨xn⟩ and

⟨ynk
⟩ of ⟨yn⟩ such that max{fynk

(x), fxnk
(ynk

)} < 1
2k
. By Lemma 2.1, x ∈ g(k, ynk

) and ynk
∈

g(k, xnk
) for each k ∈ N. Thus ⟨xnk

⟩ has a cluster point and so does ⟨xn⟩.
Conversely, define a g-function g for X by letting g(n, x) = {y ∈ X : fx(y) < 1

n} for

each x ∈ X and n ∈ N. Suppose that x ∈ g(n, yn) and yn ∈ g(n, xn) for all n ∈ N. Then

max{fyn(x), fxn(yn)} → 0. By (wσf ), ⟨xn⟩ has a cluster point. Thus X is a wσ-space. 2
Similarly, we can prove the following.

Theorem 2.10 X is a w∆-space if and only if for each x ∈ X, there exists fx ∈ U(X) satisfying

(e) and (w∆f ).

In the sequel, the following notation will be used: (♭) if ⟨yn⟩ has a cluster point and fxn(yn) →
0, then ⟨xn⟩ has a cluster point.

Theorem 2.11 For a space X, the following are equivalent.

(a) X is a wN -space.

(b) For each x ∈ X, there exists fx ∈ U(X) satisfying (e), (qf ) and (♭).

(c) For each x ∈ X, there exists fx ∈ U(X) satisfying (e) and (wNf ).

Proof (a) ⇒ (b). Let g be the wN -function for X and define fx ∈ U(X) for each x ∈ X as

that in Lemma 2.1.

If fx(xn) → 0, then there exists a subsequence ⟨xnk
⟩ of ⟨xn⟩ such that fx(xnk

) < 1
2k

for each

k ∈ N. By Lemma 2.1, xnk
∈ g(k, x) and thus g(k, x)∩ g(k, xnk

) ̸= ∅ for each k ∈ N. Thus ⟨xnk
⟩

has a cluster point and so does ⟨xn⟩.
Suppose that ⟨yn⟩ has a cluster point x and fxn(yn) → 0. Then there exists a subsequence

⟨ynk
⟩ of ⟨yn⟩ such that ynk

∈ g(k, x) for each k ∈ N. Since fxnk
(ynk

) → 0, there exists subse-

quences ⟨xnkj
⟩ of ⟨xnk

⟩ and ⟨ynkj
⟩ of ⟨ynk

⟩ such that fxnkj
(ynkj

) < 1
2j for each j ∈ N. By Lemma

2.1, ynkj
∈ g(j, xnkj

) for each j ∈ N. Since ynkj
∈ g(j, x), we have that g(j, x) ∩ g(j, xnkj

) ̸= ∅.
Thus ⟨xnkj

⟩ has a cluster point and so does ⟨xn⟩.
(b) ⇒ (c). Suppose that max{fx(yn), fxn(yn)} → 0. Then fx(yn) → 0 and fxn(yn) → 0. By

(qf ), ⟨yn⟩ has a cluster point. Then by (♭), ⟨xn⟩ has a cluster point.

(c) ⇒ (a). Similar to the proof of the sufficiency of Theorem 2.9. 2
Lemma 2.12 ([13]) X is an M#-space if and only if there exists a g-function g for X such that

(1) g is a wN -function; (2) if y ∈ g(n, x), then g(n, y) ⊂ g(n, x).

In the following two theorems, we shall use the notation: (U) for each x, y, z ∈ X, fx(z) ≤
max{fx(y), fy(z)}.
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Theorem 2.13 For a space X, the following are equivalent.

(a) X is an M#-space.

(b) For each x ∈ X, there exists fx ∈ U(X) satisfying (e), (qf ), (♭) and (U).

(c) For each x ∈ X, there exists fx ∈ U(X) satisfying (e), (wNf ) and (U).

Proof (a) ⇒ (b). Let g be the g-function in Lemma 2.12 and define fx ∈ U(X) for each x ∈ X

as that in Lemma 2.1. (qf ) and (♭) has been shown in the proof of (a) ⇒ (b) of Theorem 2.11.

By (2) of Lemma 2.12, we can show that fx satisfies (U) (see [13]).

(b) ⇒ (c). Similar to the proof of (b) ⇒ (c) of Theorem 2.11.

(c) ⇒ (a). Define a g-function g for X by letting g(n, x) = {y ∈ X : fx(y) < 1
n} for each

x ∈ X and n ∈ N. With a similar argument to the proof of (c) ⇒ (a) of Theorem 2.11, we can

show that g is a wN -function. From (U) it follows that if y ∈ g(n, x), then g(n, y) ⊂ g(n, x). By

Lemma 2.12, X is an M#-space. 2
For the definition of a Σ#-space [15]. It was shown in [16] that X is a Σ#-space if and

only if there exists a g-function g for X such that (1) g is a β-function; (2) if y ∈ g(n, x), then

g(n, y) ⊂ g(n, x). Thus we have the following.

Theorem 2.14 X is a Σ#-space if and only if for each x ∈ X, there exists fx ∈ U(X) satisfying

(e), (βf ) and (U).

A g-function g for a space X is called symmetric if for each x, y ∈ X and n ∈ N, y ∈ g(n, x)

if and only if x ∈ g(n, y).

Lemma 2.15 For a space X, the following are equivalent.

(a) X is a wM -space.

(b) There exists a symmetric g-function g for X satisfying (wγ).

(c) There exists a g-function g for X satisfying (wγ) and (wcc).

Proof (a) ⇒ (b). Let {Gn}n∈N be a sequence of open covers for a wM -space X and Gn+1 ≺ Gn

for each n ∈ N. For each x ∈ X and n ∈ N, let g(n, x) = st(x,Gn). Then g is the required

g-function for X.

(b) ⇒ (c). Suppose that ⟨yn⟩ has a cluster point x and yn ∈ g(n, xn) for each n ∈ N.
Then there exists a subsequence ⟨ynk

⟩ of ⟨yn⟩ such that ynk
∈ g(k, x) for each k ∈ N. Since

ynk
∈ g(nk, xnk

) ⊂ g(k, xnk
) and g is symmetric, xnk

∈ g(k, ynk
). Now, by (wγ), ⟨xnk

⟩ has a

cluster point and so does ⟨xn⟩.
(c) ⇒ (a). For each n ∈ N, let Gn = {g(n, x) : x ∈ X}. Then {Gn}n∈N is a sequence of open

covers of X.

Suppose that xn ∈ st2(x,Gn) for each n ∈ N. Then there exist yn, zn, wn ∈ X such that

x ∈ g(n, zn), wn ∈ g(n, yn) ∩ g(n, zn) and xn ∈ g(n, yn) for each n ∈ N. Since x ∈ g(n, zn) for

each n ∈ N, by (wcc), ⟨zn⟩ has a cluster point p. Then there is a subsequence ⟨znk
⟩ of ⟨zn⟩ such

that znk
∈ g(k, p) for all k ∈ N. Since wnk

∈ g(k, znk
), by (wγ), ⟨wnk

⟩ has a cluster point. Now,

since wnk
∈ g(k, ynk

), by (wcc), ⟨ynk
⟩ has a cluster point q. Then there is a subsequence ⟨ynkj

⟩
of ⟨ynk

⟩ such that ynkj
∈ g(j, q) for each j ∈ N. Since xnkj

∈ g(nkj , ynkj
) ⊂ g(j, ynkj

) for each
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j ∈ N, by (wcc), ⟨xnkj
⟩ has a cluster point and so does ⟨xn⟩. Therefore X is a wM -space. 2

In the following theorem, the following notations are used.

(S) For each x, y ∈ X, fx(y) = fy(x).

(wMf ) If max{fx(yn), fyn(zn), fxn(zn)} → 0, then ⟨xn⟩ has a cluster point.

Theorem 2.16 For a space X, the following are equivalent.

(a) X is wM -space.

(b) For each x ∈ X, there exists fx ∈ U(X) satisfying (e), (wγf ) and (S).

(c) For each x ∈ X, there exists fx ∈ U(X) satisfying (e), (wγf ) and (♭).

(d) For each x ∈ X, there exists fx ∈ U(X) satisfying (e) and (wMf ).

Proof (a) ⇒ (b). Let g be the g-function in Lemma 2.15 (b) and define fx ∈ U(X) for each

x ∈ X as that in Lemma 2.1. Since g is symmetric, fx satisfies (S).

To show (wγf ), suppose that max{fx(yn), fyn(xn)} → 0. Then there exist subsequences

⟨ynk
⟩ of ⟨yn⟩, ⟨xnk

⟩ of ⟨xn⟩ such that max{fx(ynk
), fynk

(xnk
)} < 1

2k
for each k ∈ N. By Lemma

2.1, ynk
∈ g(k, x) and xnk

∈ g(k, ynk
) for each k ∈ N. By Lemma 2.15 (b), ⟨xnk

⟩ has a cluster

point and so does ⟨xn⟩.
(b)⇒ (c). We only need to show (♭). Suppose that ⟨yn⟩ has a cluster point x and fxn(yn) → 0.

For each n ∈ N, Un = {y ∈ X : fx(y) <
1
n} is an open neighborhood of x. Since x is a cluster

point of ⟨yn⟩, there is a subsequence ⟨ynk
⟩ of ⟨yn⟩ such that ynk

∈ Uk for each k ∈ N. It

follows that fx(ynk
) < 1

k and thus fx(ynk
) → 0. Since fxnk

(ynk
) → 0, by (S), we have that

fynk
(xnk

) → 0. Thus max{fx(ynk
), fynk

(xnk
)} → 0. By (wγf ), ⟨xnk

⟩ has a cluster point and so

does ⟨xn⟩.
(c) ⇒ (d). Suppose that max{fx(yn), fyn(zn), fxn(zn)} → 0. By (wγf ), ⟨zn⟩ has a cluster

point. Now, by (♭), ⟨xn⟩ has a cluster point.

(d) ⇒ (a). Define a g-function g for X by letting g(n, x) = {y ∈ X : fx(y) < 1
n} for each

x ∈ X and n ∈ N. We show that g satisfies (wγ) and (wcc).

Suppose that yn ∈ g(n, x) and xn ∈ g(n, yn) for each n ∈ N. Then max{fx(yn), fyn( xn)} →
0. Let zn = xn for each n ∈ N. Then max{fx(yn), fyn(zn), fxn(zn)} → 0. By (wMf ), ⟨xn⟩ has a
cluster point.

Now suppose that ⟨yn⟩ has a cluster point x and yn ∈ g(n, xn) for all n ∈ N. Then there

exists a subsequence ⟨ynk
⟩ of ⟨yn⟩ such that ynk

∈ g(k, x) for each k ∈ N and thus fx(ynk
) → 0.

Since ynk
∈ g(k, xnk

) for each k ∈ N, we have that fxnk
(ynk

) → 0. Let zk = ynk
for each k ∈ N.

Then max{fx(ynk
), fynk

(zk), fxnk
(zk)} → 0. By (wMf ), ⟨xnk

⟩ has a cluster point and so does

⟨xn⟩.
By Lemma 2.15 (c), X is a wM -space. 2
Consider the following condition imposed on fx: (∗) for each A ⊂ X and x ∈ A, there exists

a sequence ⟨xn⟩ in A such that fxn(x) → 0. It was shown that [14] if fx ∈ U(X) satisfies (e) and

(S), then it also satisfies (∗).

Theorem 2.17 X is a wM -space if and only if for each x ∈ X, there exists fx ∈ U(X)
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satisfying (e), (∗) and (wσf ).

Proof Let X be a wM -space. By Theorem 2.16 (b), for each x ∈ X, there exists fx ∈ U(X)

satisfying (e), (S) and (wγf ). Then fx also satisfies (∗). Since fx satisfies (S) and (wγf ), it also

satisfies (wσf ).

Conversely, for each x ∈ X and n ∈ N, let Vn(x) = {y ∈ X : fx(y) <
1
n}\{y ∈ X : fy(x) ≥ 1

n}.
Then {Vn(x) : n ∈ N} is a decreasing sequence of open neighborhoods of x [14]. For each x ∈ X,

define gx ∈ U(X) as that in Lemma 2.1 (replacing g(n, x) with Vn(x)). Then for each n ∈ N,
gx(y) ≤ 1

2n implies that y ∈ Vn(x), i.e., fx(y) < 1
n and fy(x) < 1

n . We show that gx satisfies

(wMf ).

Suppose that max{gx(yn), gyn(zn), gxn(zn)} → 0. Then there exist subsequences ⟨xnk
⟩ of

⟨xn⟩, ⟨ynk
⟩ of ⟨yn⟩ and ⟨znk

⟩ of ⟨zn⟩ such that max{gx(ynk
), gynk

(znk
), gxnk

(znk
)} < 1

2k
and thus

max{fynk
(x), fznk

(ynk
), fxnk

(znk
)} < 1

k for each k ∈ N. Then max{fynk
(x), fznk

(ynk
)} → 0.

Since fx satisfies (wσ), ⟨znk
⟩ has a cluster point p. Then there exists a subsequence ⟨znkj

⟩ of

⟨znk
⟩ such that znkj

∈ Vj(p) and thus fznkj
(p) < 1

j for each j ∈ N. Since also fxnkj
(znkj

) < 1
j for

each j ∈ N, we have that max{fznkj
(p), fxnkj

(znkj
)} → 0. By (wσ), ⟨xnkj

⟩ has a cluster point

which is also a cluster point of ⟨xn⟩. This implies that gx satisfies (wMf ). By Theorem 2.16 (d),

X is a wM -space. 2
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