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Abstract In this paper, we estimate the Fekete-Szegö functional with k-th root transform for

the inverse of certain classes of analytic univalent functions using quasi-subordination.
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1. Introduction

Let H denote the class of analytic functions in the unit disk ∆ = {z : |z| < 1} on the complex

C. Let A denote the class of all analytic functions f ∈ H of the form

f(z) = z +

∞∑
n=2

anz
n (1.1)

in the open disk ∆ normalized by f(0) = 0 and f ′(0) = 1 and S be in A consisting of univalent

functions in ∆.

Robertson [1] introduced the concept of quasi-subordination. Denote

B = {p(z) ∈ H : |p(z)| < 1, |z| < 1},

B0 = {p(z) ∈ B : p(0) = 0}.

An analytic function f(z) is quasi-subordination to an analytic function g(z), in the open unit

disk ∆ if there exist analytic functions h(z) ∈ B and p(z) ∈ B0 such that f(z) = h(z)g[p(z)]. Then

we write f(z) ≺q g(z). If h(z) ≡ 1, then the quasi-subordination reduces to be subordination.

Also, if p(z) ≡ z, then f(z) = h(z)g(z) and in this case we say that f(z) is majorized by g(z)
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and it is written as f(z) ≪ g(z) in ∆. Consequently, it is clear that the quasi-subordination is

the generalization of subordination as well as majorization.

EI-Ashwah and Kanas [2] introduced and studied the following two subclasses:

S∗
q (γ, φ) = {f ∈ A :

1

γ
(
zf ′(z)

f(z)
− 1) ≺q φ(z)− 1, z ∈ ∆, γ ∈ C\{0}}

and

Cq(γ, φ) = {f ∈ A :
1

γ

zf ′′(z)

f ′(z)
≺q φ(z)− 1, z ∈ ∆, γ ∈ C\{0}},

where

φ(z) = 1 +B1z +B2z
2 +B3z

3 + · · · (B1 > 0). (1.2)

We note that, when h(z) ≡ 1, the classes S∗
q (γ, φ) and Cq(γ, φ) reduce, respectively, to the

familiar classes S∗(γ, φ) and C(γ, φ) of Ma-Minda starlike and convex functions of complex

order γ in ∆ (see [3]). For γ = 1, the classes S∗
q (γ, φ) and Cq(γ, φ) reduce to the classes S∗

q (φ)

and Cq(φ) studied by Mohd and Darus [4].

The Koebe one quarter theorem states the image of ∆ under every function f ∈ S contains

a disk of radius 1
4 . Thus such univalent function has an inverse f−1 which satisfies

f−1(f(z)) = z, z ∈ ∆

and

f(f−1(ω)) = ω, |ω| < r0(f), r0(f) ≥
1

4
.

In fact the inverse function f−1 is given by

f−1(ω) = ω − a2ω
2 + (2a22 − a3)ω

3 − (5a32 − 5a2a3 + a4)ω
4 + · · · = ω +

∞∑
n=2

dnω
n. (1.3)

For a univalent function f−1 of the form (1.3), the k-th root transform is defined by

F (ω) = [f−1(ωk)]
1
k = ω +

∞∑
n=1

bkn+1ω
kn+1. (1.4)

Remark 1.1 Set k = 1. Then the above expression reduces to the functional f−1 itself.

Definition 1.2 ([5]) A function f ∈ A given by (1.1) is said to be in the class Mδ,λ
q (γ, φ),

0 ̸= γ ∈ C, δ ≥ 0, if the following quasi-subordination condition is satisfied

1

γ

[
(1− δ)

zF ′
λ(z)

Fλ(z)
+ δ(1 +

zF ′′
λ (z)

F ′
λ(z)

)− 1
]
≺q φ(z)− 1, z ∈ ∆,

where

Fλ(z) = (1− λ)f(z) + λzf ′(z), 0 ≤ λ ≤ 1.

We note that

(1) Mδ,0
q (γ, φ) = Mδ

q(γ, φ);

(2) Mδ
q(1, φ) = Mδ

q(φ) (see [4, Definition 1.7]);

(3) M0,0
q (γ, φ) = S∗

q (γ, φ) (see [2, Definition 1.1]);

(4) S∗
q (1, φ) = S∗

q (φ) (see [4, Definition 1.1]);
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(5) M1,0
q (γ, φ) = Cq(γ, φ) (see [2, Definition 1.3]);

(6) Cq(1, φ) = Cq(φ) (see [4, Definition 1.3]);

(7) M1,λ
q (γ, φ) = Cq(γ, λ, φ) (see [5]);

(8) M0,λ
q (γ, φ) = Pq(γ, λ, φ) (see [5]);

(9) M0,λ
q (1, φ) = M∗

q(λ, φ) (see [6]).

We note that if h(z) = 1, then the quasi-subordination reduces to the subordination.

(1) Mδ,λ
q (γ, φ) = Mδ,λ(γ, φ);

(2) Mλ,0
q (1, φ) = M(λ, φ) (see [7]);

(3) M0,0
q (1, φ) = S∗(φ) and M1,1

q (1, φ) = C(φ) (see [8]).

Inspired by papers [5, 9–12], we obtain sharp bound for the Fekete-Szegö coefficient func-

tional |b2k+1 − µb2k+1| associated with the k-th root transform of the function f−1 belonging to

Mδ,λ
q (γ, φ). In order to derive our main results, we recall here the following lemmas.

Lemma 1.3 ([13]) Let p(z) = c1z + c2z
2 + c3z

3 + · · · be in the class B0. Then, for t ∈ C

|c2 − tc21| ≤ max{1; |t|}.

The result is sharp for the functions given by p(z) = z2 or p(z) = z.

Lemma 1.4 ([13]) Let h(z) = h0 + h1z + h2z
2 + · · · be in the class B. Then

|h0| ≤ 1 and |hn| ≤ 1− |h0|2 ≤ 1, n > 0.

Lemma 1.5 ([14]) Let p(z) = c1z + c2z
2 + c3z

3 + · · · be in the class B0. Then

|c1| ≤ 1 and |cn| ≤ 1− |c1|2, n ≥ 2.

The result is sharp for the function given by p(z) = z2 or p(z) = z.

2. Main results

Using the above lemmas, we obtain the following conclusions:

Theorem 2.1 If f ∈ Mδ,λ
q (γ, φ) and F is the k-th root transformation of f−1 given by (1.4),

then

|bk+1| ≤
|γ|B1

k(1 + δ)(1 + λ)
,

|b2k+1| ≤
|γ|{B1 +max{B1; |B2|+ |kγ(1+λ)2(1+3δ)−γ(1+2λ)(1+2δ)(3k+1)|B2

1

k(1+δ)2(1+λ)2 }}
2k(1 + 2δ)(1 + 2λ)

and for τ ∈ C

|b2k+1 − τb2k+1| ≤
|γ|{B1 +max{B1; |B2|+ |kγ(1+λ)2(1+3δ)+γ(1+2λ)(1+2δ)(2τ−3k−1)|B2

1

k(1+δ)2(1+λ)2 }}
2k(1 + 2δ)(1 + 2λ)

.

Proof Let f ∈ Mδ,λ
q (γ, φ). Then, in view of Definition 1.2, there exist two analytic functions

h ∈ B and p ∈ B0, such that

1

γ

[
(1− δ)

zF ′
λ(z)

Fλ(z)
+ δ(1 +

zF ′′
λ (z)

F ′
λ(z)

)− 1
]
= h(z)[φ(p(z))− 1]. (2.1)
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Since

1

γ
[(1− δ)

zF ′
λ(z)

Fλ(z)
+ δ(1 +

zF ′′
λ (z)

F ′
λ(z)

)− 1]

=
1

γ
(1 + δ)(1 + λ)a2z +

1

γ
[2(1 + 2δ)(1 + 2λ)a3 − (1 + 3δ)(1 + λ)2a22]z

2 + · · ·

and

h(z)[φ(p(z))− 1] = B1h0c1z + [B1h1c1 +B1h0c2 +B2h0c
2
1]z

2 + · · · ,

it follows from (2.1) that
1

γ
(1 + δ)(1 + λ)a2 = B1h0c1 (2.2)

and
1

γ
[2(1 + 2δ)(1 + 2λ)a3 − (1 + 3δ)(1 + λ)2a22] = B1h1c1 +B1h0c2 +B2h0c

2
1. (2.3)

From (2.2) and (2.3), we get

a2 =
γh0B1c1

(1 + δ)(1 + λ)
(2.4)

and

a3 =
γ

2(1 + 2δ)(1 + 2λ)
[h1B1c1 + h0B1c2 + (h0B2 +

γ(1 + 3δ)h2
0B

2
1

(1 + δ)2
)c21]. (2.5)

For a function f−1 ∈ S given by (1.3), a computation shows that

F (ω) = [f−1(ωk)]
1
k =ω +

d2
k
ωk+1 + (

d3
k

− k − 1

2k2
d22)ω

2k+1 + · · ·

=ω +

∞∑
n=1

bkn+1ω
kn+1. (2.6)

The Eqs. (1.3) and (2.6) yield:

bk+1 = −1

k
a2 (2.7)

and

b2k+1 =
1

2k2
[(3k + 1)a22 − 2ka3]. (2.8)

Using (2.4) and (2.5) in (2.7) and (2.8) gives

bk+1 = − γh0B1c1
k(1 + δ)(1 + λ)

(2.9)

and

b2k+1 = −
γB1{h1c1 + h0[c2 + (B2

B1
+ [kγ(1+λ)2(1+3δ)−γ(1+2δ)(1+2λ)(3k+1)]h0B1

k(1+δ)2(1+λ)2 )c21]}
2k(1 + 2δ)(1 + 2λ)

.

Also for τ ∈ C

b2k+1 − τb2k+1 =− γB1

2k(1 + 2δ)(1 + 2λ)
{h1c1 + h0[c2 − (

−B2

B1
−

[kγ(1 + λ)2(1 + 3δ) + γ(1 + 2δ)(1 + 2λ)(2τ − 3k − 1)]h0B1

k(1 + δ)2(1 + λ)2
)c21]}.
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By Lemmas 1.4 and 1.5, we obtain

|bk+1| ≤
|γ|B1

k(1 + δ)(1 + λ)

and

|b2k+1 − τb2k+1| ≤
|γ|B1

2k(1 + 2δ)(1 + 2λ)
{1 + |c2 − (

−B2

B1
−

[kγ(1 + λ)2(1 + 3δ) + γ(1 + 2δ)(1 + 2λ)(2τ − 3k − 1)]h0B1

k(1 + δ)2(1 + λ)2
)c21|}.

In view of Lemma 1.3, we have

|b2k+1 − τb2k+1| ≤
|γ|{B1 +max{B1; |B2|+ |kγ(1+λ)2(1+3δ)+γ(1+2λ)(1+2δ)(2τ−3k−1)|B2

1

k(1+δ)2(1+λ)2 }}
2k(1 + 2δ)(1 + 2λ)

.

When τ = 0, we have

|b2k+1| ≤
|γ|{B1 +max{B1; |B2|+ |kγ(1+λ)2(1+3δ)−γ(1+2λ)(1+2δ)(3k+1)|B2

1

k(1+δ)2(1+λ)2 }}
2k(1 + 2δ)(1 + 2λ)

2.

By taking h(z) = 1 in the proof of Theorem 2.1, we have the next result.

Theorem 2.2 If f ∈ Mδ,λ(γ, φ) and F is the k-th root transformation of f−1 given by (1.4),

then

|bk+1| ≤
|γ|B1

k(1 + δ)(1 + λ)
,

|b2k+1| ≤
|γ|max{B1; |B2 +

[kγ(1+λ)2(1+3δ)−γ(1+2λ)(1+2δ)(3k+1)]B2
1

k(1+δ)2(1+λ)2 |}
2k(1 + 2δ)(1 + 2λ)

and for τ ∈ C

|b2k+1 − τb2k+1| ≤
|γ|max{B1; |B2 +

[kγ(1+λ)2(1+3δ)+γ(1+2λ)(1+2δ)(2τ−3k−1)]B2
1

k(1+δ)2(1+λ)2 |}
2k(1 + 2δ)(1 + 2λ)

.

Remark 2.3 In the special case when γ = k = 1, λ = 0, δ = α, B1 = 1, B2 = 1
2 , the

|b2k+1 − τb2k+1| in Theorem 2.2 reduces to the one in Theorem 4.1 studied by Sharma et al. [15].

Remark 2.4 In the special case when γ = k = δ = 1, λ = 0, B1 = 2β, B2 = 2β2, the

|b2k+1 − µb2k+1| in Theorem 2.2 reduces to the one in Theorem 6.2 studied by Thomas and

Verma. [16].

3. Corollaries

Setting λ = 0 in Theorem 2.1, we get the following corollary.

Corollary 3.1 If f ∈ Mδ
q(γ, φ) and F is the k-th root transformation of f−1 given by (1.4),

then

|bk+1| ≤
|γ|B1

k(1 + δ)
,
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|b2k+1| ≤
|γ|{B1 +max{B1; |B2|+ |kγ(1+3δ)−γ(1+2δ)(3k+1)|B2

1

k(1+δ)2 }}
2k(1 + 2δ)

and for τ ∈ C

|b2k+1 − τb2k+1| ≤
|γ|{B1 +max{B1; |B2|+ |kγ(1+3δ)+γ(1+2δ)(2τ−3k−1)|B2

1

k(1+δ)2 }}
2k(1 + 2δ)

.

Setting δ = 0 in Theorem 2.1, we get the following corollary.

Corollary 3.2 If f ∈ M0,λ
q (γ, φ) = Pq(γ, λ, φ) and F is the k-th root transformation of f−1

given by (1.4), then

|bk+1| ≤
|γ|B1

k(1 + λ)
,

|b2k+1| ≤
|γ|{B1 +max{B1; |B2|+ |kγ(1+λ)2−γ(1+2λ)(3k+1)|B2

1

k(1+λ)2 }}
2k(1 + 2λ)

and for τ ∈ C

|b2k+1 − τb2k+1| ≤
|γ|{B1 +max{B1; |B2|+ |kγ(1+λ)2+γ(1+2λ)(2τ−3k−1)|B2

1

k(1+λ)2 }}
2k(1 + 2λ)

.

Setting δ = 1 in Theorem 2.1, we get the following corollary.

Corollary 3.3 If f ∈ M1,λ
q (γ, φ) = Cq(γ, λ, φ) and F is the k-th root transformation of f−1

given by (1.4), then

|bk+1| ≤
|γ|B1

2k(1 + λ)
,

|b2k+1| ≤
|γ|{B1 +max{B1; |B2|+ |4kγ(1+λ)2−3γ(1+2λ)(3k+1)|B2

1

4k(1+λ)2 }}
6k(1 + 2λ)

.

and for τ ∈ C

|b2k+1 − τb2k+1| ≤
|γ|{B1 +max{B1; |B2|+ |4kγ(1+λ)2+3γ(1+2λ)(2τ−3k−1)|B2

1

4k(1+λ)2 }}
6k(1 + 2λ)

.
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