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1. Introduction

As the development of singular integral operators [1, 2], their commutators have been well

studied. In [3,4], the authors proved that the commutators generated by the singular integral op-

erators and BMO functions are bounded on Lp(Rn) for 1 < p < ∞. Chanillo [4] proved a similar

result when singular integral operators are replaced by the fractional integral operators. In [5,6],

some singular integral operators with non-smooth kernel were introduced, and the boundedness

for the operators and their commutators was obtained [7–21]. In [22–24], some Toeplitz type

operators related to the singular integral operators and strongly singular integral operators were

introduced, and the boundedness for the operators generated by BMO and Lipschitz functions

was obtained. In this paper, we will study the Toeplitz type operators generated by the fractional

integral and singular integral operators with non-smooth kernel and the BMO functions.

2. Preliminaries

In this paper, we will study some singular integral operators as follows.

Definition 2.1 A family of operators Dt, t > 0 is said to be an “approximation to the identity”
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if, for every t > 0, Dt can be represented by a kernel at(x, y) in the following sense:

Dt(f)(x) =

∫
Rn

at(x, y)f(y)dy

for every f ∈ Lp(Rn) with p ≥ 1, and at(x, y) satisfies:

|at(x, y)| ≤ ht(x, y) = Ct−n/2ρ(|x− y|2/t),

where ρ is a positive, bounded and decreasing function satisfying

lim
r→∞

rn+ϵρ(r2) = 0

for some ϵ > 0.

Definition 2.2 A linear operator T is called a singular integral operator with non-smooth kernel

if T is bounded on L2(Rn) and associated with a kernel K(x, y) such that

T (f)(x) =

∫
Rn

K(x, y)f(y)dy

for every continuous function f with compact support, and for almost all x not in the support

of f .

(1) There exists an “approximation to the identity” {Bt, t > 0} such that TBt has the

associated kernel kt(x, y) and there exist c1, c2 > 0 so that∫
|x−y|>c1t1/2

|K(x, y)− kt(x, y)|dx ≤ c2 for all y ∈ Rn.

(2) There exists an “approximation to the identity” {At, t > 0} such that AtT has the

associated kernel Kt(x, y) which satisfies

|Kt(x, y)| ≤ c4t
−n/2 if |x− y| ≤ c3t

1/2,

and

|K(x, y)−Kt(x, y)| ≤ c4t
δ/2|x− y|−n−δ if |x− y| ≥ c3t

1/2,

for some δ > 0, c3, c4 > 0.

Let b be a locally integrable function on Rn and T be the singular integral operator with

non-smooth kernel. The Toeplitz type operators associated to T are defined by

Tb =
m∑

k=1

T k,1MbT
k,2

and

Sb =

m∑
k=1

(T k,3MbIαT
k,4 + T k,5IαMbT

k,6),

where T k,1 and T k,3 are the singular integral operator with non-smooth kernel T or ±I (the

identity operator), T k,2, T k,4 and T k,6 are the linear operators, T k,5 = ±I, k = 1, . . . ,m,

Mb(f) = bf and Iα is the fractional integral operator (0 < α < n).

Note that the commutator [b, T ](f) = bT (f)− T (bf) is a particular operator of the Toeplitz

type operators Tb and Sb. The Toeplitz type operators are the non-trivial generalizations of the
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commutator. It is well-known that commutators are of great interest in harmonic analysis and

have been widely studied by many authors. The main purpose of this paper is to prove the sharp

maximal inequalities for the Toeplitz type operators Tb and Sb. As the application, we obtain

the boundedness on the Morrey space for the Toeplitz type operators Tb and Sb.

Now, let us introduce some notation. Throughout this paper, Q will denote a cube of Rn

with sides parallel to the axes. For any locally integrable function f , the sharp maximal function

of f is defined by

f#(x) = sup
Q∋x

1

|Q|

∫
Q

|f(y)− fQ|dy,

where, and in what follows, fQ = |Q|−1
∫
Q
f(x)dx. It is well-known that [14]

f#(x) ≈ sup
Q∋x

inf
c∈C

1

|Q|

∫
Q

|f(y)− c|dy.

We say that f belongs to BMO(Rn) if f# belongs to L∞(Rn) and define ∥f∥BMO = ∥f#∥L∞ .

It has been known that [14]

∥f − f2kQ∥BMO ≤ Ck∥f∥BMO.

For 0 < r < ∞, we denote f#
r by

f#
r (x) = [(|f |r)#(x)]1/r.

Let M be the Hardy-Littlewood maximal operator defined by

M(f)(x) = sup
Q∋x

1

|Q|

∫
Q

|f(y)|dy.

For η > 0, let Mη(f) = M(|f |η)1/η. For k ∈ N , we denote by Mk the operator M iterated k

times, i.e., M1(f) = M(f) and

Mk(f) = M(Mk−1(f)) when k ≥ 2.

For 0 < η < n and 1 ≤ r < ∞, set

Mη,r(f)(x) = sup
Q∋x

( 1

|Q|1−rη/n

∫
Q

|f(y)|rdy
)1/r

.

The sharp maximal function MA(f) associated with the “approximation to the identity”

{At, t > 0} is defined by

M#
A (f)(x) = sup

x∈Q

1

|Q|

∫
Q

|f(y)−AtQ(f)(y)|dy,

where tQ = l(Q)2 and l(Q) denotes the side length of Q. For η > 0, let

M#
A,η(f) = M#

A (|f |η)1/η.

Let Φ be a Young function and Φ̃ be the complementary associated to Φ. We denote the

Φ-average by, for a function f ,

∥f∥Φ,Q = inf
{
λ > 0 :

1

|Q|

∫
Q

Φ(
|f(y)|
λ

)dy ≤ 1
}
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and the maximal function associated to Φ by

MΦ(f)(x) = sup
x∈Q

∥f∥Φ,Q.

The Young functions to be used in this paper are Φ(t) = t(1 + log t) and Φ̃(t) = exp(t), and

the corresponding average and maximal functions are denoted by ∥ · ∥L(logL),Q, ML(logL) and

∥ ·∥expL,Q, MexpL. Following [14], we know the generalized Hölder’s inequality and the following

inequalities hold:
1

|Q|

∫
Q

|f(y)g(y)|dy ≤ ∥f∥Φ,Q∥g∥Φ̃,Q,

∥f∥L(logL),Q ≤ ML(logL)(f) ≤ CM2(f),

∥f − fQ∥expL,Q ≤ C∥f∥BMO.

The A1 weight is defined by [14]

A1 = {0 < w ∈ L1
loc(R

n) : M(w)(x) ≤ Cw(x), a.e.}.

The Ap,q weight is defined by [14], for 1 < p ≤ q < ∞,

Ap,q =
{
0 < w ∈ L1

loc(R
n) : sup

Q

( 1

|Q|

∫
Q

w(x)qdx
)1/q( 1

|Q|

∫
Q

w(x)−p/(p−1)dx
)(p−1)/p

< ∞
}
.

Given a non-negative weight function w and 1 ≤ p < ∞, the weighted Lebesgue space

Lp(Rn, w) is the space of functions f such that

∥f∥Lp(w) =
(∫

Rn

|f(x)|pw(x)dx
)1/p

< ∞.

Throughout this paper, φ will denote a positive, increasing function on R+ and there exists

a constant D > 0 such that

φ(2t) ≤ Dφ(t) for t ≥ 0.

Let f be a locally integrable function on Rn. Set, for 0 ≤ η < n and 1 ≤ p < n/η,

∥f∥Lp,η,φ = sup
x∈Rn,d>0

( 1

φ(d)1−pη/n

∫
Q(x,d)

|f(y)|pdy
)1/p

,

where Q(x, d) = {y ∈ Rn : |x− y| < d}. The generalized fractional Morrey space is defined by

Lp,η,φ(Rn) = {f ∈ L1
loc(R

n) : ∥f∥Lp,η,φ < ∞}.

We write Lp,η,φ(Rn) = Lp,φ(Rn) if η = 0, which is the generalized Morrey space. If φ(d) = dδ,

δ > 0, then Lp,φ(Rn) = Lp,δ(Rn), which is the classical Morrey space. If φ(d) = 1, then

Lp,φ(Rn) = Lp(Rn), which is the Lebesgue space [14].

As the Morrey space may be considered as an extension of the Lebesgue space, it is natural

and important to study the boundedness of the operator on the Morrey spaces [14].

3. Theorems and Lemmas

We shall prove the following theorems.



Mk-type sharp estimates and boundedness on Morrey space for Toeplitz type operators 485

Theorem 3.1 Let T be the singular integral operator as Definition 2.2, 0 < r < 1, 1 < s < ∞
and b ∈ BMO(Rn). If T1(g) = 0 for any g ∈ Lu(Rn) (1 < u < ∞), then there exists a constant

C > 0 such that, for any f ∈ C∞
0 (Rn) and x̃ ∈ Rn,

M#
A,r(Tb(f))(x̃) ≤ C∥b∥BMO

m∑
k=1

(M2(T k,2(f))(x̃) +Ms(T
k,2(f))(x̃)).

Theorem 3.2 Let T be the singular integral operator as Definition 2.2, 0 < r < 1, 1 < s < ∞
and b ∈ BMO(Rn). If S1(g) = 0 for any g ∈ Lu(Rn) (1 < u < ∞), then there exists a constant

C > 0 such that, for any f ∈ C∞
0 (Rn) and x̃ ∈ Rn,

M#
A,r(Sb(f))(x̃) ≤ C∥b∥BMO

m∑
k=1

(M2(IαT
k,4(f))(x̃) +Ms(IαT

k,4(f))(x̃) +Mα,s(T
k,6(f))(x̃)).

Theorem 3.3 Let T be the singular integral operator as Definition 2.2, 1 < p < ∞, 0 < D < 2n

and b ∈ BMO(Rn). If T1(g) = 0 for any g ∈ Lu(Rn) (1 < u < ∞) and T k,2 are the bounded

operators on Lp,φ(Rn), k = 1, . . . ,m, then Tb is bounded on Lp,φ(Rn).

Theorem 3.4 Let T be the singular integral operator as Definition 2.2, 0 < D < 2n, 1 < p <

n/α, 1/q = 1/p − α/n and b ∈ BMO(Rn). If S1(g) = 0 for any g ∈ Lu(Rn) (1 < u < ∞) and

T k,4 and T k,6 are the bounded operators on Lp,α,φ(Rn), k = 1, . . . ,m, then Sb is bounded from

Lp,α,φ(Rn) to Lq,φ(Rn).

Corollary 3.5 Let [b, T ](f) = bT (f) − T (bf) be the commutator generated by the singular

integral operator T with non-smooth kernel and b. Then Theorems 3.1–3.4 hold for [b, T ].

Remark 3.6 In Theorems 3.3 and 3.4, the condition 0 < D < 2n is a natural requirement

because of Morrey space, which is a doubling condition about φ.

To prove the theorems, we need the following lemmas.

Lemma 3.7 ( [14]) Let 0 < p < q < ∞ and for any function f ≥ 0. We define that, for

1/r = 1/p− 1/q

∥f∥WLq = sup
λ>0

λ|{x ∈ Rn : f(x) > λ}|1/q, Np,q(f) = sup
E

∥fχE∥Lp/∥χE∥Lr ,

where the sup is taken for all measurable sets E with 0 < |E| < ∞. Then

∥f∥WLq ≤ Np,q(f) ≤ (q/(q − p))1/p∥f∥WLq .

Lemma 3.8 ([14]) We have

1

|Q|

∫
Q

|f(x)g(x)|dx ≤ ∥f∥expL,Q∥g∥L(logL),Q.

Lemma 3.9 ([14]) Let T be the singular integral operator with non-smooth kernel as Definition

2.2. Then T is bounded on Lp(Rn) for 1 < p < ∞ and weak (L1, L1) bounded.

Lemma 3.10 ([14, 15]) Let {At, t > 0} be an “approximation to the identity”. For any γ > 0,
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there exists a constant C > 0 independent of γ such that

|{x ∈ Rn : M(f)(x) > Dλ,M#
A (f)(x) ≤ γλ}| ≤ Cγ|{x ∈ Rn : M(f)(x) > λ}|

for λ > 0, where D is a fixed constant which only depends on n. Thus, for f ∈ Lp(Rn),

1 < p < ∞, 0 < η < ∞ and w ∈ A1,

∥Mη(f)∥Lp(w) ≤ C∥M#
A,η(f)∥Lp(w).

Lemma 3.11 ([14]) Let {At, t > 0} be an “approximation to the identity” and K̃α,t(x, y) be

the kernel of difference operator Iα −AtIα. Then

|K̃α,t(x, y)| ≤ C
t

|x− y|n+2−α
.

Lemma 3.12 ([15]) Assume the following conditions are satisfied:

(i) The holomorphic semigroup e−zL, 0 ≤ | arg(z)| < π/2 − θ is represented by the kernels

az(x, y) which satisfy, for all ν > θ, an upper bound

|az(x, y)| ≤ cνh|z|(x, y)

for x, y ∈ Rn, and 0 ≤ | arg(z)| < π/2 − θ, where ht(x, y) = Ct−n/2s(|x − y|2/t) and s is a

positive, bounded and decreasing function satisfying

lim
r→∞

rn+ϵs(r2) = 0.

(ii) The operator L has a bounded holomorphic functional calculus in L2(Rn), that is, for

all ν > θ and g ∈ H∞(S0
µ), the operator g(L) satisfies

∥g(L)(f)∥L2 ≤ cν∥g∥L∞∥f∥L2 .

Then the operator L has a bounded functional calculus in Lp(Rn) for 1 < p < ∞.

Lemma 3.13 Let w be a non-negative weight function. Then

(I) ∥Ms(f)∥Lp(w) ≤ C∥f∥Lp(w) for w ∈ A1 and 1 ≤ s < p < ∞;

(II) ∥Mα,s(f)∥Lq(wq) ≤ C∥f∥Lp(wp) for 0 < α < n, 1 ≤ s < p < n/α, 1/q = 1/p − α/n and

w ∈ Ap,q;

(III) ∥Iα(f)∥Lq(wq) ≤ C∥f∥Lp(wp) for 0 < α < n, 1 < p < n/α, 1/q = 1/p − α/n and

w ∈ Ap,q.

Proof (I) By w ∈ A1 and [15], we have

Ms(f)(x) ≤ Ms,w(f)(x),

where

Ms,w(f)(x) = sup
Q∋x

( 1

w(Q)

∫
Q

|f(y)|sw(y)dy
)1/s

,

thus, (I) follows from the Lp(w)-boundedness of Ms,w and interpolation theorem [14]. (II) and

(III) see [15]. 2
Lemma 3.14 Let {At, t > 0} be an “approximation to the identity” and 0 < D < 2n. Then
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(a) ∥Mη(f)∥Lp,φ ≤ C∥M#
A,η(f)∥Lp,φ for 1 < p < ∞ and 0 < η < ∞;

(b) ∥Iα(f)∥Lq,φ ≤ C∥f∥Lp,α,φ for 0 < α < n, 1 < p < n/α and 1/q = 1/p− α/n;

(c) ∥Mα,s(f)∥Lq,φ ≤ C∥f∥Lp,α,φ for 0 ≤ α < n, 1 ≤ s < p < n/α and 1/q = 1/p− α/n.

Proof (a) For any cube Q = Q(x0, d) in Rn, we know (M(χQ))
δ ∈ A1 for any cube Q = Q(x, d)

and 0 < δ < 1. Write w = M(χQ), w
δ = (M(χQ))

δ ∈ A1, w
δ satisfies the reverse of Hölder’s

inequality: ( 1

|B|

∫
B

(w(x)δ)rdx
)1/r

≤ C

|B|

∫
B

w(x)δdx

for all cube B and some 1 < r < ∞ (see [14]), thus, taking δ = 1/r, we get

1

|B|

∫
B

w(x)dx ≤ C
( 1

|B|

∫
B

wδ(x)dx
)1/δ

and

M(w) ≤ C(M(wδ))1/δ ≤ C(wδ)1/δ = Cw,

that is w = M(χQ) ∈ A1. Now, noticing that

M(χQ) ≤ 1 and M(χQ)(x) ≤ dn/(|x− x0| − d)n

if x ∈ Qc, we have∫
Q

Mη(f)(y)
pdy =

∫
Rn

Mη(f)(y)
pχQ(y)dy

≤
∫
Rn

Mη(f)(y)
pM(χQ)(y)dy ≤ C

∫
Rn

M#
A,η(f)(y)

pM(χQ)(y)dy

= C
(∫

Q

M#
A,η(f)(y)

pM(χQ)(y)dy +
∞∑
k=0

∫
2k+1Q\2kQ

M#
A,η(f)(y)

pM(χQ)(y)dy
)

≤ C
(∫

Q

M#
A,η(f)(y)

pdy +
∞∑
k=0

∫
2k+1Q\2kQ

M#
A,η(f)(y)

p |Q|
|2k+1Q|

dy
)

≤ C∥M#
A,η(f)∥

p
Lp,φ

∞∑
k=0

2−nkφ(2k+1d)

≤ C∥M#
A,η(f)∥

p
Lp,φ

∞∑
k=0

(2−nD)kφ(d)

≤ C∥M#
A,η(f)∥

p
Lp,φφ(d),

thus

∥Mη(f)∥Lp,φ ≤ C∥M#
A,η(f)∥Lp,φ .

This completes the proof of (a).

For (b) and (c), let Tα = Iα or Mα,s. We know c1 ≤ M(χQ) ≤ 1 for some 0 < c1 ≤ 1, thus( 1

|Q|

∫
Q

M(χQ)(x)
qdx

)1/q

≤ 1

and ( 1

|Q|

∫
Q

M(χQ)(x)
−p/(p−1)dx

)(p−1)/p

≤ C,
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that is M(χQ) ∈ Ap,q for any cube Q = Q(x, d). Now, similar to the proofs of (a), we get(∫
Q

|Tα(f)(y)|qdy
)1/q

≤
(∫

Rn

|Tα(f)(y)M(χQ)(y)|qdy
)1/q

≤ C
(∫

Rn

|f(y)M(χQ)(y)|pdy
)1/p

≤ C
(∫

Q

|f(y)M(χQ)(y)|pdy +
∞∑
k=0

∫
2k+1Q\2kQ

|f(y) |Q|
|2k+1Q|

|pdy
)1/p

≤ C
(
∥f∥pLp,α,φ

∞∑
k=0

2−npkφ(2k+1d)1−pα/n
)1/p

≤ C∥f∥Lp,α,φ

∞∑
k=0

2−nk(Dkφ(d))1/p−α/n

≤ C∥f∥Lp,α,φ

∞∑
k=0

(2−nD1/q)kφ(d)1/q

≤ C∥f∥Lp,α,φφ(d)1/q,

where the last inequality follows from the fact that D1/q ≤ D < 2n if D ≥ 1 or 2−nD1/q < 1 if

D < 1,
∞∑
k=0

(2−nD1/q)k < ∞,

thus

∥Tα(f)∥Lq,φ ≤ C∥f∥Lp,α,φ .

This completes the proof of (b) and (c). 2
4. Proofs of Theorems

Now we prove the theorems in the paper.

Proof of Theorem 3.1 It suffices to prove for f ∈ C∞
0 (Rn), the following inequality holds:( 1

|Q|

∫
Q

|Tb(f)(x)−AtQ(Tb(f))(x)|rdx
)1/r

≤ C∥b∥BMO

m∑
k=1

(M2(T k,2(f))(x̃) +Ms(T
k,2(f))(x̃)),

where tQ = (l(Q))2 and l(Q) denotes the side length of Q. Without loss of generality, we may

assume T k,1 are T (k = 1, . . . ,m). Fix a cube Q = Q(x0, d) and x̃ ∈ Q. By T1(g) = 0, we have

Tb(f)(x) = Tb−b2Q(f)(x) = T(b−b2Q)χ2Q
(f)(x) + T(b−b2Q)χ(2Q)c

(f)(x) = U1(x) + U2(x)

and ( 1

|Q|

∫
Q

|Tb(f)(x)−AtQ(Tb(f))(x)|rdx
)1/r

≤
( C

|Q|

∫
Q

|U1(x)|rdx
)1/r

+( C

|Q|

∫
Q

|AtQ(U1)(x)|rdx
)1/r

+
( C

|Q|

∫
Q

|U2(x)−AtQ(U2)(x)|rdx
)1/r

= I + II + III.
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For I, by Lemmas 3.7–3.9, we obtain( 1

|Q|

∫
Q

|T k,1M(b−b2Q)χ2Q
T k,2(f)(x)|rdx

)1/r

≤ |Q|−1
∥T k,1M(b−b2Q)χ2Q

T k,2(f)χQ∥Lr

|Q|1/r−1

≤ C|Q|−1∥T k,1M(b−b2Q)χ2Q
T k,2(f)∥WL1

≤ C|Q|−1∥M(b−b2Q)χ2Q
T k,2(f)∥L1

≤ C|Q|−1

∫
2Q

|b(x)− b2Q||T k,2(f)(x)|dx

≤ C∥b− b2Q∥expL,2Q∥T k,2(f)∥L(logL),2Q

≤ C∥b∥BMOM
2(T k,2(f))(x̃),

thus

I ≤C
m∑

k=1

( 1

|Q|

∫
Q

|T k,1M(b−bQ)χ2Q
T k,2(f)(x)|rdx

)1/r

≤C∥b∥BMO

m∑
k=1

M2(T k,2(f))(x̃).

For II, by the condition on htQ and notice for x ∈ Q, y ∈ 2j+1Q\2jQ, then

htQ(x, y) ≤ Ct
−n/2
Q ρ(22(j−1)).

By Lemma 3.9, we obtain, for 1 < p < s,

II ≤
m∑

k=1

C

|Q|

∫
Q

|AtQ(T
k,1M(b−b2Q)χ2Q

T k,2(f))(x)|dx

≤
m∑

k=1

C

|Q|

∫
Q

∫
2Q

htQ(x, y)|T k,1M(b−b2Q)χ2Q
T k,2(f)(y)|dydx+

m∑
k=1

C

|Q|

∫
Q

∫
(2Q)c

htQ(x, y)|T k,1M(b−b2Q)χ2Q
T k,2(f)(y)|dydx

≤
m∑

k=1

C

|Q|

∫
Q

∫
2Q

t
−n/2
Q |T k,1M(b−b2Q)χ2Q

T k,2(f)(y)|dydx+

C

m∑
k=1

∞∑
j=1

t
−n/2
Q ρ(22(j−1))(2j l(Q))n

1

|2j+1Q|

∫
Rn

|T k,1M(b−b2Q)χ2Q
T k,2(f)(y)|dy

≤C
m∑

k=1

( 1

|Q|

∫
Rn

|T k,1M(b−b2Q)χ2Q
T k,2(f)(y)|pdy

)1/p

+

C

m∑
k=1

∞∑
j=1

t
−n/2
Q ρ(22(j−1))(2j l(Q))n

( 1

|2j+1Q|

∫
Rn

|T k,1M(b−b2Q)χ2Q
T k,2(f)(y)|pdy

)1/p

≤C
m∑

k=1

( 1

|Q|

∫
Rn

|M(b−b2Q)χ2Q
T k,2(f)(x)|pdx

)1/p

+
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C

m∑
k=1

∞∑
j=1

2jnρ(22(j−1))
( 1

|2j+1Q|

∫
Rn

|M(b−b2Q)χ2Q
T k,2(f)(y)|pdy

)1/p

≤C
m∑

k=1

( 1

|2Q|

∫
2Q

|T k,2(f)(x)|sdx
)1/s( 1

|2Q|

∫
2Q

|b(y)− b2Q|sp/(s−p)dy
)(s−p)/sp

+

C

m∑
k=1

∞∑
j=1

2(j−1)(n+ϵ)ρ(22(j−1))2−j(ϵ+n/p)
( 1

|2Q|

∫
2Q

|T k,2(f)(y)|sdy
)1/s

×

( 1

|2Q|

∫
2Q

|b(y)− b2Q|sp/(s−p)dy
)(s−p)/sp

≤C∥b∥BMO

m∑
k=1

Ms(T
k,2(f))(x̃).

For III, by Lemma 3.11, we get, for 1/s+ 1/s′ = 1,

III ≤ C

|Q|

∫
Q

m∑
k=1

∫
(2Q)c

|b(y)− b2Q||K(x− y)−KtQ(x− y)||T k,2(f)(y)|dy

≤ C

m∑
k=1

∞∑
j=1

∫
2jd≤|y−x0|<2j+1d

|b(y)− b2Q|
l(Q)δ

|x0 − y|n+δ
|T k,2(f)(y)|dy

≤ C
m∑

k=1

∞∑
j=1

2−jδ
( 1

|2j+1Q|

∫
2j+1Q

|b(y)− b2Q|s
′
dy

)1/s′( 1

|2j+1Q|

∫
2j+1Q

|T k,2(f)(y)|sdy
)1/s

≤ C

m∑
k=1

∞∑
j=1

j2−jδ∥b∥BMOMs(T
k,2(f))(x̃)

≤ C∥b∥BMO

m∑
k=1

Ms(T
k,2(f))(x̃).

This completes the proof of Theorem 3.1. 2
Proof of Theorem 3.2 It suffices to prove for f ∈ C∞

0 (Rn), the following inequality holds:( 1

|Q|

∫
Q

|Sb(f)(x)−AtQ(Sb(f))(x)|rdx
)1/r

≤ C∥b∥BMO

m∑
k=1

(M2(IαT
k,4(f))(x̃) +Ms(IαT

k,4(f))(x̃) +Mα,s(T
k,6(f))(x̃)).

Without loss of generality, we may assume T k,3 are T (k = 1, . . . ,m). Fix a cube Q = Q(x0, d)

and x̃ ∈ Q. Write, by T1(g) = 0,

Sb(f)(x) =
m∑

k=1

T k,3MbIαT
k,4(f)(x) +

m∑
k=1

T k,5IαMbT
k,6(f)(x)

=Vb(x) + Vb(x) = Vb−b2Q(x) +Wb−b2Q(x),

where

Vb−b2Q(x) =
m∑

k=1

T k,3M(b−b2Q)χ2Q
IαT

k,4(f)(x) +
m∑

k=1

T k,3M(b−b2Q)χ(2Q)c
IαT

k,4(f)(x)
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=V1(x) + V2(x)

and

Wb−b2Q(x) =
m∑

k=1

T k,5IαM(b−b2Q)χ2Q
T k,6(f)(x) +

m∑
k=1

T k,5IαM(b−b2Q)χ(2Q)c
T k,6(f)(x)

=W1(x) +W2(x).

Then( 1

|Q|

∫
Q

|Sb(f)(x)−AtQ(Sb(f))(x)|rdx
)1/r

≤
( C

|Q|

∫
Q

|V1(x)|rdx
)1/r

+( C

|Q|

∫
Q

|W1(x)|rdx
)1/r

+
( C

|Q|

∫
Q

|AtQ(V1)(x)|rdx
)1/r

+
( C

|Q|

∫
Q

|AtQ(W1)(x)|rdx
)1/r

+( C

|Q|

∫
Q

|V2(x)−AtQ(V2)(x)|rdx
)1/r

+
( C

|Q|

∫
Q

|W2(x)−AtQ(W2)(x)|rdx
)1/r

= I1 + I2 + I3 + I4 + I5 + I6.

By using a similar argument as in the proof of Theorem 3.1, we get, for 1 < v < s with

1/v = 1/u− α/n and 1 < p < s,

I1 ≤C
m∑

k=1

( 1

|Q|

∫
Rn

|T k,3M(b−b2Q)χ2Q
IαT

k,4(f)(x)|rdx
)1/r

≤C
m∑

k=1

|Q|−1
∥T k,3M(b−b2Q)χ2Q

IαT
k,4(f)χQ∥Lr

|Q|1/r−1

≤C

m∑
k=1

|Q|−1∥T k,3M(b−b2Q)χ2Q
IαT

k,4(f)∥WL1

≤C
m∑

k=1

|Q|−1∥M(b−b2Q)χ2Q
IαT

k,4(f)∥L1

≤C
m∑

k=1

|Q|−1

∫
2Q

|b(x)− b2Q||IαT k,4(f)(x)|dx

≤C

m∑
k=1

∥b− b2Q∥expL,2Q∥IαT k,4(f)∥L(logL),2Q

≤C∥b∥BMO

m∑
k=1

M2(IαT
k,4(f))(x̃),

I2 ≤C
m∑

k=1

( 1

|Q|

∫
Rn

|IαM(b−b2Q)χ2Q
T k,6(f)(x)|vdx

)1/v

≤C

m∑
k=1

|Q|−1/v
(∫

2Q

(|b(x)− b2Q||T k,6(f)(x)|)udx
)1/u

≤C
m∑

k=1

( 1

|2Q|1−sα/n

∫
2Q

|T k,6(f)(x)|sdx
)1/s

×
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|2Q|

∫
2Q

|b(x)− b2Q|su/(s−u)dx
)(s−u)/su

≤C∥b∥BMO

m∑
k=1

Mα,s(T
k,6(f))(x̃),

I3 ≤C

m∑
k=1

( 1

|Q|

∫
Rn

|T k,3M(b−b2Q)χ2Q
IαT

k,4(f)(y)|pdy
)1/p

+

C
m∑

k=1

∞∑
j=1

t
−n/2
Q ρ(22(j−1))(2j l(Q))n

( 1

|2j+1Q|

∫
Rn

|T k,3M(b−b2Q)χ2Q
IαT

k,4(f)(y)|pdy
)1/p

≤C

m∑
k=1

( 1

|Q|

∫
Rn

|M(b−b2Q)χ2Q
IαT

k,4(f)(x)|pdx
)1/p

+

C
m∑

k=1

∞∑
j=1

2jnρ(22(j−1))
( 1

|2j+1Q|

∫
Rn

|M(b−b2Q)χ2Q
IαT

k,4(f)(y)|pdy
)1/p

≤C

m∑
k=1

( 1

|2Q|

∫
2Q

|IαT k,4(f)(x)|sdx
)1/s

×

( 1

|2Q|

∫
2Q

|b(y)− b2Q|sp/(s−p)dy
)(s−p)/sp

+

C

m∑
k=1

∞∑
j=1

2(j−1)(n+ϵ)ρ(22(j−1))2−j(ϵ+n/p)
( 1

|2Q|

∫
2Q

|IαT k,4(f)(y)|sdy
)1/s

×

( 1

|2Q|

∫
2Q

|b(y)− b2Q|sp/(s−p)dy
)(s−p)/sp

≤C∥b∥BMO

m∑
k=1

Ms(IαT
k,4(f))(x̃),

I4 ≤C
m∑

k=1

t
−n/2
Q |Q|1−1/v

(∫
Rn

|IαM(b−b2Q)χ2Q
T k,6(f)(y)|vdy

)1/v

+

C

m∑
k=1

∞∑
j=1

t
−n/2
Q ρ(22(j−1))|Q|1−1/v

(∫
Rn

|IαM(b−b2Q)χ2Q
T k,6(f)(y)|vdy

)1/v

≤C
m∑

k=1

|Q|−1/v
(∫

2Q

|(b(y)− b2Q)T
k,6(f)(y)|udy

)1/u

+

C

m∑
k=1

∞∑
j=1

ρ(22(j−1))|Q|−1/v
(∫

2Q

|(b(y)− b2Q)T
k,6(f)(y)|udy

)1/u

≤C
m∑

k=1

( 1

|2Q|1−sα/n

∫
2Q

|T k,6(f)(y)|sdy
)1/s

×

( 1

|2Q|

∫
2Q

|b(y)− b2Q|su/(s−u)dy
)(s−u)/su

+

C
m∑

k=1

∞∑
j=1

2(j−1)(n+ϵ)ρ(22(j−1))2−j(n+ϵ)
( 1

|2Q|1−sα/n

∫
2Q

|T k,6(f)(y)|sdy
)1/s

×
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|2Q|

∫
2Q

|b(y)− b2Q|su/(s−u)dy
)(s−u)/su

≤C∥b∥BMO

m∑
k=1

Mα,s(T
k,6(f))(x̃),

I5 ≤ C

|Q|

∫
Q

m∑
k=1

∫
(2Q)c

|b(y)− b2Q||K(x− y)−KtQ(x− y)||IαT k,4(f)(y)|dy

≤C
m∑

k=1

∞∑
j=1

∫
2jd≤|y−x0|<2j+1d

|b(y)− b2Q|
l(Q)δ

|x0 − y|n+δ
|IαT k,4(f)(y)|dy

≤C

m∑
k=1

∞∑
j=1

2−jδ
( 1

|2j+1Q|

∫
2j+1Q

|b(y)− b2Q|s
′
dy

)1/s′

×

( 1

|2j+1Q|

∫
2j+1Q

|IαT k,4(f)(y)|sdy
)1/s

≤C
m∑

k=1

∞∑
j=1

j2−jδ∥b∥BMOMs(IαT
k,4(f))(x̃)

≤C∥b∥BMO

m∑
k=1

Ms(IαT
k,4(f))(x̃),

I6 ≤
m∑

k=1

C

|Q|

∫
Q

∫
(2Q)c

|b(y)− b2Q||K̃tQ(x− y)||T k,6(f)(y)|dydx

≤C
m∑

k=1

∞∑
j=1

∫
2jd≤|y−x0|<2j+1d

|b(y)− b2Q|
tQ

|x− y|n+2−α
|T k,6(f)(y)|dy

≤C
m∑

k=1

∞∑
j=1

2−2j
( 1

|2j+1Q|

∫
2j+1Q

|b(y)− b2Q|s
′
dy

)1/s′

×

( 1

|2j+1Q|1−sα/n

∫
2j+1Q

|T k,6(f)(y)|sdy
)1/s

≤C
m∑

k=1

∞∑
j=1

j2−2j∥b∥BMOMα,s(T
k,6(f))(x̃)

≤C∥b∥BMO

m∑
k=1

Mα,s(T
k,6(f))(x̃).

This completes the proof of Theorem 3.2. 2
Proof of Theorem 3.3 Choose 1 < s < p in Theorem 3.1, we get, by Lemma 3.15,

∥Tb(f)∥Lp,φ ≤ ∥Mr(Tb(f))∥Lp,φ ≤ C∥M#
A,r(Tb(f))∥Lp,φ

≤ C∥b∥BMO

m∑
k=1

(∥M2(T k,2(f))∥Lp,φ + ∥Ms(T
k,2(f))∥Lp,φ)

≤ C∥b∥BMO

m∑
k=1

∥T k,2(f)∥Lp,φ
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≤ C∥b∥BMO∥f∥Lp,φ .

This completes the proof of Theorem 3.3. 2
Proof of Theorem 3.4 Choose 1 < s < p in Theorem 3.2, we get, by Lemma 3.15,

∥Sb(f)∥Lq,φ ≤ ∥Mr(Sb(f))∥Lq,φ(w) ≤ C∥M#
A,r(Sb(f))∥Lq,φ

≤ C∥b∥BMO

m∑
k=1

(∥M2(IαT
k,4(f))∥Lq,φ + ∥Ms(IαT

k,4(f))∥Lq,φ + ∥Mα,s(T
k,6(f))∥Lq,φ)

≤ C∥b∥BMO

m∑
k=1

(∥IαT k,4(f)∥Lq,φ + ∥IαT k,4(f)∥Lq,φ + ∥T k,6(f)∥Lp,α,φ)

≤ C∥b∥BMO

m∑
k=1

(∥T k,4(f)∥Lp,α,φ + ∥T k,6(f)∥Lp,α,φ)

≤ C∥b∥BMO∥f∥Lp,α,φ .

This completes the proof of Theorem 3.4. 2
5. Applications

In this section we shall apply Theorems 3.1–3.4 of the paper to the holomorphic functional

calculus of linear elliptic operators. First, we review some definitions regarding the holomorphic

functional calculus [5]. Given 0 ≤ θ < π. Define

Sθ = {z ∈ C : | arg(z)| ≤ θ}
∪

{0}

and its interior by S0
θ . Set S̃θ = Sθ \ {0}. A closed operator L on some Banach space E is said

to be of type θ if its spectrum σ(L) ⊂ Sθ and for every ν ∈ (θ, π], there exists a constant Cν

such that

|η|∥(ηI − L)−1∥ ≤ Cν , η /∈ S̃θ.

For ν ∈ (0, π], let

H∞(S0
µ) = {f : S0

θ → C : f is holomorphic and ∥f∥L∞ < ∞},

where ∥f∥L∞ = sup{|f(z)| : z ∈ S0
µ}. Set

Ψ(S0
µ) = {g ∈ H∞(S0

µ) : ∃s > 0, ∃c > 0 such that |g(z)| ≤ c
|z|s

1 + |z|2s
}.

If L is of type θ and g ∈ H∞(S0
µ), we define g(L) ∈ L(E) by

g(L) = −(2πi)−1

∫
Γ

(ηI − L)−1g(η)dη,

where Γ is the contour {ξ = re±iϕ : r ≥ 0} parameterized clockwise around Sθ with θ < ϕ < µ.

If, in addition, L is one-one and has dense range, then, for f ∈ H∞(S0
µ),

f(L) = [h(L)]−1(fh)(L),
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where h(z) = z(1 + z)−2. L is said to have a bounded holomorphic functional calculus on the

sector Sµ, if ∥g(L)∥ ≤ N∥g∥L∞ for some N > 0 and for all g ∈ H∞(S0
µ).

Now, let L be a linear operator on L2(Rn) with θ < π/2 so that (−L) generates a holomorphic

semigroup e−zL, 0 ≤ | arg(z)| < π/2− θ. Applying Lemma 3.12 and Theorems 3.1–3.4, we get

Corollary 5.1 Assume the following conditions are satisfied:

(i) The holomorphic semigroup e−zL, 0 ≤ | arg(z)| < π/2 − θ is represented by the kernels

az(x, y) which satisfy, for all ν > θ, an upper bound

|az(x, y)| ≤ cνh|z|(x, y)

for x, y ∈ Rn, and 0 ≤ | arg(z)| < π/2 − θ, where ht(x, y) = Ct−n/2s(|x − y|2/t) and s is a

positive, bounded and decreasing function satisfying

lim
r→∞

rn+ϵs(r2) = 0.

(ii) The operator L has a bounded holomorphic functional calculus in L2(Rn), that is, for

all ν > θ and g ∈ H∞(S0
µ), the operator g(L) satisfies

∥g(L)(f)∥L2 ≤ cν∥g∥L∞∥f∥L2 .

Let g(L)b be the Toeplitz type operator associated to g(L). Then Theorems 3.1–3.4 hold for

g(L)b.
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