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Abstract In this paper, we consider a class of quasilinear equations involving a nonlinearity

term having critical exponential growth. By using Mountain Pass Theorem, Ekeland’s variational

principle and inequalities of the type Trudinger-Moser, we obtain the existence of at least two

positive weak solutions.
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1. Introduction

This paper concerns with the existence and multiplicity of positive weak solutions for the

following class of quasilinear equations{
−∆Nu+ |u|N−2u−∆N (u2)u = λg(x)|u|q−2u+ h(u), x ∈ Ω,

u = 0, x ∈ ∂Ω,
(1.1)

where Ω ⊂ RN is a bounded domain with smooth boundary, ∆Nu = div(|∇u|N−2∇u) is the

N -Laplacian operator of u, N ≥ 2, 1 < q < N , λ > 0 is a real parameter, g(x) is a positive

function in Lθ(Ω) with θ = N
N−q and function h satisfies the following assumptions:

(h1) There exists α0 > 0 such that

lim
|s|→∞

|h(s)|

eα|s|
2N

N−1

=

{
0, ∀α > α0,

+∞, ∀α < α0.

(h2) lims→0
h(s)

|s|N−2s
= 0.

(h3) There exists µ > 2N such that

0 < µH(s) ≤ sh(s), for all |s| > 0,
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where H(s) =
∫ s

0
h(t)dt.

(h4) There exist constants l > 2N and γ > 0 such that

h(s) ≥ γsl−1, ∀s ≥ 0,

where

γ > max
{ 1

Cl
1

(
8N

m0
)

l−N
N [

µ(l −N)

l(µ− 2N)
]
l−N
N Sl

l(
α0

αN
)

(N−1)(l−N)
N ,

2

Cl
1

(
8N

m0
)

l−2N
2N [

µ(l − 2N)

l(µ− 2N)
]
l−2N
2N S

l
2
l
2

(
α0

αN
)

(N−1)(l−2N)
2N

}
and C1, m0, αN , Sl, S l

2
will be defined later.

In recent years, much attention has been paid to the quasilinear equations of the form

−∆u+ V (x)u−∆(u2)u = g(x, u), x ∈ RN . (1.2)

Solutions of (1.2) are related to the existence of standing waves of the following quasilinear

Schrödinger equations

i
∂ψ

∂t
= −∆ψ +W (x)ψ − κ∆(ρ(|ψ|2))ρ′(|ψ|2)ψ − g(x, ψ), x ∈ RN , (1.3)

where W (x) is a given potential, κ is a real constant, ρ and g are real functions. We would like

to mention that quasilinear equation of the form (1.3) arises in various branches of mathematical

physics and has been derived as models of several physical phenomena corresponding to various

types of nonlinear term ρ. For instance, the case ρ(s) = s was used for the superfluid film

equation in plasma physics by Kurihara [1]. In the case ρ(s) = (1 + s)
1
2 , (1.3) models the

self-channeling of a high-power ultrashort laser in matter [2, 3]. Eq. (1.3) also appears in fluid

mechanics [4], in the theory of Heisenberg ferromagnets and magnons [5], in dissipative quantum

mechanics and in condensed matter theory [6].

Compared to the semilinear case (κ = 0), the quasilinear case (κ ̸= 0) becomes much more

complicated because of the effects of the quasilinear and non-convex term ∆(u2)u. One of the

main difficulties is that there is no suitable space on which the energy functional is well defined

and belongs to C1-class except for N = 1 (see [7]). Thus, such class of quasilinear problems

has been studied extensively in recent years under various hypotheses on the potential and the

nonlinearities, see for example [8–17] and references therein.

Motivated by (1.2), there has been considerable attention paid to the following quasilinear

Schrödinger equation

−∆pu+ V (x)|u|p−2u−∆p(u
2)u = g(x, u), (1.4)

where 1 < p < N , and see for example [18–25] and references therein. Note that for such case of

p < N , the majority of problems treated with variational methods, the maximal possible growth

for the nonlinearity term is polynomial at infinity and by consequence the corresponding energy

functional could be defined in some appropriate Sobolev spaces. But things change when dealing

with the case of p = N . According to the Trudinger-Moser inequality [26, 27], the maximal

growth on the nonlinearities which allows us to treat the problem variationally is the critical
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exponential growth. Wang, Yang and Zhang [28] studied problem (1.4) when p = N , by using

Mountain Pass Theorem, they obtained the existence of a nontrivial solution. More recently,

Chen and Song [29] established the existence of a nonnegative and nontrivial solution using the

Nehari manifold method and the Schwarz symmetrization with some special techniques.

Motivated by works mentioned above, in this paper, we will study the multiplicity of solutions

for problem (1.1) with critical exponential growth. Moreover, as far as we know, there are few

works dealing with such problem. Here, we employ variational methods together with Trudinger-

Moser inequality for bounded domains.

Our main result is stated as follows.

Theorem 1.1 Assume that conditions (h1)–(h4) hold. Then there exists a constant Λ > 0 such

that, for λ ∈ (0,Λ), problem (1.1) has at least two positive weak solutions.

Remark 1.2 When N = 2, the critical exponential growth is defined by (h̃1): There exists

α0 > 0 such that

lim
|s|→∞

|h(s)|
eα|s|4

=

{
0, ∀α > α0,

+∞, ∀α < α0.

(see [30]). So we believe that the exponential growth mentioned in (h1) is the critical growth for

problem (1.1).

To finish this introduction, we state a version of the Trudinger-Moser inequality for bounded

domains and a technical lemma which is essential to carry out the proof of our result.

Proposition 1.3 ([31, Lemma 2.1]) Let Ω ⊂ RN (N ≥ 2) be a bounded domain. Given any

u ∈W 1,N
0 (Ω), we have ∫

Ω

eα|u|
N

N−1
dx <∞, for every α > 0.

Moreover, there exists a positive constant C = C(N, |Ω|) such that

sup
∥u∥

W
1,N
0 (Ω)

≤1

∫
Ω

eα|u|
N

N−1
dx ≤ C, for all α ≤ αN ,

where αN = Nω
1

N−1

N−1 > 0 and ωN−1 is the (N − 1)-dimensional measure of the (N − 1)-sphere.

Proposition 1.4 ([31, Corollary 2.5]) Let Ω be a bounded domain in RN and {un} be a sequence

in W 1,N
0 (Ω) with

lim sup
n→∞

∥un∥N < (
αN

α0
)N−1.

Then there exist α > α0, σ > 1 and C > 0 (independent of n) such that∫
Ω

eσα|un|
N

N−1
dx ≤ C, for all n ≥ n0,

for some n0 sufficiently large.

Throughout the paper, C,C1, C2, . . . denote positive (possibly different) constants.

2. Preliminaries
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Since we intend to find positive weak solutions, we suppose that h(s) = 0 in (−∞, 0).

Consider the Sobolev space X =W 1,N
0 (Ω) endowed with the usual norm

∥u∥ =
(∫

Ω

(|∇u|N + |u|N )dx
) 1

N

, ∀u ∈ X.

Obviously, the embedding X ↪→ Lτ (Ω), 1 ≤ τ <∞ is compact.

We observe that the natural variational functional for (1.1)

Iλ(u) =
1

N

∫
Ω

(1 + 2N−1|u|N )|∇u|Ndx+
1

N

∫
Ω

|u|Ndx− λ

q

∫
Ω

g(x)|u|qdx−
∫
Ω

H(u)dx

is not well defined in X. To overcome this difficulty, we generalize an argument developed

in [18,19]. We make the change of variables v = f−1(u), where f is defined by

f ′(s) =
1

(1 + 2N−1|f(s)|N )
1
N

, s ∈ [0,+∞),

f(s) = −f(−s), s ∈ (−∞, 0].

Then, we collect some properties of f .

Lemma 2.1 The function f(s) enjoys the following properties:

(f1) f is uniquely defined, C2 function and invertible.

(f2) |f ′(s)| ≤ 1, ∀s ∈ R.
(f3) |f(s)| ≤ |s|, ∀s ∈ R.
(f4)

f(s)
s → 1, as s→ 0.

(f5) |f(s)| ≤ 2
1

2N |s| 12 , ∀s ∈ R.
(f6)

1
2f(s) ≤ sf ′(s) ≤ f(s), ∀s ≥ 0.

(f7)
f(s)√

s
→ a > 0, as s→ +∞.

(f8) There exists a positive constant C1 such that

|f(s)| ≥

{
C1|s|, ∀|s| ≤ 1,

C1|s|
1
2 , ∀|s| ≥ 1.

After the change of variables, Iλ(u) can be reduced to the following functional

Jλ(v) =
1

N

∫
Ω

(|∇v|N + |f(v)|N )dx− λ

q

∫
Ω

g(x)|f(v)|qdx−
∫
Ω

H(f(v))dx,

which is C1 on the usual Sobolev space E. Moreover, the critical points of Jλ are the weak

solutions of the following problem{
−∆Nv = −f ′(v)[|f(v)|N−2f(v) + λg(x)|f(v)|q−2f(v) + h(f(v))], x ∈ Ω,

v = 0, x ∈ ∂Ω.
(2.1)

The following proposition establishes a relation between the solutions of (2.1) and those of

(1.1).

Proposition 2.2 If v ∈ X is a critical point of Jλ, then u = f(v) ∈ X is a weak solution of

(1.1).
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Proof The proof is analogous to that proved in [19, Proposition 2.2]. 2
Denote ϕ(s) = −|f(s)|N−2f(s)f ′(s)+h(f(s))f ′(s) and Φ(s) =

∫ s

0
ϕ(t)dt. Then, by (h2), (f4)

and some direct computation, we can easily deduce there exists ϱ < 0 such that

lim
s→0

ϕ(s)

|s|N−2s
= ϱ. (2.2)

In the sequel, we will prove the existence of a weak solution of (1.1) having a positive energy

by using the Mountain Pass Theorem in [32] (or see [33]). Firstly, we check that the functional

Jλ verifies the Mountain Pass geometry.

Lemma 2.3 Assume that (h1)–(h3) hold. Then there exists Λ1 > 0 such that if λ ∈ (0,Λ1), the

functional Jλ satisfies:

(i) There exist η > 0 and ρ > 0 such that Jλ(v) ≥ η, for ∥v∥ = ρ.

(ii) There exists e ∈ X with ∥e∥ > ρ such that Jλ(e) < 0.

Proof First, we show that Jλ satisfies (i). By (2.2), there exist ϵ > 0, δ > 0 such that

Φ(v) ≤ ϵ+ ϱ

N
|v|N , |v| ≤ δ.

On the other hand, by (h1), (f2) and (f3), for ν > N and α > α0, there exist β > α and Cϵ > 0

such that Φ(v) ≤ Cϵ|v|νeβ|v|
N

N−1
, |v| ≥ δ. These two estimates yield

Φ(v) ≤ ϵ+ ϱ

N
|v|N + Cϵ|v|νeβ|v|

N
N−1

.

Fix M > 0 verifying βM
N

N−1 < αN and choose σ1 > 1 (sufficiently close to 1) such that

σ1βM
N

N−1 < αN and σ2 > 1 such that 1
σ1

+ 1
σ2

= 1. Then it follows from (f3), the Hölder

inequality, the Sobolev embedding and Proposition 1.3 that

Jλ(v) =
1

N

∫
Ω

|∇v|Ndx− λ

q

∫
Ω

g(x)|f(v)|qdx−
∫
Ω

Φ(v)dx

≥ 1

N

∫
Ω

|∇v|Ndx− ϵ+ ϱ

N

∫
Ω

|v|Ndx− λ

q
|g|θ|v|qN − Cϵ

(∫
Ω

|v|νσ2dx
) 1

σ2
(∫

Ω

eβσ1|v|
N

N−1
dx

) 1
σ1

≥ 1

N

∫
Ω

|∇v|Ndx− ϵ+ ϱ

N

∫
Ω

|v|Ndx− λ

q
|g|θ∥v∥q − C∥v∥ν

(∫
Ω

eβσ1M
N

N−1 (
|v|
∥v∥ )

N
N−1

dx
) 1

σ1

≥min{ 1

N
,−ϵ+ ϱ

N
}∥v∥N − λ

q
|g|θ∥v∥q − C∥v∥ν .

Choosing ϵ sufficiently small and Λ1 = aqρN−q

2|g|θ with a = min{ 1
N ,−

ϵ+ϱ
N }, for each λ ∈ (0,Λ1) and

∥v∥ = ρ, we deduce

Jλ(v) ≥ aρN − λ

q
|g|θρq − Cρν ≥ a

2
ρN − Cρν .

Thus, if we choose ρ ∈ (0,M) small enough, there exists η > 0 such that Jλ(v) ≥ η for ∥v∥ = ρ,

which verifies (i).

In order to prove (ii), we fix w ∈ X\{0} and choose t > 1 such that |tw| ≥ 1. Applying (h3)

and (f8), there exist positive constants C, D > 0 such that

H(f(tw)) ≥ C|f(tw)|µ −D ≥ Ct
µ
2 |w|

µ
2 −D.
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Then

Jλ(tw) =
tN

N

∫
Ω

|∇w|Ndx+
1

N

∫
Ω

|f(tw)|Ndx− λ

q

∫
Ω

g(x)|f(tw)|qdx−
∫
Ω

H(f(tw))dx

≤ t
N

N

∫
Ω

(|∇w|N + |w|N )dx− Ct
µ
2

∫
Ω

|w|
µ
2 dx+D|Ω|,

where |Ω| denotes the measure of Ω. Since µ > 2N , Jλ(tw) → −∞ as t → +∞. Taking e = tw

with t > 1 sufficiently large, we conclude (ii). 2
By a version of the Mountain Pass Theorem found in [32], there exists a Palais Smale sequence

{vn} ⊂ X such that

Jλ(vn) → c and J ′
λ(vn) → 0, as n→ +∞, (2.3)

where c = infγ∈Γ maxt∈[0,1] Jλ(γ(t)) with

Γ = {γ ∈ C([0, 1], X)|γ(0) = 0, γ(1) = e}.

Then we have the following results.

Lemma 2.4 Assume that (h1)–(h4) hold. Then the mountain level c satisfies

c <
m0

8N
(
1

N
− 2

µ
)(
αN

α0
)N−1.

Proof Fix ω ∈ E and define

S =
(
∫
Ω
(|∇ω|N + |ω|N )dx)

1
N

(
∫
Ω
|ω|pdx)

1
p

, p = l or
l

2
.

Case 1. If |tω| ≤ 1, by the definition of c and (h4), (f3) and (f8), we have

c ≤max
t≥0

Jλ(tω)

=max
t≥0

{ tN
N

∫
Ω

|∇ω|Ndx+
1

N

∫
Ω

|f(tω)|Ndx− λ

q

∫
Ω

g(x)|f(tω)|qdx−
∫
Ω

H(f(tω))dx
}

≤max
t≥0

{ tN
N

∫
Ω

(|∇ω|N + |ω|N )dx− γCl
1t

l

l

∫
Ω

|ω|ldx
}
.

Dividing by (
∫
Ω
|ω|ldx)N

l and by a direct computation, one has

c

(
∫
Ω
|ω|ldx)N

l

≤max
t≥0

{ tN
N
SN
l − γCl

1t
l

l
(

∫
Ω

|ω|ldx)
l−N

l

}
=(

1

N
− 1

l
)(γCl

1)
−N
l−N S

lN
l−N

l (

∫
Ω

|ω|ldx)
−N
l ,

which leads to

c ≤ (
1

N
− 1

l
)(γCl

1)
−N
l−N S

lN
l−N

l . (2.4)

Case 2. If |tω| > 1, using the same arguments, we can easily get

c ≤ max
t≥0

{ tN
N

∫
Ω

(|∇ω|N + |ω|N )dx− γCl
1t

l
2

l

∫
Ω

|ω| l
2 dx

}
.
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Dividing by (
∫
Ω
|ω| l

2 dx)
2N
l , we have

c

(
∫
Ω
|ω| l

2 dx)
2N
l

≤max
t≥0

{ tN
N
SN

l
2
− γCl

1t
l
2

l

(∫
Ω

|ω| l
2 dx

) l−2N
l

}
=2

l
l−2N (

1

2N
− 1

l
)(γCl

1)
−2N
l−2N S

lN
l−2N
l
2

(∫
Ω

|ω| l
2 dx

)−2N
l

,

which implies

c ≤ 2
l

l−2N (
1

2N
− 1

l
)(γCl

1)
−2N
l−2N S

lN
l−2N
l
2

. (2.5)

Thus, it follows from (h4), (2.4) and (2.5) that

c <
m0

8N
(
1

N
− 2

µ
)(
αN

α0
)N−1,

which completes the proof. 2
Lemma 2.5 Let {vn} ⊂ E be a (PS)c-sequence associated with Jλ. Then there exists Λ2 > 0

such that if λ ∈ (0,Λ2), there holds

lim sup
n→∞

∥vn∥N <
1

2
(
αN

α0
)N−1.

Proof Since {vn} satisfies (2.3), for any ϑ ∈ X, we have

Jλ(vn)−
1

µ
⟨J ′

λ(vn), ϑ⟩ ≤ c+ on(1) + on(1)∥vn∥.

On the other hand, choosing ϑ = f(vn)
f ′(vn)

and then we deduce from the Hölder inequality, (h3)

and (f3) that

Jλ(vn)−
1

µ
⟨J ′

λ(vn), ϑ⟩ =
1

N

∫
Ω

|∇vn|Ndx− 1

µ

∫
Ω

(1 +
2N−1|f(vn)|N

1 + 2N−1|f(vn)|N
)|∇vn|Ndx+

(
1

N
− 1

µ
)

∫
Ω

|f(vn)|Ndx− (
1

q
− 1

µ
)λ

∫
Ω

g(x)|f(vn)|qdx+∫
Ω

[
1

µ
h(f(vn))f(vn)−H(f(vn))]dx

≥ (
1

N
− 2

µ
)

∫
Ω

|∇vn|Ndx+ (
1

N
− 1

µ
)

∫
Ω

|f(vn)|Ndx− (
1

q
− 1

µ
)λ|g|θ∥vn∥q

≥ (
1

N
− 2

µ
)

∫
Ω

(|∇vn|N + |f(vn)|N )dx− (
1

q
− 1

µ
)λ|g|θ∥vn∥q.

Then

(
1

N
− 2

µ
)

∫
Ω

(|∇vn|N + |f(vn)|N )dx

≤ c+ (
1

q
− 1

µ
)λ|g|θ∥vn∥q + on(1) + on(1)∥vn∥

≤ c+ ϵ(
1

q
− 1

µ
)∥vn∥N + Cϵ(

1

q
− 1

µ
)λθ|g|θθ + on(1). (2.6)

Next, we claim that there exists m0 > 0 such that∫
Ω

(|∇vn|N + |f(vn)|N )dx ≥ m0∥vn∥N . (2.7)
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In fact, by (h3), there exists C2 > 0 such that H(s) ≥ C2s
2N for |s| ≥ 1. Then we deduce from

(f8) that H(f(s)) ≥ C2N
1 C2|s|N , for |s| ≥ 1, and so∫

Ω

|vn|Ndx =

∫
{|vn|≤1}

|vn|Ndx+

∫
{|vn|≥1}

|vn|Ndx

≤ 1

CN
1

∫
Ω

|f(vn)|Ndx+
1

C2N
1 C2

∫
Ω

H(f(vn))dx

=
1

CN
1

∫
Ω

|f(vn)|Ndx+
1

C2N
1 C2

[ 1

N

∫
Ω

(|∇vn|N + |f(vn)|N )dx−

λ

q

∫
Ω

g(x)|f(vn)|qdx− c+ on(1)
]

≤C
∫
Ω

(|∇vn|N + |f(vn)|N )dx.

This concludes (2.7).

It follows from (2.6) and (2.7) that

(
1

N
− 2

µ
)m0∥vn∥N ≤ c+ ϵ(

1

q
− 1

µ
)∥vn∥N + Cϵ(

1

q
− 1

µ
)λθ|g|θθ + on(1)

and then

[(
1

N
− 2

µ
)m0 − ϵ(

1

q
− 1

µ
)]∥vn∥N ≤ c+ Cϵ(

1

q
− 1

µ
)λθ|g|θθ + on(1).

Choosing ϵ small enough, we have

m0

2
(
1

N
− 2

µ
)lim sup

n→∞
∥vn∥N ≤ c+ Cϵ(

1

q
− 1

µ
)λθ|g|θθ,

which leads to

lim sup
n→∞

∥vn∥N ≤ c
m0

2 ( 1
N − 2

µ )
+ C3λ

θ,

where

C3 =
Cϵ(

1
q − 1

µ )|g|
θ
θ

m0

2 ( 1
N − 2

µ )
.

By Lemma 2.3 and let Λ2 = ( 1
4C3

)
1
θ (αN

α0
)

N−1
θ , for any λ ∈ (0,Λ2), we can easily check that

lim supn→∞ ∥vn∥N < 1
2 (

αN

α0
)N−1. This completes the proof of the lemma. 2

Lemma 2.6 Assume that (h1)–(h4) hold. Then the functional Jλ(v) satisfies the (PS)c condition

for c ∈ (0, m0

8N
( 1
N − 2

µ )(
αN

α0
)N−1).

Proof Since {vn} is bounded in X, going if necessary to a subsequence, we can assume that

vn ⇀ v1 in X,

vn → v1 in Lσ(Ω), 1 ≤ σ < +∞,

vn → v1 a.e. in Ω.

First, we claim that there exists C4 > 0 such that∫
Ω

|∇(vn − v1)|Ndx+

∫
Ω

(|f(vn)|N−2f(vn)f
′(vn)− |f(v1)|N−2f(v1)f ′(v1))(vn − v1)dx
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≥ C4∥vn − v1∥N . (2.8)

In fact, we may assume that vn ̸= v1 (otherwise, the conclusion is trivial). Similar to the idea

of [18, Lemma 2.7], we can easily check that the function |f(s)|N is convex and then∫
Ω

(|f(vn)|N−2f(vn)f
′(vn)− |f(v1)|N−2f(v1)f ′(v1))(vn − v1)dx ≥ 0.

Thus, we deduce from the Poincáre inequality that there exists C4 > 0 such that (2.8) holds.

Now, we claim

lim
n→∞

∫
Ω

g(x)|f(vn)|q−2f(vn)f
′(vn)(vn − v1)dx→ 0 (2.9)

and

lim
n→∞

∫
Ω

h(f(vn))f
′(vn)(vn − v1)dx→ 0. (2.10)

Applying (f3) and the Hölder inequality, we get∣∣∣ ∫
Ω

g(x)|f(vn)|q−2f(vn)f
′(vn)(vn − v1)dx

∣∣∣
≤

∫
Ω

g(x)|vn|q−1|vn − v1|dx

≤
(∫

Ω

|g(x)|
N

N−q dx
)N−q

N
(∫

Ω

|vn|Ndx
) q−1

N
(∫

Ω

|vn − v1|Ndx
) 1

N

≤ |g|θ∥vn∥q−1|vn − v1|N → 0, as n→ ∞,

which proves (2.9).

It follows from (h1) and (h2) that for α > α0,∣∣∣ ∫
Ω

h(f(vn))f
′(vn)(vn − v1)dx

∣∣∣ ≤ ∫
Ω

|f(vn)|N−1f ′(vn)|vn − v1|dx+∫
Ω

eα|f(vn)|
2N

N−1
f ′(vn)|vn − v1|dx.

By (f2), (f3) and the Hölder inequality, we have∫
Ω

|f(vn)|N−1f ′(vn)|vn − v1|dx ≤
∫
Ω

|vn|N−1|vn − v1|dx

≤
(∫

Ω

|vn|Ndx
)N−1

N
(∫

Ω

|vn − v1|Ndx
) 1

N

≤ C∥vn∥N−1|vn − v1|N → 0, as n→ ∞.

On the other hand, we deduce from (f2) and (f5) that∫
Ω

eα|f(vn)|
2N

N−1
f ′(vn)|vn − v1|dx ≤

∫
Ω

eα(2
1
N |vn|)

N
N−1 |vn − v1|dx.

Applying Lemma 2.5 and Proposition 1.4, there exist σ̃1 > 1 and C > 0 such that∫
Ω

eα(2
1
N |vn|)

N
N−1 |vn − v1|dx ≤

(∫
Ω

eσ̃1α(2
1
N |vn|)

N
N−1

dx
) 1

σ̃1
(∫

Ω

|vn − v1|σ̃2dx
) 1

σ̃2

≤C|vn − v1|σ̃2
→ 0, as n→ ∞,
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where σ̃2 = σ̃1

σ̃1−1 . Then (2.10) holds.

Therefore, by (2.9), (2.10) and the fact vn ⇀ v in X, we have

on(1) = ⟨J ′
λ(vn)− J ′

λ(v
1), vn − v1⟩

=

∫
Ω

(|∇vn|N−2∇vn − |∇v1|N−2∇v1)∇(vn − v1)dx+∫
Ω

(|f(vn)|N−2f(vn)f
′(vn)− |f(v1)|N−2f(v1)f ′(v1))(vn − v1)dx+ on(1)

≥ CN

∫
Ω

|∇(vn − v1)|Ndx+∫
Ω

(|f(vn)|N−2f(vn)f
′(vn)− |f(v1)|N−2f(v1)f ′(v1))(vn − v1)dx

≥ C∥vn − v1∥N + on(1),

where we have used the standard inequality

⟨|x|N−2x− |y|N−2y, x− y⟩ ≥ CN |x− y|N , N ≥ 2.

This implies that ∥vn − v1∥ → 0 as n→ ∞. Thus, the proof is completed. 2
3. Proof of Theorem 1.1

In this section, we apply the Mountain Pass Theorem and the Ekeland’s variational principle

to prove the existence of two positive weak solutions for (1.1).

Lemma 3.1 Assume that (h1)–(h4) hold. Then there exists Λ3 > 0 such that if λ ∈ (0,Λ3),

problem (2.1) admits a weak solution v1 satisfying Jλ(v
1) > 0.

Proof Let Λ3 = min{Λ1,Λ2}. Then the proof follows directly from Lemmas 2.3, 2.6 and the

Mountain Pass Theorem in [32] (or see [33]). 2
In the following, we prove the existence of the second solution v2 different from v1.

Lemma 3.2 Assume that (h1)–(h4) hold. Then there exists Λ4 > 0 such that if λ ∈ (0,Λ4), the

functional Jλ(v) satisfies the (PS)c0 condition with c0 ≤ 0.

Proof Fix c0 ≤ 0 and suppose that {vn} ⊂ X satisfies

Jλ(vn) → c0, J ′
λ(vn) → 0, as n→ ∞. (3.1)

Proceeding as in (2.6), we derive

(
1

N
− 2

µ
)

∫
Ω

(|∇vn|N + |f(vn)|N )dx ≤ λ(
1

q
− 1

µ
)|g|θ∥vn∥q + c0 + on(1)

and then

(
1

N
− 2

µ
)

∫
Ω

|∇vn|Ndx ≤ λ(
1

q
− 1

µ
)|g|θ∥vn∥q + c0 + on(1).
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On the other hand, using the Poincáre inequality, there exists C5 > 0 such that

(
1

N
− 2

µ
)

∫
Ω

|∇vn|Ndx ≥1

2
(
1

N
− 2

µ
)

∫
Ω

|∇vn|Ndx+
1

2C5
(
1

N
− 2

µ
)

∫
Ω

|vn|Ndx

≥1

2
(
1

N
− 2

µ
)min{1, 1

C5
}∥vn∥N .

Then for a subsequence, we have

[
1

2
(
1

N
− 2

µ
)min{1, 1

C5
}lim sup

n→∞
∥vn∥N−q − λ(

1

q
− 1

µ
)|g|θ]lim sup

n→∞
∥vn∥q ≤ 0.

Thus,

lim sup
n→∞

∥vn∥N ≤
[ λ( 1q − 1

µ )|g|θ
1
2 (

1
N − 2

µ )min{1, 1
C5

}
] N

N−q .

Choosing Λ4 =
q(µ−2N)min{1, 1

C5
}

2
2N−q

N N(µ−q)|g|θ
(αN

α0
)

(N−1)(N−q)
N , for λ ∈ (0,Λ4), we obtain

lim sup
n→∞

∥vn∥N <
1

2
(
αN

α0
)N−1.

Then, by using the same arguments as Lemam 2.6, we prove that Jλ satisfies the (PS)c0 condition

for c0 ≤ 0. 2
Lemma 3.3 Assume that (h1)–(h4) hold. Then there exists Λ5 > 0 such that if λ ∈ (0,Λ5),

problem (2.1) admits a weak solution v2 satisfying Jλ(v
2) < 0.

Proof Choosing a function φ ∈ X\{0} and for t > 0 small enough, we infer from (h3), (f3) and

(f8) that

Jλ(tφ) =
tN

N

∫
Ω

|∇φ|Ndx+
1

N

∫
Ω

|f(tφ)|Ndx− λ

q

∫
Ω

g(x)|f(tφ)|qdx−
∫
Ω

H(f(tφ))dx

≤ t
N

N

∫
Ω

|∇φ|Ndx+
1

N

∫
Ω

|f(tφ)|Ndx− λ

q

∫
Ω

g(x)|f(tφ)|qdx

≤ t
N

N
∥φ∥N − λC1t

q

q

∫
Ω

g(x)|φ|qdx.

Since N > q, Jλ(tφ) < 0 for t > 0 sufficiently small. Thus

c0 = inf
v∈Bρ

Jλ(v) < 0 and inf
v∈∂Bρ

Jλ(v) > 0, (3.2)

where ρ > 0 is given by Lemma 2.3 (i) and Bρ is an open ball in X centered at the origin with

radius ρ. Let εn → 0 be such that

0 < εn < inf
v∈∂Bρ

Jλ(v)− inf
v∈Bρ

Jλ(v). (3.3)

By Ekeland’s variational principle, there exists {vn} ⊂ Bρ such that

c0 ≤ Jλ(vn) ≤ c0 + εn (3.4)

and

Jλ(vn) < Jλ(v) + εn∥vn − v∥, ∀v ∈ Bρ, v ̸= vn. (3.5)
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Then it follows from (3.2)–(3.4) that

Jλ(vn) ≤ c0 + εn ≤ inf
v∈Bρ

Jλ(v) + εn < inf
v∈∂Bρ

Jλ(v),

which leads to {vn} ⊂ Bρ.

Let ϖ ∈ B1 and consider the sequence vn = un+ tϖ for t > 0 small enough. Then we deduce

from (3.5) that
1

t
[Jλ(vn + tϖ)− Jλ(vn)] ≥ −εn∥ϖ∥. (3.6)

Passing to the limit as t→ 0+, (3.6) implies that

J ′
λ(vn)ϖ ≥ −εn∥ϖ∥, ∀ϖ ∈ B1.

Replacing ϖ in (3.6) by −ϖ, we have

J ′
λ(vn)ϖ ≤ εn∥ϖ∥, ∀ϖ ∈ B1.

Then

|J ′
λ(vn)ϖ| ≤ εn, ∀ϖ ∈ B1

and so

∥J ′
λ(vn)∥ → 0, as n→ ∞.

Hence, there exists a sequence {vn} ⊂ Bρ such that Jλ(vn) → c0 < 0 and J ′
λ(vn) → 0, as n→ ∞.

Applying Lemma 3.2, which converges strongly to a function v2 ∈ X. In this case, J ′
λ(v

2) = 0

and Jλ(v
2) = c0 < 0, which completes the proof. 2

Proof of Theorem 1.1 It follows from Lemmas 3.1, 3.3 and Proposition 2.2 that problem

(1.1) has at least two weak solutions u1 = f(v1), u2 = f(v2). By using a simple argument

as [34], we can assume that u1 ≥ 0 and u2 ≥ 0 in Ω. Furthermore, as a consequence of Harnack’s

inequality [35], we have u1 > 0 and u2 > 0 in Ω. Thus, we finish the proof. 2
Acknowledgements We thank the referees for their time and comments.
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