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Abstract In this paper, we characterize the reducing subspaces for Toeplitz operator T =

Mzk +M∗
zl , where Mzk , Mzl are the multiplication operators on weighted Hardy space H2

ω(D2),

k = (k1, k2), l = (l1, l2), k ̸= l and ki, li are positive integers for i = 1, 2. It is proved that

the reducing subspace for T generated by zm is minimal under proper assumptions on ω. The

Bergman space and weighted Dirichlet spaces Dδ(D2) (δ > 0) are weighted Hardy spaces which

satisfy these assumptions. As an application, we describe the reducing subspaces for Tzk+z̄l on

Dδ(D2) (δ > 0), which generalized the results on Bergman space over bidisk.
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1. Introduction

Let S ∈ B(H) be a bounded linear operator on a Hilbert space H. A closed subspace M
is said to be a reducing subspace for S, if SM ⊆ M and SM⊥ ⊆ M⊥. Or equivalently, M is

a reducing subspace for S if and only if SPM = PMS, where PM is the orthogonal projection

from H onto M. The space M is called minimal if there is no nonzero reducing subspace N
for S which is contained in M properly. In addition, the operator S is irreducible if the only

reducing subspaces for S are {0} and the whole space H.

Stessin and Zhu [1] completely characterized the reducing subspaces for weighted unilateral

shift operators of finite multiplicity. Consequently, multiplication operator MzN (N is a positive

integer) on Bergman space and Dirichlet space over disk has exactly 2N reducing subspaces. For

a finite Blaschke product B, a lot of remarkable progress had been made on reducing subspaces

for multiplication operator MB on the Bergman space over unit disk [1–7]. Some of them are

generalized to the Dirichlet space [8–10] and the derivative Hardy space [11].

A naturel theme is to consider the similar question over polydisk. If φ is a polynomial, the

reducing subspaces for Mφ on the Bergman space and Dirichlet spaces over bidisk are considered,

such as φ = zNwM , αzN + βwM with N,M ≥ 0, α, β ∈ C (see [12–18]). Guo and Wang [19]

generalized some of above results in view of graded structure for a Hilbert module. Recently,
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Guo and Huang [20] gave a survey on recent developments concerning commutants, reducing

subspaces and von Neumann algebras associated with multiplication operators that are defined

on both Hardy space and Bergman spaces over bounded domains in Cd.

Since MzN ,MwM are operator-weighted shifts on weighted Hardy space, Gu [21, 22] char-

acterized the reducing subspaces and common reducing subspaces of operator-weighted shift-

s, and provided uniform proofs of some results from [12, 13]. In the case that φ is a non-

analytic function, the reducing subspaces for Tzkwl and TzN+wM on Bergman space over bidisk

are characterized [23, 24]. Under proper assumptions about the weight coefficients ω, these re-

sults can also be generalized to operator-weighted shifts on weighted Hardy space [25, 26]. For

φ(z, w) = zk1wk2 + zl1wl2 , Deng et al. [27] obtained a uniform characterization of the reducing

subspaces for Tφ on Bergman space over the bidisk, including the known cases that φ = zNwM

and φ = zN +wM . In this paper, we mainly consider the reducing subspaces for Tφ on weighted

Hardy space H2
ω(D2), where H2

ω(D2) is defined by

H2
ω(D2) =

{
f(z) =

∑
n∈Z2

+

fnz
n : fn ∈ C, ∥f∥2 =

∑
n∈Z2

+

ωn|fn|2 < ∞
}
,

ωn = ωn1ωn2 , ∀n = (n1, n2) ∈ Z2
+, and ω = {ωj , j ≥ 0} is a sequence of positive numbers such

that

lim inf
j→+∞

(
√
ωj)

1/j ≥ 1.

More details can be seen in [25]. Throughout this paper, let k = (k1, k2), l = (l1, l2) where k ̸= l

and ki, li are positive integers for i = 1, 2. By computation, we get {zn}∞n=1 are the eigenvectors

of T ∗
φTφ − TφT

∗
φ. Set

(T ∗
φTφ − TφT

∗
φ)z

n = λnz
n and Qn(p) = λn+p(k+l), ∀p ∈ N.

Denote Qn(p) ≡ 0 if Qn(p) = 0, ∀p ∈ N. Suppose that

(P1) limp→+∞
ωm+p(k+l)

ωn+p(k+l)
= 1.

(P2) If there exists {pj} ⊆ N such that limj→+∞ pj = +∞ and Qn(pj) = 0, then Qn(p) ≡ 0.

(P3) If Qn(p) ≡ 0, then Qn+l(p) ̸≡ 0, Qn+k(p) ̸≡ 0.

(P4) If Qn(p) ≡ 0, then

lim
p→+∞

p(
ωn+(p+1)(k+l)ωn+p(k+l)

ω2
n+p(k+l)+l

− 1) = 0 or lim
p→+∞

p(
ωn+(p+1)(k+l)ωn+p(k+l)

ω2
n+p(k+l)+k

− 1) = 0.

(P5) Let n ∈ Ω1, m ∈ Ω4. If Qn(p) ̸≡ 0 and λn = λm, then Qm(p) ̸≡ 0.

(P6) If n ̸= m and Qn(p) ≡ Qm(p), then the following statements hold:

(i) If Qn+l(p) ≡ Qm+l(p), then Qn+l(p) ̸≡ 0, Qn(p) ̸≡ 0;

(ii) If Qn+k(p) ≡ Qm+k(p), then Qn+k(p) ̸≡ 0, Qn(p) ̸≡ 0.

(P7) Let m ∈ ∆ and n ̸= m. If ωm+k = ωn+k, ωm+h(k+l) = ωn+h(k+l) for h ∈ Z+, then

zn /∈ Lm, where

∆ =

{
{(m1,m2) ∈ Z2

+ : m1 ∈ [0, s1),m2 ∈ [0, |l1k2−l2k1|
s1

)}, k1l2 ̸= k2l1

{(m1,m2) ∈ Z2
+ : m1 ∈ [0, s1) or m2 ∈ [0, s2)}, k1l2 = k2l1

,
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si = gcd{ki, li}, i = 1, 2, and Lm = span{zm+uk+vl : m+ uk + vl ∈ Z2
+, u, v ∈ Z}.

Let [zm] be the reducing subspace for Tzk+z̄l on H2
ω(D2) generated by zm. We characterize

[zm] as follows:

Theorem 1.1 Suppose ω satisfies (P1)–(P7). Let φ = zk1ωk2 + zl1ωl2 , ki, li are positive

integers for i = 1, 2 such that (k1, k2) ̸= (l1, l2). For each m ∈ ∆, Lm = [zm] is a minimal

reducing subspace for Tφ on H2
ω(D2).

In fact, Bergman space over the bidisk is a weighted Hardy space satisfying assumptions

(P1)–(P7). So we also get in [27, Theorem 3.3] when ki, li are positive integers. Furthermore, we

generalize some results in [27] to the weighted Dirichlet space Dδ(D2) (δ > 0) over bidisk. For

every δ > 0, we show that Dirichlet space Dδ(D2) is a weighted Hardy space which satisfies the

assumptions (P1)–(P7), and then we characterize the reducing subspaces for Tφ on Dδ(D2) and

the commutant algebra of {Tφ, T
∗
φ} as follows.

Theorem 1.2 Let φ = zk1ωk2 + zl1ωl2 , where ki, li are positive integers for i = 1, 2 such

that (k1, k2) ̸= (l1, l2). If M is a reducing subspace for Tφ on Dδ(D2) (δ > 0), then M is

the orthogonal sum of some minimal reducing subspaces. Moreover, M is a minimal reducing

subspace for Tφ if and only if M has the form as follows:

(i) If l1k2 ̸= k1l2, then M = Lm for some m ∈ ∆;

(ii) If l1k2 = k1l2, then there exist m ∈ ∆ and a, b ∈ C such that M = Mab where Mab is

defined by

Mab = span{(azm + bzm
′
)zuk+vl : u, v ∈ Z, uk + vl +m ≽ 0},

with m′ = ( l1l2 (m2 + 1)− 1, l2
l1
(m1 + 1)− 1). In particular, if m′ ̸∈ Z2

+, then b = 0.

Theorem 1.3 Let φ = zk1ωk2 + zl1ωl2 , where ki, li are positive integers for i = 1, 2 such that

(k1, k2) ̸= (l1, l2). Then V∗(φ) is a Type I von Neumann algebra. Furthermore, the following

statements hold:

(i) If k1l2 ̸= k2l1, then V∗(φ) is abelian and is ∗-isomorphic to
⊕j

i=1 C, where j = |l1k2−l2k1|.
(ii) If k1l2 = k2l1 and s = (s1, s2) with si = gcd{ki, li} (i = 1, 2), then V∗(φ) = V∗(zs) and

V∗(φ) is never abelian. Moreover, if s1 = s2 = r, then V∗(φ) is ∗-isomorphic to

∞⊕
j=1

M2(C)⊕
r⊕

i=1

C;

if s1 ̸= s2, then V∗(φ) is ∗-isomorphic to the direct sum of countably many M2(C)⊕ C.
This paper is organized as follows: in Section 2, we give some useful lemmas; in Section 3,

we show the proof of Theorem 1.1; in Section 4, we introduce the proof of Theorems 1.2 and 1.3.

2. Preliminaries

Firstly, we follow some notations. More details can be seen in [27] and their references.

Denote by N and Z+ the set of all positive integers and all nonnegative integers, respectively.
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The Toeplitz operator Tφ with non-analytic symbol φ = zk + z̄l is defined as follows:

Tφ = Tzk+z̄l = Mzk +M∗
zl ,

where k, l ∈ N2 and M∗
zl is the adjoint of multiplication operator Mzl on H2

ω(D2).

For a = (a1, a2), b = (b1, b2) ∈ Z2
+, denote by a ≽ b, if a1 ≥ b1 and a2 ≥ b2. Otherwise,

denote by a � b.

By computation,

Tφz
n =

{
zn+k, n � l

zn+k + ωn

ωn−l
zn−l, n ≽ l

; T ∗
φz

n =

{
zn+l, n � k

zn+l + ωn

ωn−k
zn−k, n ≽ k

.

More specifically, let

Ω1 = {n ∈ Z2
+ : n � k, n � l}, Ω2 = {n ∈ Z2

+ : n ≽ k, n � l},

Ω3 = {n ∈ Z2
+ : n � k, n ≽ l}, Ω4 = {n ∈ Z2

+ : n ≽ k, n ≽ l}.

For n ∈ Z2
+, m ∈ N2, set

r(n,m) =
ωn+m

ωn
, ∇r(n,m) =

ωn+m

ωn
− ωn

ωn−m
, n ≽ m.

Denote by T = T ∗
φTφ − TφT

∗
φ, then

Tzn = λnz
n,

where

λn =


r(n, k)− r(n, l), n ∈ Ω1

∇r(n, k)− r(n, l), n ∈ Ω2

r(n, k)−∇r(n, l), n ∈ Ω3

∇r(n, k)−∇r(n, l), n ∈ Ω4

.

Let

Qn(p) = λn+p(k+l), ∀p ∈ N.

Let V∗(φ) be the commutant algebra of the von Neumann algebra generated by {I, Tφ, T
∗
φ}. Set

A ∈ V∗(φ). Because λβ ∈ R and λα⟨Azα, zβ⟩ = ⟨ATzα, zβ⟩ = ⟨TAzα, zβ⟩ = ⟨Azα, T zβ⟩ =

λβ⟨Azα, zβ⟩, we can prove that

Azα =
∑

λβ=λα

cβz
β , ∀α ∈ Z2

+. (2.1)

Throughout this paper, let k = (k1, k2), l = (l1, l2) ∈ N2 with k ̸= l. For α, β ∈ Z2
+, let

∆α,β = {p ∈ Z : ⟨Azα, zβ+p(k+l)⟩ ̸= 0},

H0
β = span{zm : m ̸= β + p(k + l), p ∈ Z,m ∈ Z2

+}.

In the following, we provide several lemmas about ∆α,β under the assumptions (P1)–(P6).

Given α ∈ Ω1, we obtain that if Qα(p) ≡ 0, then Azα = czα for some c ∈ C (see Lemma 2.3); if

Qα(p) ̸≡ 0, then Azα =
∑

β∈Ω1
cβz

β for some cβ ∈ C (see Lemma 2.5).

Lemma 2.1 Let A ∈ V∗(φ). If α ∈ Ω1, β ̸≽ k + l and Qα(p) ≡ 0, then ∆α,β is a finite set.



514 Bian REN and Yanyue SHI

Proof Suppose ∆α,β is infinite. There exist {pj : j ∈ N} ⊆ ∆α,β such that pj → +∞ as

j → +∞. Thus, λα = λβ+pj(k+l), ∀j ∈ N. By (P1), we get λα = Qβ(pj) → 0 as j → +∞.

i.e., Qβ(pj) = λα = 0, ∀j ∈ N. So (P2) shows that Qβ(p) ≡ 0. It means Qβ+l(p) ̸≡ 0 by (P3).

Replacing α, β by α+ l, β + l, respectively, we can prove that ∆α+l,β+l is finite as above. Set

Azα =
∑
p∈Z

cpz
β+p(k+l) + q(z),

where cp ∈ C, q(z) ∈ H0
β . By (P4), we will get contradictions in the following two cases.

Case 1. limp→+∞ p( r(β+p(k+l)+l,k)
r(β+p(k+l),l) − 1) = 0. For α � k, by AT ∗

φ = T ∗
φA, we get

Azα+l = czβ−k +
∑
p∈Z

(cp + cp+1

ωβ+(p+1)(k+l)

ωβ−k+(p+1)(k+l)
)zβ+l+p(k+l) + T ∗

φq(z),

where c = 0 if β ∈ Ω1 ∪Ω3; c = c0
ωβ

ωβ−k
if β ∈ Ω2 ∪Ω4, and T ∗

φq(z) ∈ H0
β+l. Since ∆α,β is infinite

and ∆α+l,β+l is finite, equality (2.1) shows that there is N ∈ Z+ such that cN ̸= 0 and

cp + cp+1

ωβ+(p+1)(k+l)

ωβ−k+(p+1)(k+l)
= 0, p ≥ N.

That is,

|cp+1| = |cp|
ωβ−k+(p+1)(k+l)

ωβ+(p+1)(k+l)
, p ≥ N.

So cp ̸= 0 for p ≥ N and that

lim
p→+∞

p(
|cp|2ωβ+p(k+l)

|cp+1|2ωβ+(p+1)(k+l)
− 1) = lim

p→+∞
p(

ωβ+(p+1)(k+l)ωβ+p(k+l)

ω2
β+(p+1)(k+l)−k

− 1)

= lim
p→+∞

p(
ωβ+p(k+l)

ωβ+p(k+l)+l

ωβ+p(k+l)+l+k

ωβ+p(k+l)+l
− 1)

= lim
p→+∞

p(
r(β + p(k + l) + l, k)

r(β + p(k + l), l)
− 1) = 0.

By Raabe’s convergence test,
∑

p∈Z |cp|2ωβ+p(k+l) is divergent, which contradicts Azα ∈ H2
ω(D2).

Hence, ∆α,β is a finite set.

Case 2. limp→+∞ p( r(β+p(k+l)+k,l)
r(β+p(k+l),k) − 1) = 0. For α � l, by ATφ = TφA and Raabe’s

convergence test, we can also get the contradictions. So we complete the proof. 2
Lemma 2.2 Given α � k + l and A ∈ V∗(φ). If ∆α,β is a nonempty and finite set, then

max{p ∈ Z : ⟨Azα+h(k+l), zβ+p(k+l)⟩ ̸= 0} = p0 + h where p0 = max∆α,β and h ∈ Z+.

Proof If h = 0, it is obviously true by the definition of p0. For every N ∈ Z+, suppose it is true

when h ≤ N . We will prove that it is also true when h = N + 1.

By inductive hypothesis, set Azα+N(k+l) = cNzβ+(p0+N)(k+l)+pN (z)+hN (z), where cN ̸= 0,

pN ∈ span{zβ+p(k+l) : p < p0 +N, β + p(k + l) ≽ 0} and hN ∈ H0
β . So AT ∗

φTφ = T ∗
φTφA implies

that

A(zα+(N+1)(k+l) + ρzα+N(k+l) + ηzα+(N−1)(k+l))

= cNzβ+(p0+N+1)(k+l) + PN (z) +HN (z), (2.2)
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where PN ∈ span{zβ+p(k+l) : p < p0+N+1, β+p(k+ l) ≽ 0}, HN ∈ H0
β , and ρ, η ∈ R. In partic-

ular, there is no item ηzα+(N−1)(k+l) when N = 0. Since max{p ∈ Z : ⟨Azα+h(k+l), zβ+p(k+l)⟩ ≠
0} = p0 + h for h = N , N − 1, we get

A(ρzα+N(k+l) + ηzα+(N−1)(k+l))⊥zβ+(p0+N+1)(k+l).

Thus equality (2.2) shows that max{p ∈ Z : ⟨Azα+(N+1)(k+l), zβ+p(k+l)⟩ ̸= 0} = p0 +N + 1. 2
Lemma 2.3 Let A ∈ V∗(φ). If α ∈ Ω1 such that Qα(p) ≡ 0, then Azα = czα for some c ∈ C.

Proof If there exists β ̸≽ k + l such that ∆α,β is not empty, Lemma 2.1 shows that ∆α,β is a finite

set. Let p0 = max∆α,β ≥ 0. On the one hand, Lemma 2.2 shows that λα+p(k+l) = λβ+(p0+p)(k+l)

for every p ∈ Z+. That is,

Qα(p) ≡ Qβ+p0(k+l)(p). (2.3)

On the other hand, as in Lemma 2.2, set

Azα = cp0z
β+p0(k+l) + gp0(z) + hp0(z),

where cp0 ̸= 0 and gp0 ∈ span{zβ+p(k+l) : 0 ≤ p < p0} and hp0 ∈ H0
β . By AT ∗

φ = T ∗
φA, we get

Azα+l = cp0z
β+l+p0(k+l) + czβ+l+(p0−1)(k+l) +Gp0(z) +Hp0(z),

where c = cp0

ωβ+p0(k+l)

ωβ−k+p0(k+l)
, Gp0 ∈ span{zβ+p(k+l) : 0 ≤ p < p0 − 1} and Hp0 ∈ H0

β . So

max{p ∈ Z : ⟨Azα+l, zβ+l+p(k+l)⟩ ≠ 0} = p0.

It shows that ∆α+l,β+l is finite. It is easy to see α + l � k + l since α ∈ Ω1. Using Lemma 2.2

again, we have λα+l+p(k+l) = λβ+l+(p0+p)(k+l) for every p ∈ Z+. That is,

Qα+l(p) ≡ Qβ+l+p0(k+l)(p). (2.4)

By equalities (2.3), (2.4) and assumptionQα(p) ≡ 0, property (P6) implies that α = β+p0(k+l) ∈
Ω1. So p0 = 0 and α = β, which deduces that Azα = czα for some c ∈ C. 2
Lemma 2.4 Let α, β ∈ Z2

+, α � k + l, and A ∈ V∗(φ). If Qα(p) ̸≡ 0 and ∆α,β is a nonempty

and finite set, then the following two statements hold:

(i) There is only one element in ∆α,β ;

(ii) min{p ∈ Z : ⟨Azα+h(k+l), zβ+p(k+l)⟩ ̸= 0} = p0 + h, where h ∈ Z+ and {p0} = ∆α,β .

Proof Let β̃ = β + p1(k+ l) where p1 ∈ Z such that β̃ ≽ 0 and β̃ ̸≽ k+ l. Then p0 satisfies the

statements for β if and only if p0 + p1 satisfies the statements for β̃. Therefore, without loss of

generality, we assume β � k + l.

Since Qα(p) ̸≡ 0, equality (2.1), properties (P1) and (P2) imply that the set

{h ∈ Z+ : ⟨Azα+h(k+l), zβ+p(k+l)⟩ ̸= 0} ⊆ {h ∈ Z+ : Qα(h) = λβ+p(k+l)}

is a finite set for every p ∈ Z+. Let p0 = max∆α,β , then

Ep0 =
∪

0≤p≤p0

{h ∈ Z+ : ⟨Azα+h(k+l), zβ+p(k+l)⟩ ̸= 0}
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is also finite. Obviously, 0 ∈ Ep0 . Let h0 = maxEp0 .

Claim. for every h ∈ Z+ the following equalities hold:

min{p ∈ Z+ : ⟨Azα+(h0+h+1)(k+l), zβ+p(k+l)⟩ ≠ 0} = p0 + h+ 1, (2.5)

⟨Azα+(h0+h+q)(k+l), zβ+(p0+h)(k+l)⟩ = 0, ∀q ∈ N. (2.6)

If h = 0, it is easy to see that (2.6) holds by the definition of h0. Since h0 + 1 ̸∈ Ep0
, set

Azα+(h0+1)(k+l) = d1z
β+(p0+1)(k+l) + f1(z) + g1(z), (2.7)

where d1 ∈ C, f1 ∈ span{zβ+h(k+l) : h ≥ p0 + 2} and g1 ∈ H0
β . By AT ∗

φTφ = T ∗
φTφA, we have

A(zα+(h0+2)(k+l)+ηzα+(h0+1)(k+l)+ρzα+h0(k+l)) = d1
ωβ+(p0+1)(k+l)

ωβ+p0(k+l)
zβ+p0(k+l)+F1(z)+G1(z),

where η, ρ > 0, F1 ∈ span{zβ+h(k+l) : h ≥ p0 + 1} and G1 ∈ H0
β . Since h0 + 1, h0 + 2 ̸∈ Ep0 ,

there is

ρAzα+h0(k+l) = d1
ωβ+(p0+1)(k+l)

ωβ+p0(k+l)
zβ+p0(k+l) + F̃1(z) + G̃1(z), (2.8)

where F̃1 ∈ span{zβ+h(k+l) : h ≥ p0 + 1} and G̃1 ∈ H0
β . By the definition of h0, there exists

some p ∈ [0, p0] such that ⟨Azα+h0(k+l), zβ+p(k+l)⟩ ̸= 0. Together with the fact that

(F̃1 + G̃1)⊥zβ+p(k+l), 0 ≤ p ≤ p0,

we get d1 ̸= 0. So equality (2.7) shows that equality (2.5) holds for h = 0. Moreover, (2.8)

implies that

min{p ∈ Z+ : ⟨Azα+h0(k+l), zβ+p(k+l)⟩ ̸= 0} = p0. (2.9)

That is, Claim holds when h = 0.

Given N ∈ Z+. For h ≤ N , suppose (2.5) and (2.6) hold. Therefore,

Azα+(h0+N+1+q)(k+l) = Azα+(h0+N−j+1+j+q)(k+l)⊥zβ+(p0+N−j)(k+l), 0 ≤ j ≤ N.

According to h0 + 1 + N + q ̸∈ Ep0 , we have Azα+(h0+1+N+q)(k+l)⊥zβ+p(k+l) for 0 ≤ p ≤ p0.

Thus we can set

Azα+(h0+1+N+q)(k+l) = d1+N+qz
β+(p0+N+1)(k+l) + f1+N+q(z) + g1+N+q(z),

where d1+N+q ∈ C, f1+N+q ∈ span{zβ+h(k+l) : h ≥ p0 + N + 2} and g1+N+q ∈ H0
β . By

AT ∗
φTφ = T ∗

φTφA, it is easy to see that

A(zα+(h0+N+2+q)(k+l) + η′zα+(h0+1+N+q)(k+l) + ρ′zα+(h0+N+q)(k+l))

= d1+N+q

ωβ+(p0+N+1)(k+l)

ωβ+(p0+N)(k+l)
zβ+(p0+N)(k+l) + F1+N+q(z) +G1+N+q(z),

where η′, ρ′ > 0, F1+N+q(z) ∈ span{zβ+h(k+l) : h ≥ p0 +N +1} and G1+N+q(z) ∈ H0
β . Equality

(2.6) with h = N shows that d1+N+q = 0 for q ∈ N. It means that (2.6) holds when h = N + 1.

By (2.6) with q = 1, set

Azα+(h0+N+2)(k+l) = dzβ+(p0+N+2)(k+l) + f(z) + g(z), (2.10)
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where d ∈ C, f ∈ span{zβ+h(k+l) : h ≥ p0 +N +3} and g ∈ H0
β . Then AT ∗

φTφ = T ∗
φTφA implies

A(zα+(h0+N+3)(k+l) + η′′zα+(h0+N+2)(k+l) + ρ′′zα+(h0+N+1)(k+l))

= d
ωβ+(p0+N+2)(k+l)

ωβ+(p0+N+1)(k+l)
zβ+(p0+N+1)(k+l) + F (z) +G(z),

where F ∈ span{zβ+h(k+l) : h ≥ p0 + N + 2} and G ∈ H0
β . By equality (2.5) with h = N , we

have d ̸= 0. Equality (2.10) shows that the equality (2.5) holds for h = N + 1. So we finish the

proof of Claim.

The equality (2.5) and (2.9) imply min{p ∈ Z : ⟨Azα+(h0+h)(k+l), zβ+p(k+l)⟩ ̸= 0} = p0 + h.

i.e., λα+(h0+h)(k+l) = λβ+(p0+h)(k+l). By Lemma 2.2, p0 = max∆α,β shows that λα+h(k+l) =

λβ+(p0+h)(k+l). Therefore,

λα+h(k+l) = λα+(h+h0)(k+l), ∀h ∈ Z+.

If h0 ≥ 1, then λα+h0(k+l) = λα+nh0(k+l) = Qα(nh0) = lim
n→+∞

Qα(nh0) = 0. By (P2) again, we

get Qα(p) ≡ 0, which contradicts the assumption. So h0 = 0. The equality (2.9) implies that

p0 = min∆α,β . So we complete the proof. 2
Lemma 2.5 Let A ∈ V∗(φ). If α ∈ Ω1 such that Qα(p) ̸≡ 0, then ⟨Azα, zβ⟩ = 0, for every

β ∈ Ω2 ∪ Ω3 ∪ Ω4.

Proof Suppose ⟨Azα, zβ⟩ ̸= 0 for some β ∈ Ω2 ∪Ω3 ∪Ω4. Then 0 ∈ ∆α,β . Firstly, we show that

∆α,β = {0}. Otherwise, set p0 ∈ ∆α,β , then λβ+p0(k+l) = λα. If p0 ≥ 1, since Qα(p) ̸≡ 0 and

β + p0(k + l) ∈ Ω4, (P5) shows that Qβ+p0(k+l)(p) ̸≡ 0. Note that Qβ(p) = Qβ+p0(k+l)(p− p0).

That is Qβ(p) ̸≡ 0. By (P1) and (P2), we get ∆α,β ⊆ {p ∈ Z+ : Qβ(p) = λα} is finite. Lemma

2.4 implies that there is only one element in ∆α,β , which contradicts to {0, p0} ⊆ ∆α,β . If p0 < 0,

let β1 = β + p0(k + l) ≽ 0. As above, we can prove Qβ1
(p) ̸≡ 0 and there is only one element in

∆α,β1 , which contradict to {0,−p0} ⊆ ∆α,β1 .

By ∆α,β = {0}, Lemma 2.2 implies that Qα(p) ≡ Qβ(p). Moreover,

Azα = cβz
β + h(z),

where cβ ̸= 0, h ∈ H0
β .

Next, we will get contradictions in two cases respectively.

(i) β ∈ Ω2 ∪ Ω4. By AT ∗
φ = T ∗

φA, we get

Aza+l = cβz
β+l + cβ

ωβ

ωβ−k
zβ−k +G(z),

where G ∈ H0
β . So ∆α+l,β−k = {p ∈ Z : ⟨Azα+l, zβ−k+p(k+l)⟩ ≠ 0} = {0, 1} is finite. That is

1 = max∆α+l,β−k. Lemma 2.2 implies that λα+l+h(k+l) = λβ+l+h(k+l). So Qα+l(p) ≡ Qβ+l(p).

Together with Qα(p) ≡ Qβ(p) and (P6), we get Qα+l(p) ̸≡ 0. Then Lemma 2.4 leads to that

there is only one element in ∆α+l,β−k. This is a contradiction.

(ii) β ∈ Ω3. Substituting T ∗
φ with Tφ, we get

Azα+k = cβz
β+k + cβ

ωβ

ωβ−l
zβ−l + F (z),



518 Bian REN and Yanyue SHI

where F ∈ H0
β . As in (i), we can prove that ∆α+k,β−l = {p ∈ Z : ⟨Azα+k, zβ−l+p(k+l)⟩ ̸= 0} =

{0, 1}, which contradicts to the fact that there is only one element in ∆α+k,β−l. 2
3. Reducing subspaces for Tzk+zl on weighted Hardy space

In this section, we mainly consider the reducing subspaces for Tφ with symbol φ = zk + zl

(k, l ∈ N2, k ̸= l) on H2
ω(D2). It is known that Tφ and T ∗

φ share the same reducing subspaces. So

k and l are symmetrical. Together with the symmetry of z1 and z2, we assume 0 < k1 < l1. For

m ∈ Z2
+, let

Lm = span{zm+uk+vl : m+ uk + vl ∈ Z2
+, u, v ∈ Z}. (3.1)

Obviously, Lm are reducing subspaces for Tφ. Let

[m] = {m+ uk + vl ∈ Z2
+ : u, v ∈ Z},

and

∆ =

{
{(m1,m2) ∈ Z2

+ : m1 ∈ [0, s1),m2 ∈ [0, |l1k2−l2k1|
s1

)}, k1l2 ̸= k2l1,

{(m1,m2) ∈ Z2
+ : m1 ∈ [0, s1) or m2 ∈ [0, s2)}, k1l2 = k2l1,

where si = gcd{ki, li}, i = 1, 2. Then Z2
+ =

∪
m∈∆[m]. The proof can be seen in [27]. Therefore,

H2
ω(D2) =

⊕
m∈∆

Lm.

For m ∈ ∆, let [zm] be the reducing subspace for Tzk+z̄l on H2
ω(D2) generated by zm.

If ω satisfies the assumptions (P1)–(P6), we can prove that [zm] = Lm (see Theorem 3.2).

If ω satisfies the assumptions (P1)–(P7), we get that [zm] is minimal (see Theorem 3.3). By

Theorems 3.2 and 3.3, it is easy to obtain Theorem 1.1. To prove Theorem 3.2, we need to show

that set Ω is the union of an increasing sequence of sets. So we firstly give the following Lemma.

Lemma 3.1 Given m ∈ ∆. Let ci = min{c ∈ Z+ : m+ ck ≽ il}, di = min{d ∈ Z+ : m+ dl ≽
ik}, i ∈ Z+. Then ci and di are strictly monotonically increasing for i ∈ Z+.

Proof By the definition of ci, it is easy to see ci+1 ≥ ci ≥ 1. In the following, we will prove that

ci+1 > ci. For i ∈ Z+, sincem+(ci−1)k ̸≽ il, we havem1+(ci−1)k1 < il1 orm2+(ci−1)k2 < il2.

Case 1. m1 +(ci − 1)k1 < il1. Then −m1 − cik1 + k1 > −il1. By the definition of ci+1, there

is m1 + ci+1k1 ≥ (i+1)l1, which implies that (ci+1− ci +1)k1 > l1. By assumptions k1 < l1 and

ci, ci+1 ∈ Z+, we get ci+1 − ci + 1 ≥ 2. So ci+1 ≥ ci + 1 > ci.

Case 2. m2 + (ci − 1)k2 < il2. As in Case 1, it is easy to see (ci+1 − ci + 1)k2 > l2.

If k2 ≤ l2, then ci+1 ≥ ci + 1 > ci.

If k2 > l2, let si = gcd{ki, li}, then k1 = p1s1, l1 = q1s1, k2 = p2s2, l2 = q2s2 for some

pi, qi ∈ N such that p1 < q1 and p2 > q2. Assume ci+1 = ci. Since m+cik = m+ci+1k ≽ (i+1)l,

we have m1 + cik1 ≥ (i+1)l1 ⇒ m1

s1
+ cip1 ≥ (i+1)q1. Since m ∈ ∆, m1

s1
< 1. Together with the

fact that cip1 is an integer, we have cip1 ≥ (i+ 1)q1, i.e.,

ci
i+ 1

≥ q1
p1

> 1.
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It follows that ci ≥ i+ 2. Furthermore, we get

(i+ 2)p2 ≤ cip2 <
m2

s2
+ cip2 < iq2 + p2,

where the last inequality comes from the assumption m2 + (ci − 1)k2 < il2. Thus
p2

q2
< i

i+1 < 1,

which contradicts p2 > q2. Hence, ci+1 > ci.

By the same technique, we can prove that di+1 > di. So we complete the proof. 2
Theorem 3.2 Assume ω satisfies (P1)–(P6). Let m ∈ ∆, then [zm] = Lm, where Lm is defined

by (3.1).

Proof Clearly, [zm] ⊆ Lm. Denote

Ω , {(u, v) ∈ Z2 : m+ uk + vl ∈ Z2
+}; Ω̃ , {(u, v) ∈ Ω : zm+uk+vl ∈ [zm]}.

Clearly, Ω̃ ⊆ Ω. It is enough to prove that Ω ⊆ Ω̃. Lemma 3.1 shows that cn < cn+1 and

dn < dn+1. Since cn, dn are all integers, we have limn→+∞ cn = limn→+∞ dn = +∞. Thus

Ω =
∞∪

n=1

[([−n+ 1, cn]× [−n+ 1, dn]) ∩ Ω].

By induction, we will prove that the following statements hold for each n ∈ N:
(T1) ([−n+ 1, cn]× [−n+ 1, dn]) ∩ Ω ⊆ Ω̃;

(T2) (cn,−n) ∈ Ω̃;

(T3) (−n, dn) ∈ Ω̃.

Therefore, (T1) implies the desired result.

Step 1. n = 1. It is easy to check that

T j
φz

m = zm+jk ∈ [zm], ∀j ∈ [0, c1]; T ∗
φ
jzm = zm+jl ∈ [zm], ∀j ∈ [0, d1].

It follows that ([0, c1]× {0})
∪

({0} × [0, d1]) ⊆ Ω̃. If d1 = 0, then (T1) holds for n = 1.

For (u− 1, v) ∈ Ω, there is

T ∗
φz

m+uk+vl = zm+uk+(v+1)l +
ωm+uk+vl

ωm+(u−1)k+vl
zm+(u−1)k+vl ∈ [zm]. (3.2)

By (3.2) and [0, c1]×{0} ⊆ Ω̃, we have [1, c1]×{1} ⊆ Ω̃. If d1 = 1, combining that {0}×[0, d1] ⊆ Ω̃,

there is [0, c1]× {1} ⊆ Ω̃. Then (T1) holds when n = 1.

If d1 ≥ 2, by [0, c1]×{1}, {0}× [0, d1] ⊆ Ω̃, it can be proved that [0, c1]×{2} ⊆ Ω̃. Therefore,

we can prove that (T1) holds when n = 1 by repeating the similar process as above a finite

number of times.

By the definition of c1, we have m+ c1k− l ≽ 0. Let P[zm] be the orthogonal projection from

H2
ω(D2) onto [zm]. Then (3.2) shows that

Tφz
m+c1k = zm+(c1+1)k +

ωm+c1k

ωm+c1k−l
zm+c1k−l ∈ [zm],

Tφz
m+c1k = P[zm]Tφz

m+c1k = P[zm]z
m+(c1+1)k +

ωm+c1k

ωm+c1k−l
P[zm]z

m+c1k−l.
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It follows that

P[zm]z
m+(c1+1)k − zm+(c1+1)k =

ωm+c1k

ωm+c1k−l
(zm+c1k−l − P[zm]z

m+c1k−l). (3.3)

By the definition of c1, we also have m+ c1k− l ̸≽ l and m+(c1− 1)k ̸≽ l, i.e., m+ c1k− l ∈ Ω1.

It is easy to see m+ (c1 + 1)k ∈ Ω4. By Lemmas 2.3 and 2.5, above equality shows that

⟨P[zm]z
m+c1k−l, zm+(c1+1)k⟩ =⟨P[zm]z

m+c1k−l, P[zm]z
m+(c1+1)k⟩

=⟨zm+c1k−l, P[zm]z
m+(c1+1)k⟩ = 0.

Clearly, zm+c1k−l⊥zm+(c1+1)k. Therefore, zm+c1k−l−P[zm]z
m+c1k−l⊥P[zm]z

m+(c1+1)k−zm+(c1+1)k

and (3.3) implies that

zm+c1k−l = P[zm]z
m+c1k−l ∈ [zm],

that is, (T2) holds when n = 1. By P[zm]T
∗
φz

m+d1l = T ∗
φz

m+d1l, similarly, we can get (T3) holds

when n = 1.

Step 2. Assume (T1)–(T3) hold when n ≤ p, we will prove that they also hold when n = p+1.

Inductive hypothesis (T2) shows that

T j
φz

m+cpk−pl = zm+cpk−pl+jk ∈ [zm], ∀j ∈ [0, cp+1 − cp].

That is [cp, cp+1]× {−p} ⊆ Ω̃. Note that

Tφz
m+uk+vl = zm+(u+1)k+vl +

ωm+uk+vl

ωm+uk+(v−1)l
zm+uk+(v−1)l ∈ [zm], ∀(u, v − 1) ∈ Ω. (3.4)

By (3.4), we can verify the following fact for j = 0, 1, . . . , cp+1 − cp − 1 one by one:

since (cp + j,−p+ 1), (cp + j,−p) ∈ Ω̃, there is (cp + j + 1,−p+ 1) ∈ Ω̃.

Furthermore, the following statement holds for j ∈ [0, cp+1 − cp − 1], h ∈ [0, dp + p− 1]:

since (cp + j,−p+ h+ 1), (cp + j,−p+ h) ∈ Ω̃, there is (cp + j + 1,−p+ 1 + h) ∈ Ω̃.

Combining inductive hypothesis (T1) with n ≤ p, we have that ([−p, cp+1]× [−p, dp])
∩
Ω ⊆ Ω̃.

Similarly, by inductive hypothesis (T3), we have

T ∗i
φ zm−pk+dpl = zm−pk+dpl+il ∈ [zm], ∀i ∈ [0, dp+1 − dp].

Together with ([−p, cp+1]× {dp})
∩

Ω ⊆ Ω̃, by (3.2) many times, we can prove that

([−p, cp+1]× {dp + i})
∩

Ω ⊆ Ω̃ for i = 1, . . . , dp+1 − dp.

So (T1) holds when n = p+ 1.

In particular, statement (T1) shows that zm+cp+1k−pl, zm+dp+1l−pk ∈ [zm]. Note that

Tφz
m+cp+1k−pl = zm+(cp+1+1)k−pl +

ωm+cp+1k−pl

ωm+cp+1k−(p+1)l
zm+cp+1k−(p+1)l ∈ [zm],

T ∗
φz

m+dp+1l−pk = zm+(dp+1+1)l−pk +
ωm+dp+1l−pk

ωm+dp+1l−(p+1)k
zm+dp+1l−(p+1)k ∈ [zm],

where m+ cp+1k− (p+1)l,m+ dp+1l− (p+1)k ∈ Ω1 and m+ cp+1k− pl,m+ dp+1l− pk ∈ Ω4.

By Lemmas 2.3 and 2.5, we can get the desired results as in step 1. 2
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Theorem 3.3 Assume ω satisfies (P1)–(P7). Given m ∈ ∆. Then Lm is a minimal reducing

subspace for Tφ.

Proof Suppose M ⊆ Lm is a reducing subspace. Let PM be the orthogonal projection from

H2
ω(D2) onto M . Then PMTφ = TφPM and PMT ∗

φ = T ∗
φPM . Note that m ∈ ∆ ⊆ Ω1. If

Qm(p) ≡ 0, Lemma 2.3 shows that PMzm = czm ∈ M for c ∈ C.
If Qm(p) ̸≡ 0, Lemma 2.5 shows

PMzm =
∑

β∈Ω1,λm=λβ

aβz
β , (3.5)

with aβ ∈ C. If aβ ̸= 0, then ∆m,β = {0}. Lemmas 2.2 and 2.4 induce that

∆m+p(k+l),β = {p}, ∀p ∈ Z+. (3.6)

Thus PMzm+p(k+l) =
∑

β∈Ω1,λm=λβ
aβ,pz

β+p(k+l), ∀p ∈ Z+. In the following, we prove that

aβ,p = aβ,q, ∀p, q ∈ Z+.

Clearly, it holds when p = 0. For p ∈ Z+, suppose aβ,h = aβ,q, 0 ≤ h, q ≤ p. By T ∗
φTφPMzm+p(k+l)

= PMT ∗
φTφz

m+p(k+l), we get

PM (zm+(p+1)(k+l) + ρzm+p(k+l) +
ωm+p(k+l)

ωm+(p−1)(k+l)
zm+(p−1)(k+l))

=
∑

β∈Ω1,λm=λβ

aβ,p(z
β+(p+1)(k+l)+ηzβ+p(k+l)+

ωβ+p(k+l)

ωβ+(p−1)(k+l)
zβ+(p−1)(k+l)),

where ρ, η > 0. By (3.6), we have PMzm+p(k+l)⊥zβ+(p+1)k+l, PMzm+(p−1)(k+l)⊥zβ+(p+1)k+l,

PMzm+(p+1)(k+l)⊥zβ+pk+l and PMzm+(p+1)(k+l)⊥zβ+(p−1)k+l. Therefore,

PMzm+(p+1)(k+l) =
∑

β∈Ω1,λm=λβ

aβ,pz
β+(p+1)(k+l),

i.e., aβ,p = aβ,p+1.

Furthermore, by the expression of PMzm+(p−1)(k+l), we have

ωm+p(k+l)

ωm+(p−1)(k+l)
=

ωβ+p(k+l)

ωβ+(p−1)(k+l)
, ∀p ∈ N.

So (P1) shows that
ωm

ωn
=

ωm+p(k+l)

ωn+p(k+l)
= lim

p→+∞

ωm+p(k+l)

ωn+p(k+l)
= 1.

For p = 0, PMT ∗
φTφz

m = T ∗
φTφPMzm implies that

PM (zm+k+l +
ωm+k

ωm
zm) =

∑
β∈Ω1,λm=λβ

aβ(z
β+k+l +

ωβ+k

ωβ
zβ).

Thus ωm+k

ωm
=

ωβ+k

ωβ
and ωm+k = ωn+k. By (P7), we have PMzm = czm for some c ∈ C. By

Theorem 3.2, we get M = Lm or M = {0}. 2
4. Reducing subspaces for Tzk+zl on Dirichlet space
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In this section, we focus on a class of weighted Dirichlet space Dδ(D2) (δ > 0),

Dδ(D2) = H2
ω(D2) with ω = {ωn = (n1 + 1)δ(n2 + 1)δ, n ∈ Z2

+}.

We also suppose that 0 < k1 < l1. In this case,

λn =



∏2
i=1

(ni+ki+1)δ

(ni+1)δ
−
∏2

i=1
(ni+li+1)δ

(ni+1)δ
, n ∈ Ω1,∏2

i=1
(ni+ki+1)δ

(ni+1)δ
−
∏2

i=1
(ni+li+1)δ

(ni+1)δ
−
∏2

i=1
(ni+1)δ

(ni−ki+1)δ
, n ∈ Ω2,∏2

i=1
(ni+ki+1)δ

(ni+1)δ
−
∏2

i=1
(ni+li+1)δ

(ni+1)δ
+
∏2

i=1
(ni+1)δ

(ni−li+1)δ
, n ∈ Ω3,∏2

i=1
(ni+ki+1)δ

(ni+1)δ
−
∏2

i=1
(ni+li+1)δ

(ni+1)δ
−
∏2

i=1
(ni+1)δ

(ni−ki+1)δ
+
∏2

i=1
(ni+1)δ

(ni−li+1)δ
, n ∈ Ω4,

and

Qn(p) =

2∏
i=1

(ni + ki + p(ki + li) + 1)δ

(ni + p(ki + li) + 1)δ
−

2∏
i=1

(ni + li + p(ki + li) + 1)δ

(ni + p(ki + li) + 1)δ
−

2∏
i=1

(ni + p(ki + li) + 1)δ

(ni − ki + p(ki + li) + 1)δ
+

2∏
i=1

(ni + p(ki + li) + 1)δ

(ni − li + p(ki + li) + 1)δ
.

Firstly, we will show in this case ω satisfies (P1)–(P7). Clearly, (P1) holds. The next Lemma

shows that (P2) holds.

Lemma 4.1 Let n ∈ Z2
+. Then the following statements are equivalent:

(i) An , (k2 − l2)(n1 + 1) + (k1 − l1)(n2 + 1) = 0 and k1k2 = l1l2;

(ii) k1

n1+1 = l2
n2+1 ,

l1
n1+1 = k2

n2+1 and k1k2 = l1l2;

(iii) Qn(p) ≡ 0;

(iv) There exist {pj} ⊆ N such that lim
j→+∞

pj = +∞ and Qn(pj) = 0 for j ∈ N.

Proof Firstly, we prove that (i) holds if and only if (ii) holds. Note that (ii)⇒(i) is obvious.

Conversely, if (i) holds,

k1(k2 − l2)(n1 + 1) + k1(k1 − l1)(n2 + 1) = l2(l1 − k1)(n1 + 1) + k1(k1 − l1)(n2 + 1) = 0.

Since k1 < l1, we get k1

n1+1 = l2
n2+1 , and then l1

n1+1 = k2

n2+1 , i.e., (ii) holds.

Secondly, we prove that (ii)⇒(iii). By computation, we have Qn(p) = 0 if and only if

2∏
i=1

(ni + p(ki + li)− ki + 1)δ(ni + p(ki + li)− li + 1)δ×

[ 2∏
i=1

(ni + p(ki + li) + ki + 1)δ −
2∏

i=1

(ni + p(ki + li) + li + 1)δ
]

=
2∏

i=1

(ni + p(ki + li) + 1)2δ
[ 2∏
i=1

(ni + p(ki + li)− li + 1)δ −
2∏

i=1

(ni + p(ki + li)− ki + 1)δ
]
.

If (ii) holds, then

2∏
i=1

(ni + p(ki + li) + ki + 1)δ −
2∏

i=1

(ni + p(ki + li) + li + 1)δ
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=

2∏
i=1

(ni + p(ki + li)− li + 1)δ −
2∏

i=1

(ni + p(ki + li)− ki + 1)δ = 0.

Therefore, (iii) holds.

Since (iii)⇒(iv) is obvious, we only need to prove that (iv)⇒(i). Let

h1(t) =

2∏
i=1

(ait+ 1)δ(bit+ 1)δ
( 2∏

i=1

(cit+ 1)δ −
2∏

i=1

(dit+ 1)δ
)
,

h2(t) =

2∏
i=1

(eit+ 1)2δ
( 2∏

i=1

(bit+ 1)δ −
2∏

i=1

(ait+ 1)δ
)
, t > 0,

where

ei =
ni + 1

ki + li
, ai = ei −

ki
ki + li

, bi = ei −
li

ki + li
, ci = ei +

ki
ki + li

, di = ei +
li

ki + li
, i = 1, 2.

Let x = k1k2−l1l2
(k1+l1)(k2+l2)

. Then

c1 + c2 − d1 − d2 = b1 + b2 − a1 − a2 = 2x,

c1c2 − d1d2 = e1
k2 − l2
k2 + l2

+ e2
k1 − l1
k1 + l1

+ x, (4.1)

b1b2 − a1a2 = e1
k2 − l2
k2 + l2

+ e2
k1 − l1
k1 + l1

− x.

It follows that limt→0+(h
′

1(t)− h
′

2(t)) = 0. Since (iv) holds, the definition of Qn(pj) shows that

h1(tj) = h2(tj) for tj =
1

pj
. (4.2)

By L’Hospital’s Rule, we have

lim
t→0+

h1(t)− h2(t)

t2
= lim

t→0+

h
′

1(t)− h
′

2(t)

2t
= lim

t→0+

h
′′

1 (t)− h
′′

2 (t)

2
.

Moreover,

lim
t→0+

h
′′

1 (t)

2

= (δ2(a1 + a2 + b1 + b2) +
δ(δ − 1)

2
(c1 + c2 + d1 + d2))(c1 + c2 − d1 − d2) + δ(c1c2 − d1d2)

= ((3δ2 − δ)(e1 + e2)− δ2 − δ)2x+ δ(e1
k2 − l2
k2 + l2

+ e2
k1 − l1
k1 + l1

+ x),

lim
t→0+

h
′′

2 (t)

2

= (2δ2(e1 + e2) +
δ(δ − 1)

2
(b1 + b2 + a1 + a2))(b1 + b2 − a1 − a2) + δ(b1b2 − a1a2)

= ((3δ2 − δ)(e1 + e2)− δ2 + δ)2x+ δ(e1
k2 − l2
k2 + l2

+ e2
k1 − l1
k1 + l1

− x).

By (4.2), we get

lim
t→0+

h1(t)

t2
= lim

t→0+

h2(t)

t2
.

Since δ > 0, we get x = 0, i.e., k1k2 = l1l2.
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Furthermore,

c1 + c2 = d1 + d2 = e1 + e2 +
k1

k1 + l1
+

k2
k2 + l2

,

a1 + a2 = b1 + b2 = e1 + e2 −
k1

k1 + l1
− k2

k2 + l2
,

c1c2 − d1d2 = b1b2 − a1a2.

Case 1. δ = 1. L’Hospital’s Rule shows that

lim
t→0+

h1(t)− h2(t)

t3
= lim

t→0+

h
′′′

1 (t)− h
′′′

2 (t)

6
.

On the basis of careful calculation, we get

lim
t→0+

h
′′′

1 (t)

6
= 2δ2(e1 + e2 − 1)(c1c2 − d1d2),

lim
t→0+

h
′′′

2 (t)

6
= 2δ2(e1 + e2)(b1b2 − a1a2).

Therefore, 2(e1 + e2 − 1)(c1c2 − d1d2) = 2(e1 + e2)(c1c2 − d1d2), i.e., c1c2 − d1d2 = 0.

Case 2. δ ̸= 1. Dividing both sides of (4.2) by
∏2

i=1(eitj + 1)2δ, we get

f1(tj)f2(tj) = f3(tj),

where

f1(t) =
2∏

i=1

(
(ait+ 1)(bit+ 1)

(eit+ 1)2
)δ,

f2(t) =
2∏

i=1

(cit+ 1)δ −
2∏

i=1

(dit+ 1)δ,

f3(t) =
2∏

i=1

(bit+ 1)δ −
2∏

i=1

(ait+ 1)δ, t > 0.

Similarly, by limt→0+ f1(t) = 1, we get limt→0+(f
′

2(t)− f
′

3(t)) = limt→0+(f
′′

2 (t)− f
′′

3 (t)) = 0. By

L’Hospital’s Rule again, we have

lim
t→0+

f2(t)− f3(t)

t3
= lim

t→0+

f
′′′

2 (t)− f
′′′

3 (t)

6

= δ(δ − 1)(c1 + c2)(c1c2 − d1d2)− δ(δ − 1)(b1 + b2)(b1b2 − a1a2)

= δ(δ − 1)(c1c2 − d1d2)(c1 + c2 − b1 − b2)

= 2δ(δ − 1)(c1c2 − d1d2).

So c1c2 − d1d2 = 0.

Finally, equality (4.1) implies that An = (n1 + 1)(k2 − l2) + (n2 + 1)(k1 − l1) = 0. So we

complete the proof. 2
Lemma 4.2 The property (P3) holds on Dδ(D2). That is, if Qn(p) ≡ 0, then Qn+l(p) ̸≡ 0 and

Qn+k(p) ̸≡ 0.
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Proof If Qn(p) ≡ 0, Lemma 4.1 deduces that An = (k2− l2)(n1+1)+ (k1− l1)(n2+1) = 0 and

k1k2 = l1l2. By k1 < l1, we have k2 > l2. Then An+l = An + (k2 − l2)(l1 − k1) ̸= 0. It follows

that Qn+l(p) ̸≡ 0. Similarly, we have Qn+k(p) ̸≡ 0. 2
Lemma 4.3 The property (P4) holds on Dδ(D2). That is, if Qn(p) ≡ 0, then

lim
p→+∞

p(
r(n+ p(k + l) + l, k)

r(n+ p(k + l), l)
− 1) = 0.

Proof Let

ei =
ni + 1

ki + li
, bi = ei + 1, ci = ei +

li
ki + li

.

By the definition of function r(n,m), we have

r(n+ p(k + l) + l, k)

r(n+ p(k + l), l)
− 1 =

ωn+(p+1)(k+l)

ωn+p(k+l)+l

ωn+p(k+l)

ωn+p(k+l)+l
− 1 =

f1(
1
p )− f2(

1
p )

f2(
1
p )

,

where

f1(t) =

2∏
i=1

(eit+ 1)δ(bit+ 1)δ, f2(t) =

2∏
i=1

(cit+ 1)2δ, ∀ t > 0.

By L’Hospital’s Rule, we get

lim
t→0+

f1(t)− f2(t)

tf2(t)
= lim

t→0+

f ′
1(t)− f ′

2(t)

(tf2(t))′

= δ(e1 + e2 + b1 + b2 − 2c1 − 2c2) = 2δ
k1k2 − l1l2

(k1 + l1)(k2 + l2)
.

By Qn(p) ≡ 0, Lemma 4.1 shows that k1k2 = l1l2. Hence,

lim
p→+∞

p(
r(n+ p(k + l) + l, k)

r(n+ p(k + l), l)
− 1) = lim

t→0+

f1(t)− f2(t)

tf2(t)
= 0. 2

Lemma 4.4 The property (P5) holds on Dδ(D2). That is, for n ∈ Ω1,m ∈ Ω4, if Qn(p) ̸≡ 0

and λn = λm, then Qm(p) ̸≡ 0.

Proof Suppose Qm(p) ≡ 0, Lemma 4.1 shows that l1l2 = k1k2. Since m ∈ Ω4, we get λm =

Qm(0) = 0. Therefore, λn = λm = 0. By the definition of λn with n ∈ Ω1, there is wn+k = wn+l,

i.e., (n1 + k1 +1)(n2 + k2 +1) = (n1 + l1 +1)(n2 + l2 +1). Together with l1l2 = k1k2, we obtain

that

An = (k2 − l2)(n1 + 1) + (k1 − l1)(n2 + 1) = 0.

Lemma 4.1 implies that Qn(p) ≡ 0, which contradicts the assumption. 2
Lemma 4.5 The property (P6) holds on Dδ(D2). That is, if Qn(p) ≡ Qm(p) with n,m ∈ Z2

+

and n ̸= m, then the following statements hold:

(i) If Qn+l(p) ≡ Qm+l(p), then Qn+l(p) ̸≡ 0, Qn(p) ̸≡ 0;

(ii) If Qn+k(p) ≡ Qm+k(p), then Qn+k(p) ̸≡ 0, Qn(p) ̸≡ 0.

Proof If k1k2 ̸= l1l2, Lemma 4.1 implies that (P6) holds.
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If k1k2 = l1l2, then l2k1 ̸= k2l1. Otherwise, k22k1 = k2l1l2 = l22k1. It is easy to see k2 = l2

and k1 = l1, which contradicts k ̸= l.

Here, we only prove that if Qn(p) ≡ Qm(p) and Qn+l(p) ≡ Qm+l(p), then Qn+l(p) ̸≡ 0, since

the proof of others is similar.

Suppose Qn+l(p) ≡ 0. Then Qm+l(p) ≡ 0. Lemma 4.1 implies that

(k1 − l1)(n2 + l2 + 1) + (k2 − l2)(n1 + l1 + 1) = 0,

(k1 − l1)(m2 + l2 + 1) + (k2 − l2)(m1 + l1 + 1) = 0,

(k1 − l1)(n2 −m2) + (k2 − l2)(n1 −m1) = 0. (4.3)

Let νn(t) =
∏2

i=1(
ni+1
ki+li

t+ 1)δ for t > 0. By Qn(p) ≡ Qm(p), there is

νm(t)νm−k(t)νm−l(t)gn(t) ≡ νn(t)νn−k(t)νn−l(t)gm(t), ∀t = 1

p
, (4.4)

where

gn(t) = νn−k(t)νn−l(t)[νn+k(t)− νn+l(t)] + ν2n(t)[νn−k(t)− νn−l(t)].

Denote

ei =
ni + 1

ki + li
, ẽi =

mi + 1

ki + li
, xi =

ki
ki + li

, yi =
li

ki + li
, i = 1, 2.

Set ξ = e1(x2 − y2) + e2(x1 − y1). By (4.3) and k1k1 = l1l2, there is

ξ = ẽ1(x2 − y2) + ẽ2(x1 − y1) =
(l1 − k1)(l2 − k2)∏2

i=1(ki + li)
̸= 0.

By computation, we have the following equalities:

x1 + x2 = y1 + y2 = 1,

lim
t→0+

ν(1)n (t) = δ(e1 + e2),

lim
t→0+

ν(2)n (t) = δ(δ − 1)(e1 + e2)
2 + 2δe1e2,

lim
t→0+

(νn±k − νn±l)
(1)(t) = 0,

lim
t→0+

(νn±k − νn±l)
(2)(t) = ±2δξ,

lim
t→0+

[(νn±k − νn±l)
(3)(t) = 6δ(δ − 1)(±(e1 + e2) + 1)ξ,

Therefore,

lim
t→0+

gn(t) = lim
t→0+

g(1)n (t) = lim
t→0+

g(2)n (t) = 0, lim
t→0+

g(3)n (t) = −12δξ. (4.5)

Note that limt→0+
νmνm−kνm−l

νnνn−kνn−l
(t) = 1 and limt→0+(g

(3)
n (t) − g

(3)
m (t)) = 0. As in Lemma 4.1,

equality (4.4) deduces that limt→0+
gn(t)
t4 = limt→0+

gm(t)
t4 . Combining L’Hospital Rule, we get

limt→0+
gn(t)−gm(t)

t4 = limt→0+
g(4)
n (t)−g(4)

m (t)
24 = 0. Similarly, by

(νm−kνm−l)(t)

(νn−kνn−l)(t)

(νmgn)(t)

t4
=

(νngm)(t)

t4
,

we get

lim
t→0+

(νmgn)(t)− (νngm)(t)

t4
= lim

t→0+

(νmgn)
(4)(t)− (νngm)(4)(t)

24
= 0.
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Since

(νmgn)
(4)(t) = ν(4)m gn + 4ν(3)m g(1)n + 6ν(2)m g(2)n + 4ν(1)m g(3)n + νmg(4)n ,

equality (4.5) shows that

lim
t→0+

(νmgn − νngm)(4)(t) = 4 lim
t→0+

(ν(1)m g(3)n − ν(1)n g(3)m )(t) = −48δ2(ẽ1 + ẽ2 − e1 − e2)ξ = 0,

we obtain (k1 + l1)(n2 −m2) + (k2 + l2)(n1 −m1) = 0. Together with (4.3), we have

k1(n2 −m2) = k2(m1 − n1),

l2(n1 −m1) = l1(m2 − n2),

(k1l2 − k2l1)(n1 −m1)(n2 −m2) = 0.

Since k1l2 ̸= k2l1, there must be n1 = m1, n2 = m2, which contradicts n ̸= m. 2
Lemma 4.6 The property (P7) holds on Dδ(D2). That is, if n,m ∈ ∆ such that n ̸= m,

ωm+k = ωn+k and ωm+h(k+l) = ωn+h(k+l)(∀h ∈ Z+), then zn ̸∈ Lm.

Proof In fact, we will prove that l1k2 ̸= l2k1 and n = ( l1l2 (m2 + 1) − 1, l2
l1
(m1 + 1) − 1). By

ωm = ωn, ωm+k = ωn+k, and ωm+k+l = ωn+k+l, we get respectively

(m1 + 1)(m2 + 1) = (n1 + 1)(n2 + 1), (4.6)

(m1 + k1 + 1)(m2 + k2 + 1) = (n1 + k1 + 1)(n2 + k2 + 1), (4.7)

(m1 + k1 + l1 + 1)(m2 + k2 + l2 + 1) = (n1 + k1 + l1 + 1)(n2 + k2 + l2 + 1). (4.8)

Putting (4.6) into (4.7), we have

k1(m2 − n2) + k2(m1 − n1) = 0. (4.9)

Putting (4.7) into (4.8), we have

l1(m2 − n2) + l2(m1 − n1) = 0. (4.10)

By (4.9) and (4.10), we get k1l2(m1 − n1)(m2 − n2) = k2l1(m1 − n1)(m2 − n2).

If k1l2 ̸= k2l1, then m1 = n1, m2 = n2, which contradicts n ̸= m.

If k1l2 = k2l1, equality (4.6) implies

m2 + 1 =
(n1 + 1)(n2 + 1)

m1 + 1
. (4.11)

Now putting (4.11) into (4.10), it means

l1(
(n1 + 1)(n2 + 1)

m1 + 1
− (n2 + 1)) + l2(m1 − n1) = 0.

Thus,

l1
n2 + 1

m1 + 1
(n1 −m1) = l2(n1 −m1).

Therefore,

n2 =
l2
l1
(m1 + 1)− 1, n1 =

l1
l2
(m2 + 1)− 1.
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Assume zn ∈ Lm. There are u, v ∈ Z such that

l1
l2
(m2 + 1)− 1 = m1 + uk1 + vl1 and

l2
l1
(m1 + 1)− 1 = m2 + uk2 + vl2.

That is, uk1+ vl1 = − l1
l2
(uk2+ vl2). Together with l1k2 = k1l2, we get uk1+ vl1 = uk2+ vl2 = 0

and m1 = m2, which contradicts n ̸= m. 2
Let M be a nonzero reducing subspace for Tφ. Let P be the orthogonal projection from

Dδ(D2) onto M. By Lemma 4.6, we have Pzm = azm + bzm
′
, where a, b ∈ C and m′ =

( l1l2 (m2 + 1) − 1, l2
l1
(m1 + 1) − 1). In particular, if k1l2 ̸= k2l1, then b = 0; if k1l2 = k2l1 and

m′ ̸∈ Z2
+, then b = 0. And [azm + bzm

′
]
⊕

[bzm − azm
′
] = Lm

⊕
Lm′ when a2 + b2 ̸= 0. Since

Dδ(D2) =
⊕

m∈∆ Lm and M is nonzero, there exists m0 ∈ ∆ such that Pzm0 ̸= 0, and

[Pzm0 ] = span{(Pzm0)zuk+vl : u, v ∈ Z,m+ uk + vl ≽ 0} ⊆ M.

If M is minimal, M = [Pzm0 ]. As in [27, Theorem 3.8] and [28, Lemma 2.5], we can prove that

M is the orthogonal sum of some minimal reducing subspaces. Therefore, we get Theorem 1.2.

Next, we consider the unitary equivalence of Lm and Lm′ , where m,m′ ∈ ∆. Recall that two

reducing subspaces M1 and M2 for Tφ are called unitarily equivalent if there exists an operator

U on Dδ(D2) such that U |M1 is unitary from M1 onto M2, U |M⊥
1

= 0 and U commutes with

both Tφ and T ∗
φ. On the basis of the results given in section 2 and section 3, we can obtain the

following results as in [27].

Lemma 4.7 Let k ̸= l(k, l ∈ N2). Suppose m, m′ ∈ ∆, then the following statements hold:

(i) If k1l2 ̸= k2l1, then Lm and Lm′ are unitarily equivalent if and only if m = m′.

(ii) If k1l2 = k2l1, then Lm and Lm′ are unitarily equivalent if and only if m′ = m or

m′ = ( l1l2 (m2 + 1)− 1, l2
l1
(m1 + 1)− 1). In particular, if m′ /∈ ∆, then Lm and Lm′ are unitarily

equivalent if and only if m′ = m.

Proof Let U ∈ V∗(φ) and U |Lm be unitary from Lm onto Lm′ . If Qn(p) ≡ 0, Lemma 2.3

shows that m = m′ and Uzm = czm for c ∈ C. By ∥Uzm∥ = ∥zm∥, we get c = 1. If

Qn(p) ̸≡ 0, Lemma 4.6 shows that if k1l2 ̸= k2l1, then m = m′; if k1l2 = k2l1, then m′ ∈
{m, ( l1l2 (m2 + 1)− 1, l2

l1
(m1 + 1)− 1)}.

Conversely, the sufficiency of (i) is obvious. Set U |L⊥
m
= 0 and

U(
zm+ik+jl

√
ωm+ik+jl

) = (
zm

′+ik+jl

√
ωm′+ik+jl

).

It is easy to check that U |Lm is unitary from Lm onto Lm′ . So we get the sufficiency of (ii). 2
Finally, by above Lemma and [7, Corollary 8.2.6], we can prove Theorem 1.3 as follows.

Proof of Theorem 1.3 If k1l2 ̸= k2l1, then Lm and Lm′ are not unitarily equivalent when

m ̸= m′. Since the number of elements in ∆ is |l1k2 − k1l2|, we have V∗(φ) is ∗-isomorphic to⊕j
i=1 C, where j = |l1k2 − l2k1|.
If k1l2 = k2l1, let si = gcd{ki, li}, ki = sipi, li = siqi, for i = 1, 2. Then p1q2 = p2q1. Since

gcd{p1, q1} = 1, p2 = sp1 for some s ∈ Z+. Similarly, q1 = tq2 for some t ∈ Z+. So p1q2 = stp1q2.
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It means that s = t = 1, i.e., p2 = p1 and q2 = q1.

Case 1. s1 = s2 = r. Let m′,m ∈ ∆ such that m′ ̸= m. Then Lm and Lm′ are unitarily

equivalent if and only if m′ = (m2,m1). So

{(m1,m2) ∈ ∆; m1 = m2 = s, s = 0, 1, 2, . . . , r − 1} = {m ∈ ∆; m = m′},

{m ∈ ∆; m1 ̸= m2} ⊆ {m ∈ ∆; m′ ∈ ∆,m ̸= m′}.

Therefore, V∗(φ) is ∗-isomorphic to
⊕∞

j=1 M2(C)⊕
⊕r

i=1 C.
Case 2. s1 ̸= s2. Without loss of generality, we assume s2 > s1.

{(ts1 − 1, 0) : t ∈ N} ⊆ {m ∈ ∆ : m′ = (
s1
s2

− 1, ts2 − 1) ̸∈ ∆},

{(s1 − 1, ts2 − 1) : t ∈ N} ⊆ {m ∈ ∆ : m′ = (ts1 − 1, s2 − 1) ∈ ∆}.

Therefore, V∗(φ) is ∗-isomorphic to the direct sum of countably many M2(C)⊕ C. 2
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