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Reducing Subspaces for Tzklzkg L5l 0N Weighted Hardy
Space over Bidisk

Bian REN, Yanyue SHI*
School of Mathematic Sciences, Ocean University of China, Shandong 266100, P. R. China

Abstract In this paper, we characterize the reducing subspaces for Toeplitz operator T =
M . + M7, where M i, M. are the multiplication operators on weighted Hardy space H2(D?),
k = (k1,k2), I = (l1,12), k # | and k;,[; are positive integers for 4+ = 1,2. It is proved that
the reducing subspace for T' generated by z™ is minimal under proper assumptions on w. The
Bergman space and weighted Dirichlet spaces Ds(D?) (§ > 0) are weighted Hardy spaces which
satisfy these assumptions. As an application, we describe the reducing subspaces for T, 1 on
Ds(D?) (§ > 0), which generalized the results on Bergman space over bidisk.
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1. Introduction

Let S € B(H) be a bounded linear operator on a Hilbert space H. A closed subspace M
is said to be a reducing subspace for S, if SM C M and SM*+ C ML, Or equivalently, M is
a reducing subspace for S if and only if SPy; = PyS, where Py, is the orthogonal projection
from H onto M. The space M is called minimal if there is no nonzero reducing subspace A
for S which is contained in M properly. In addition, the operator S is irreducible if the only
reducing subspaces for S are {0} and the whole space H.

Stessin and Zhu [1] completely characterized the reducing subspaces for weighted unilateral
shift operators of finite multiplicity. Consequently, multiplication operator M,~ (N is a positive
integer) on Bergman space and Dirichlet space over disk has exactly 2V reducing subspaces. For
a finite Blaschke product B, a lot of remarkable progress had been made on reducing subspaces
for multiplication operator Mp on the Bergman space over unit disk [1-7]. Some of them are
generalized to the Dirichlet space [8-10] and the derivative Hardy space [11].

A naturel theme is to consider the similar question over polydisk. If ¢ is a polynomial, the
reducing subspaces for M, on the Bergman space and Dirichlet spaces over bidisk are considered,
such as ¢ = 2NwM a2V + BwM with N,M > 0,a,8 € C (see [12-18]). Guo and Wang [19]

generalized some of above results in view of graded structure for a Hilbert module. Recently,
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Guo and Huang [20] gave a survey on recent developments concerning commutants, reducing
subspaces and von Neumann algebras associated with multiplication operators that are defined
on both Hardy space and Bergman spaces over bounded domains in C¢.

Since M,~, M,,m are operator-weighted shifts on weighted Hardy space, Gu [21, 22] char-
acterized the reducing subspaces and common reducing subspaces of operator-weighted shift-
s, and provided uniform proofs of some results from [12,13]. In the case that ¢ is a non-
analytic function, the reducing subspaces for T xz and T~ zm on Bergman space over bidisk
are characterized [23,24]. Under proper assumptions about the weight coefficients w, these re-
sults can also be generalized to operator-weighted shifts on weighted Hardy space [25,26]. For
o(z,w) = zMwk2 4 Z1w'2 | Deng et al. [27] obtained a uniform characterization of the reducing
subspaces for T, on Bergman space over the bidisk, including the known cases that ¢ = 2NwM
and ¢ = 2V + @M. In this paper, we mainly consider the reducing subspaces for T, on weighted

Hardy space H2(D?), where H?2 (D?) is defined by
HEDY) = {f(2) = Y fad" i fa €C AP = 3 walful® < oo},
nezZi nezZi
W, = WnyWny, Y0 = (n1,n2) € Z2, and w = {wj, j > 0} is a sequence of positive numbers such
that
lim inf (/)" > 1.

Jj—4o00
More details can be seen in [25]. Throughout this paper, let k = (k1,k2), I = (I1,l2) where k # 1
and k;, l; are positive integers for ¢ = 1,2. By computation, we get {z"}52 ; are the eigenvectors
of T)T, — T, 1. Set
(T5T, — T,T5)2" = Ap2™ and Qu(p) = Aypryr), VP €N

Denote Q,(p) =0 if Q,(p) =0, Vp € N. Suppose that

(P1) limy oo “;mii((;j;; =1.
(P2) If there exists {p;} C N such that lim;_, . p; = 400 and Q,(p;) = 0, then Q,(p) = 0.
(P?’) If Qn(p> =0, then Qn+l(p) Z#0, QnJrk(p) # 0.
(P4) If Q.(p) =0, then
lim (Wn+(p+;)(k+l)wn+p(k+l) _ 1) —0or lim p(wn+(p+21)(k+l)wn+p(k+l) o 1) —0.
prtoo Wit p(kH)+L p=rtoo Wit p(k+1)+k

(P5) Let n€ Qq, me Q. If Qn(p) Z0 and A\, = A, then Q,,(p) Z 0.
(P6) If n#m and Qn(p) = Qm(p), then the following statements hold:
() If Qnii(p) = Qunti(p), then Quyi(p) # 0, Qu(p) # 0;

(i) If Qnyr(p) = Qutk(p), then Quir(p) # 0, Qn(p) # 0.

(

P7) Let m € A and n # m. If Wik = Wniks Windh(ktl) = Wnih(ktr) for h € Zy, then
2" ¢ L,,, where

A= {(ml,mg) c Zi tmy € [0,81),7712 S [07 Illkz%lbkl‘)}, kils # kol
{(m1,m2) (S Z?‘r tmq € [0,81) or me € [0,82)}, kllg = k‘zll

3



512 Bian REN and Yanyue SHI

s; = ged{k;, l;}, i = 1,2, and L, = span{z" " T s m 4+ uk + vl € Z% ,u,v € Z}.
Let [2™] be the reducing subspace for T« ;i on H2(D?) generated by z™. We characterize
]

[2™] as follows:

Theorem 1.1 Suppose w satisfies (P1)—(P7). Let ¢ = zMwk2 + Zh@l2| k;,1; are positive
integers for i = 1,2 such that (ki,k2) # (l1,12). For each m € A, L,, = [2™] is a minimal
reducing subspace for T, on H2(D?).

In fact, Bergman space over the bidisk is a weighted Hardy space satisfying assumptions
(P1)—(P7). So we also get in [27, Theorem 3.3] when k;,[; are positive integers. Furthermore, we
generalize some results in [27] to the weighted Dirichlet space Ds(ID?) (§ > 0) over bidisk. For
every § > 0, we show that Dirichlet space Ds(ID?) is a weighted Hardy space which satisfies the
assumptions (P1)—(P7), and then we characterize the reducing subspaces for T, on Ds(D?) and

the commutant algebra of {7, T} as follows.

Theorem 1.2 Let ¢ = zFwk> + Z1%@!"2, where k;,1; are positive integers for i = 1,2 such
that (ki,k2) # (l1,l2). If M is a reducing subspace for T, on Ds(D?) (§ > 0), then M is
the orthogonal sum of some minimal reducing subspaces. Moreover, M is a minimal reducing
subspace for Ty, if and only if M has the form as follows:

(i) Iflike # kila, then M = L, for some m € A;

(ii) If lyks = kilo, then there exist m € A and a,b € C such that M = My, where My, is
defined by

Moy, = span{(az" + bz )z"**  w v € Z,uk 4 vl +m = 0},
with m’ = (%(mg +1) -1, %(ml + 1) — 1). In particular, if m' ¢ Z2, then b = 0.

Theorem 1.3 Let ¢ = 2wk +ZG2, where k;,1; are positive integers for i = 1,2 such that
(k1,k2) # (I1,12). Then V*(p) is a Type I von Neumann algebra. Furthermore, the following
statements hold:

(i) Ifkyls # kaoly, then V*(¢p) is abelian and is x-isomorphic to @gzl C, where j = |l1ka—I2k1].
(ii) If k1ly = koly and s = (s1,82) with s; = ged{k;,l;} (i = 1,2), then V*(p) = V*(2*) and

V*(¢p) is never abelian. Moreover, if s1 = so = r, then V*(¢) is *-isomorphic to

P M (C) o P
j=1 i=1

if 81 # sa, then V*(¢) is *-isomorphic to the direct sum of countably many Ms(C) @ C.
This paper is organized as follows: in Section 2, we give some useful lemmas; in Section 3,

we show the proof of Theorem 1.1; in Section 4, we introduce the proof of Theorems 1.2 and 1.3.

2. Preliminaries

Firstly, we follow some notations. More details can be seen in [27] and their references.

Denote by N and Z, the set of all positive integers and all nonnegative integers, respectively.
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The Toeplitz operator T, with non-analytic symbol ¢ = 2F + 7! is defined as follows:
Tp =T, 5 =M+ M,

where k,1 € N? and M7, is the adjoint of multiplication operator M. on H2(D?).
For a = (a1,a2), b = (b1,b2) € Zi, denote by a = b, if a; > by and as > by. Otherwise,
denote by a # b.

By computation,
P ntl 2t nizk
Tp2" = k ! ’ s Toa" = ! k ’
2"t + 2 n=l 2"t + o2 nmk
More specifically, let
D ={neZl:ntk ntl}, Qo={neZ%: n=k nil}
Qs={neZ: ntkn=1}, Q={neZ%: n=k n>I}.
For n € Zf_, m € N2, set

wn—i—m Wn+m Wn,

n > m.

) p—

r(n,m) =

, Vr(n,m) =

Denote by T' = TZT, — T, T, then

n __ n
T2" = A\, 2",

where
r(n, k) —r(n,l), n e
N Vr(n,k) —r(n,l), ne€
" r(n, k) —Vr(n,l), neQs
Vr(n, k) —Vr(n,1), ne€Qy
Let

Qn(p) = Anypkrn), VP EN.

Let V*(¢) be the commutant algebra of the von Neumann algebra generated by {I,7,,7}. Set

A € V*(¢). Because \g € R and A\ (A2, 2P) = (ATz%,2P) = (TAz*,2P) = (A2, T2P) =
Ag(Az%, 2P), we can prove that

Az = Z 0526, Vo GZ%_. (2.1)
As=Xa
Throughout this paper, let k = (k1,k2), I = (I1,1l2) € N? with k # 1. For o, 8 € Z2, let
Do ={p € Z: (A2, 2PTPHD) 4 0},
Hg =span{z" :m # B+pk+1), p€ Z,me L}
In the following, we provide several lemmas about A, g under the assumptions (P1)-(P6).

Given «a € Q1, we obtain that if Q,(p) =0, then Az* = ¢z® for some ¢ € C (see Lemma 2.3); if
Qa(p) #0, then Az% =3 5 o cpzP for some cg € C (see Lemma 2.5).

Lemma 2.1 Let A€ V*(p). Ifa € Qq, 8% k+1 and Q.(p) =0, then A, g is a finite set.
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Proof Suppose A, s is infinite. There exist {p; : j € N} C A, 3 such that p; — 400 as
J — +oo. Thus, Ao = Agyp, 41y, Vi € No By (P1), we get Ay = Qp(p;) — 0 as j — +o0.
ie., Qa(pj) = Ao =0, Vj € N. So (P2) shows that Qs(p) = 0. It means Qg1;(p) # 0 by (P3).
Replacing o, 8 by a+ 1, 3 + [, respectively, we can prove that A,y g4; is finite as above. Set
457 = 3 P ),
pEZ
where ¢, € C, ¢(z) € Hﬁo. By (P4), we will get contradictions in the following two cases.

Case 1. lim,, , oo p(“APELDELY — 1) = 0. For a i k, by AT} = T} A, we get

w
Azt — Bk +Z(Cp+cp+l B+(p+1) (k+1) )Zﬂ+l+p(k+l) +T;q(z),
pel WB—k+(p+1)(k+1)

where c =01if S € Q. UQ3; c = ¢ wfk if B € QaUy, and Tjq(2) € Hgﬂ' Since A, g is infinite

ws

and Ay 54 is finite, equality (2.1) shows that there is N € Z, such that ¢y # 0 and

WB+(p+1) (k+1)
WB—k+(p+1)(k+1)

cp + cpt1 =0, p>N.

That is,

‘C +1| _ |C |w5—k+(17+1)(k+l) p >N
= —_— > N.
: " W (pr1) ()

So ¢, # 0 for p > N and that

C 20.) w w
lim |zn|2 Baplet) gy gy (LBl )
oo e [PWs (p1) (k) pee Wht(p+1) () —k
— lim p WB+p(ktl) WBtp(ktDtitk 4
PHee Whp(ktD) L Whtp(k+)+
. r(B+plk+1)+1,k)
= lim —1)=0.
T N R

By Raabe’s convergence test, > |ep|*watp(k-+1) 18 divergent, which contradicts Az* € HZ(D?).
Hence, A, g is a finite set.
: +p(k+1)+k.l )
Case 2. hmp_woop(%w —1) = 0. For a # I, by AT, = T,A and Raabe’s
convergence test, we can also get the contradictions. So we complete the proof. O

Lemma 2.2 Given a # k+1 and A € V*(p). If A, is a nonempty and finite set, then
max{p € Z : (Azoth(k+0) o B+p(k+0)) £ 0} = py + h where pg = max A, g and h € Zy.

Proof If h =0, it is obviously true by the definition of pg. For every N € Z ., suppose it is true
when h < N. We will prove that it is also true when h = N + 1.

By inductive hypothesis, set Az0FNE+H) — ¢ 2 B+Po+t NI (k4D 1y o (2) + by (2), where cn # 0,
pn € span{ 2 TPETD s p < py + N, B+ p(k +1) = 0} and hy € Hj. So AT;T, = T}T,A implies
that

Az N+ (D) aEN(k+) 4 oot (N-1)(k+D))

+ pz
= ey 2Pt NADHD | Py (2) 4+ Hy(2), (2.2)
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where Py € span{z?TPFE+D . p < po + N+1,8+p(k+1) = 0}, Hy € HY, and p,n € R. In partic-
ular, there is no item nz®+t(N=D(*+) when N = 0. Since max{p € Z : (Az@Thk+D) A+pktD)y £
0} =po+ hfor h=N, N —1, we get

A(pz(x+N(k+l) + nz“+(N_1)(k+l))Lz’6+(”“+N+1)(’“+l).
Thus equality (2.2) shows that max{p € Z : (Az0TWN+DEFD B8+p(k+)y £ 0} = py + N +1. O
Lemma 2.3 Let A € V*(p). If o € Q1 such that Q,(p) =0, then Az* = ¢z for some ¢ € C.

Proof If there exists 8 2 k 4 [ such that A, g is not empty, Lemma 2.1 shows that A, g is a finite
set. Let po = max A, g > 0. On the one hand, Lemma 2.2 shows that Ao pk+1) = Mgt (po+p)(k+1)
for every p € Z,. That is,

Qa(p) = Qptpo(kt) (P)- (2.3)
On the other hand, as in Lemma 2.2, set
Az = CPOZﬁerO(kJrl) + 9po (Z) + hpo (Z)v
where ¢, # 0 and gy, € span{z***+0 . 0 < p < po} and hy, € HY. By AT} =T} A, we get
Azot = ¢ APHEpolhtl) o o Bl po—D+D L g () 4 H,, (2),

_ WB+pg (k+1) w=ard - Btp(k+l) . _ 0
where ¢ = ¢, PR Gp, € span{z :0<p<po—1} and Hy,, € Hy. So

max{p € Z : (AzoH AHFPtDy £ 0} = .

It shows that Ay g4 is finite. It is easy to see a + [ ?f k + 1 since a € €. Using Lemma 2.2
again, we have A4 p(k41) = A+i+(po+p)(k+1) for every p € Z . That is,

Qa+1(P) = Qa4i14p0k+1) (P)- (2.4)

By equalities (2.3), (2.4) and assumption Q. (p) = 0, property (P6) implies that o = S8+po(k+1) €
Q1. So po = 0 and a = 3, which deduces that Az* = cz® for some ¢ € C. O

Lemma 2.4 Let o, € Z%, a ¥ k+1, and A € V*(p). If Qu(p) #0 and A, g is a nonempty
and finite set, then the following two statements hold:

(i) There is only one element in A, g;

(i) min{p € Z : (Az0Th+D B+p(k+D)y £ 0} = po + h, where h € Z and {po} = Ay 5.

Proof Let 3 =83 + p1(k +1) where p; € Z such that B=0and 8 % k+1. Then p, satisfies the
statements for g if and only if pg + p; satisfies the statements for 5 Therefore, without loss of
generality, we assume 8 7 k + [.

Since Q(p) Z 0, equality (2.1), properties (P1) and (P2) imply that the set

{h € Zy : (AzothHD BHpED) 2L 0} C {h € Zy : Qa(h) = Agap(er }
is a finite set for every p € Z,. Let pg = max A, g, then

Epo _ U {h c ZJr . <Aza+h(k+l)725+lﬂ(k+l)> 7& O}
0<p<po
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is also finite. Obviously, 0 € E,,,. Let hg = max E,.
Claim. for every h € Z, the following equalities hold:
min{p € Zy : (AzoH(Potht D+ L B84p(R+DY £ 0} = o 4+ h + 1, (2.5)
(AzoF(hothta)(k+D) o B+(po+h)(k+D)y — 0 g e N, (2.6)

If h =0, it is easy to see that (2.6) holds by the definition of hy. Since ho + 1 & Ej,, set
AzoF(hot D+ — g 2A+PotDEHD 1 £ (2) 4 gy (2), (2.7)
where dy € C, fi € span{z’ ") . h > py 42} and g € HY). By AT;T, = T3T, A, we have
A(za+(hg+2)(k+l)+nza+(ho+1)(k+l)+pza+hg(k+l)) — d, WB+(po+1)(k+1) Zﬂ+p0(k+l)+F1(z)+G1(z)7
Wh+po (k+1)
where 1, p > 0, Fy € span{z°t"*+D) . b > py+ 1} and G, € HY. Since ho +1,ho + 2 & Ey,,

there is

pAzothob+) — g Pt DUAD pipo(htl) 4 F () 4 Gy (), (2.8)
WB+po (k+1)

where Fy € span{z?T"*+) . b > py+ 1} and G, € HJ. By the definition of hg, there exists
some p € [0, po] such that (Az@FTho(k+D) A+p(k+l)y £ (0. Together with the fact that
(Fy + Gy) L PEHD 0 < p < p,

we get di # 0. So equality (2.7) shows that equality (2.5) holds for A = 0. Moreover, (2.8)
implies that

min{p € Z, : (Az0Fholk+0) B+p(ktDy £ 0} = p. (2.9)
That is, Claim holds when h = 0.
Given N € Z4. For h < N, suppose (2.5) and (2.6) hold. Therefore,

Aot (hotN+1+q)(k+1) _ Aza+(ho+N—j+l+j+q)(k+l)J_Zﬁ-i-(Po-&-N—j)(k-i-l)7 0<j<N.

According to hg + 1+ N 4+ q € E,,, we have Az0t(hot1+N+a)(k+l) | oA+p(k+D) for 0 < p < py.
Thus we can set

Azt (hot1+N+g)( B+(po+N+1)(k+1

M = diyy ez )+ frineq(2) + 914 n4q(2),

where diin1q € C, fiznig € span{zfth+0 o h > po + N + 2} and g1yniq € Hj. By
ATZT, =T;T,A, it is easy to see that
Az oA N 4240 (kD) g ot (ot LENFa) (kD) 4 1ot (ho+ N+a)(+D))
W+ (po+N+1)(k+1) B+ (Po+N)(
W+ (po+N) (k+0)
where 1)/, p' > 0, Fiyn44(2) € span{z?T"*+0 - b > py + N + 1} and G1yn44(2) € HY. Equality
(2.6) with h = N shows that djyn1q = 0 for ¢ € N. It means that (2.6) holds when h = N + 1.
By (2.6) with ¢ = 1, set

=di4N+tq M+ Fiingg(2) 4 Granig(2),

Az0F(hot N42)(ktl) — g B+ po+ N2+ 1 £(2) 4 g(2), (2.10)
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where d € C, f € span{zT"**1) : h > py + N 43} and g € H}. Then AT}T, = T;T,A implies
A(za+(ho+N+3)(k+l) + n//z@+(h0+N+2)(k+l) + p/’20+(ho+N+1)(k+l)>
— @B ot N2 (kD) B4 (po+N+1)(k+) F(2) +G(2),
Wh+(po+N+1)(k+1)

where F' € span{z+t"F+0) . h > py+ N 4+ 2} and G € Hg. By equality (2.5) with h = N, we
have d # 0. Equality (2.10) shows that the equality (2.5) holds for h = N + 1. So we finish the
proof of Claim.

The equality (2.5) and (2.9) imply min{p € Z : (Az0F(hoth)(k+D) B8+p(kt)y £ 0} = pg + h.
L., Aot (ho+h)(k+1) = AB+(po+h)(k+l)- By Lemma 2.2, pg = max A, g shows that A\oipyr) =

AB+(po+h)(k+1)- Therefore,
Aath(k+l) = Nat(htho)(k+l)s Vh € Zy.

If ho > 1, then Aoqhg(kt1) = Matnho(k+l) = Qal(nho) = ngrfoo Qu(nhy) = 0. By (P2) again, we
get Qn(p) = 0, which contradicts the assumption. So hg = 0. The equality (2.9) implies that
po = min A, g. So we complete the proof. O

Lemma 2.5 Let A € V*(¢). If a € Q; such that Q,(p) # 0, then (Az%, 2%) = 0, for every
B € QU3 U Qy.

Proof Suppose (A2, 27) # 0 for some B € Qo UQ3U Q. Then 0 € A, 5. Firstly, we show that
Aa,p = {0}. Otherwise, set pg € Ay g, then Agip (i) = Ao If po > 1, since Qu(p) # 0 and
B+ po(k+1) € Qq, (P5) shows that Qg p,(k+1)(p) Z 0. Note that Qz(p) = Qp+po(k+1)(P — Po)-
That is Qg(p) # 0. By (P1) and (P2), we get Ay g C {p € Zy : Qp(p) = Ao} is finite. Lemma
2.4 implies that there is only one element in A, g, which contradicts to {0,po} C Ay g. If po < 0,
let 81 = B+ po(k +1) = 0. As above, we can prove Qg, (p) #Z 0 and there is only one element in
A, p,, which contradict to {0, —po} C Ay g, -
By A, = {0}, Lemma 2.2 implies that Q,(p) = Qs(p). Moreover,

Az = cp2? + h(2),

where ¢z # 0,h € Hy.
Next, we will get contradictions in two cases respectively.
(i) Be QU By AT, =T A, we get
Azt = g Pt 4 05&%_’“ + G(z),
Wa—k
where G € Hg. So Awyipk = {p € Z : (Azetl 2B—k+p(k+Dy £ 0} = {0,1} is finite. That is
I =maxAq 1,5k Lemma 2.2 implies that Aoy ipnet) = Agpithet): 90 Qatri(p) = Qp1i(p)-
Together with Q. (p) = Qs(p) and (P6), we get Qq1i(p) # 0. Then Lemma 2.4 leads to that
there is only one element in A, 3—;. This is a contradiction.
(ii) B € Q3. Substituting 77 with T,,, we get
ws

Azotk = ngﬁ+k + Cﬁrﬁ lzB*l + F(2),
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where F' € Hj. As in (i), we can prove that Aq s 1= {p € Z: (Azath B=lp(ktl)y £ 0} =
{0, 1}, which contradicts to the fact that there is only one element in A4 ;. O

3. Reducing subspaces for 7., on weighted Hardy space

In this section, we mainly consider the reducing subspaces for T, with symbol ¢ = 2k + 7
(k,l € N?,k # 1) on HZ(D?). It is known that T, and T} share the same reducing subspaces. So
k and [ are symmetrical. Together with the symmetry of z; and z2, we assume 0 < k; < ;. For

m € Zf_, let
Ly, = span{z" " T m fuk ol € Zi,u,v €Z}. (3.1)
Obviously, L,, are reducing subspaces for T;,. Let
[m] = {m +uk +vl € Z% : u,v € Z},

and
A J Almima) €22 cmy € [0,51).m2 € [0, Wka—lobilyy - kyly # koly,
{(ml,mg) S Z?i- tmy € [0,81) or mo € [0,82)}, kily = kgll,

where s; = ged{k;,l;}, i =1,2. Then Z3 = J,,ca[m]. The proof can be seen in [27]. Therefore,
HZ(D?) = € Lom.
meA
For m € A, let [2™] be the reducing subspace for T,«, s on H2(D?) generated by 2™.
If w satisfies the assumptions (P1)-(P6), we can prove that [z™] = L,, (see Theorem 3.2).
If w satisfies the assumptions (P1)—(P7), we get that [z™] is minimal (see Theorem 3.3). By
Theorems 3.2 and 3.3, it is easy to obtain Theorem 1.1. To prove Theorem 3.2, we need to show

that set ) is the union of an increasing sequence of sets. So we firstly give the following Lemma.

Lemma 3.1 Givenm € A. Let ¢; =min{c € Z; : m+ck = il},d; =min{d € Z; : m+dl =
ik}, i € Zy. Then ¢; and d; are strictly monotonically increasing for i € Z..

Proof By the definition of ¢;, it is easy to see ¢; 11 > ¢; > 1. In the following, we will prove that
cit1 > ¢;. Fori € Zy, since m~+(c;—1)k # il, we have mi+(c;—1)k1 < ily or mo+(c;—1)ko < ils.

Case 1. my + (¢; — 1)k1 < @ly. Then —my — ¢;k1 + k1 > —ily. By the definition of ¢;41, there
is my 4+ ¢i41k1 > (14 1)l1, which implies that (¢;41 — ¢; + 1)k > l3. By assumptions k; < I; and
CiyCiy1 €Ly, weget cip1—Cc;+1>2.80¢412>¢6+1>c¢.

Case 2. ma + (¢; — 1)ka < ila. As in Case 1, it is easy to see (¢;11 — ¢; + 1)ka > lo.

If ky <y, then ¢;41 > ¢; +1 > ¢;.

If ky > o, let s; = ged{k;, 1;}, then k1 = p1s1, 1 = q151, k2 = pasa, la = gaso for some
pi, ¢i € N such that p1 < g1 and pa > ¢o. Assume ¢;11 = ¢;. Since m+c;k = m+c;p1k = (i+1)1,
we have my +¢;k1 > (i + 1)) = %1 +c¢ipr > (i+1)gr. Since m € A, T—ll < 1. Together with the
fact that ¢;p; is an integer, we have ¢;p; > (i + 1)q1, i.e.,

Ci > q1

- — > 1
Z+17p1
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It follows that ¢; > i 4+ 2. Furthermore, we get
. ma .
(i +2)p2 < eip2 < 5, b2 <ig2 +pa,
2

where the last inequality comes from the assumption mg + (¢; — 1)ks < ilo. Thus p—"’ < H—l <1,
which contradicts ps > g2. Hence, ¢;41 > ¢;.

By the same technique, we can prove that d;+1 > d;. So we complete the proof. O

Theorem 3.2 Assume w satisfies (P1)—(P6). Let m € A, then [z™] = L,,, where L,, is defined
by (3.1).

Proof Clearly, [z™] C L,,. Denote
Q=2 {(u,v) € Z* :m+uk +vl € Z2}; Q2 {(u,0) € Q: ekl ¢ M)

Clearly, Q C Q. It is enough to prove that 2 C Q. Lemma 3.1 shows that Cn < Cpy1 and

d,, < dpt1. Since ¢, d, are all integers, we have lim,, o ¢, = lim,,—, 1 o d,, = +00. Thus
Q= U —n+1,¢,] x [-n+1,d,]) N Q).

By induction, we will prove that the following statements hold for each n € N:
(T1) ([~n+1,cp] X [-n+1,ds])NQ C Q;
(T2) (cn,—n) €
(T3) (—n,d,) € Q.
Therefore, (T1) implies the desired result.
Step 1. n = 1. It is easy to check that

Tézm = 2™tk ¢ [2™M] V) € [0, ¢1); T*] m = ymHil e 2™, Vj€[0,d].

It follows that ([0,¢1] x {0}) U ({0} x [0,d1]) € Q. If dy = 0, then (T1) holds for n = 1.
For (u —1,v) € Q, there is

w k+vl —
T;:zm—&-uk—i-vl — Zm+uk+(v+1)l + m+uk+v Zm+(u 1)k+wvl c [

z™]. 3.2
wm-i—(u—l)k—i—vl ] ( )

By (3.2) and [0, ¢1]x {0} C Q, we have [1, ¢1]x{1} C Q. If d; = 1, combining that {0} x[0,d;] C Q
there is [0, ¢1] x {1} C Q. Then (T1) holds when n = 1.

If dy > 2, by [0, ¢1] x {1}, {0} x [0, d1] C ©, it can be proved that [0, ¢1] x {2} C Q. Therefore,
we can prove that (T1) holds when n = 1 by repeating the similar process as above a finite
number of times.

By the definition of ¢;, we have m +c1k —1 = 0. Let P.mj be the orthogonal projection from
H2(D?) onto [z™]. Then (3.2) shows that

TwszrClk — pmt(etDk Wm+ci k pmteik—l o [2™],
Wimtcrk—1

. . . w k s k—
T¢Z7n+clk _ P[zm]T<p27n+clk _ P[zm]z7n+(cl+1)k m--cy P[ ] m+clk l.
Wmcik—1
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It follows that

w k — _
P[ZVYL]ZnL+(Cl+1)k — Zm+(cl+1)k = mtelk (Zm+clk b P[z7n]zm+01k l)- (33)
Wm+ci1k—1

By the definition of ¢, we also have m+c1k—1 # land m+ (c1 — 1)k # I, ie., m+ 1k —1 € Q.
It is easy to see m + (¢1 + 1)k € Q4. By Lemmas 2.3 and 2.5, above equality shows that
<P[zm]zm+c1k—l, Zm+(c1+1)k> :<13[Zm]zm-',-c1k—l7 P[zm]zm+(c1+1)k>

:<Zm+clk7l7P[Zm]zm+(cl+1)k> —0.

Clearly, zmtetk—l ] zm+(c+Dk  Therefore, zm“lk’l—P[Zm]szrClk*lJ_P[zm]zm+(cl+1)k—zm+(cl+1)k
and (3.3) implies that
Zm+01k—l _ P[Zm]zm+c1k—l c [Zm]

)

that is, (T2) holds when n = 1. By PpmTjz" 4! = T2 similarly, we can get (T3) holds
when n = 1.

Step 2. Assume (T1)—(T3) hold when n < p, we will prove that they also hold when n = p+1.
Inductive hypothesis (T2) shows that

T]Zm%»cpkfpl _ ZerCpk‘*lerjk‘ c

b "

[z™], V5 €0,cpp1 —cp)
That is [¢p, cp+1] X {—p} C Q. Note that

T,z tubtol = b (ut Dkl g Smiukiolmibukt0-Dl g [m] 0 Y(u0 — 1) € Q. (34)
wm+uk+(v71)l

By (3.4), we can verify the following fact for j =0,1,...,¢,41 — ¢, — 1 one by one:
since (¢, +j,—p+1),(cp +J,—p) € ﬁ,there is (cp+j5+1,—p+1) € Q.
Furthermore, the following statement holds for j € [0,¢p41 — ¢, — 1], h € [0,d, +p — 1]:
since (¢ +j,—p+h+1),(cp+J4,—p+h) € Q, there is (cp+j+1,—p+1+h)e Q.
Combining inductive hypothesis (T1) with n < p, we have that ([—p, cp41] X [=p,dp]) (12 C Q.
Similarly, by inductive hypothesis (T3), we have

Tizm Phtdl = pmopktdpltil ¢ ;7] i € [0, dpyr — dy)-
Together with ([—p, cp+1] x {dp}) Q2 C Q, by (3.2) many times, we can prove that

([=ps cpar] x {dp +i})[((QC Qfori=1,....dps1 — d.

So (T1) holds when n = p+ 1.
In particular, statement (T1) shows that zm+er+ik=pl ymtdpril=pk ¢ [;m] Note that
Twzm+cp+1k7pl _ Zm+(cp+1+1)k*pl I Wm+cpr1k—pl Zm+cp+1k7(p+1)l c [Zm]’
Wmntepirk—(p+1)1
T* ymtdpal=pk _  m(dpra+1)l—pk | Wmn+tdp1l—pk Smtdpal=(p+ 1)k o [
v Wm+tdp1l—(p+1)k
where m+ cp1 1k — (p+1)l,m+dy11l — (p+ 1)k € Q1 and m + cpp1k — pl,m + dp11 — pk € Q.

By Lemmas 2.3 and 2.5, we can get the desired results as in step 1. O

2"

)
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Theorem 3.3 Assume w satisfies (P1)-(P7). Given m € A. Then L, is a minimal reducing

subspace for T,.

Proof Suppose M C L,, is a reducing subspace. Let Pp; be the orthogonal projection from
H2(D?) onto M. Then PyT, = Ty Py and PyT; = TZPy. Note that m € A C Q. If
Qm(p) =0, Lemma 2.3 shows that Pyr2™ = ¢z™ € M for ¢ € C.

If Q.. (p) #Z 0, Lemma 2.5 shows

Py 2™ = Z ag??, (3.5)
BEQU Am=As
with ag € C. If ag # 0, then A,, 3 = {0}. Lemmas 2.2 and 2.4 induce that
Aptpiriy,p = {p}, Vp€Zy. (3.6)

Thus Pz tPk+D = D BER A ag 2 TPEFD Yp € 7, . Tn the following, we prove that

ag,p = ag,q, V0,q € Zy.

Clearly, it holds when p = 0. For p € Z, suppose ag,, = ag,q, 0 < h, ¢ < p. By T;TWPMZerp(k‘Jrl)
= PMT;TWz””“rlo(k+l)7 we get
PM(Zm+(P+1)(k+l) + pamtelhtl) Mzmﬂpﬂ)(kﬂ))
Wim+(p—1)(k+1)
= Z ag p(2 T PHEHD +nzﬁ+p(k+l)+Mzﬁ+(p—l)(k+l)),

BEQ,Am=Xp W+ (p—1)(k+1)

where p, n > 0. By (3.6), we have Py zm+Pk+D | z8+m+ Dkt py pmt(p=1)(k+1) | o8+ (p+1)k+
Pzt 0t (kAD) | oB8+pk+l ang Pzt (et D(+D | o8+(e—Dk+ - Therefore,

Pyt @00 — S g p (D),
BEQL,Am=MAg

ie., agp = agpt1-
Furthermore, by the expression of Py;z™T®=D(E+) e have

w w
mAp(k+l) B+p(k+1)  WpeN.
Wmt(p—1)(k+l)  WB+(p—1)(k+1)
So (P1) shows that
Wm _ Gmiptl) gy Omteledd g
Wn, Wn+p(k+1) p—+o0 Wntp(k+1)
For p =0, PyT;T,2" = T7T,Pyz™ implies that
Pag(zmHeH Mzm) _ Z ag (PR 4 Wa+k 2P).
W BEQL,Am=Ap ws

Thus “mtk = wf)—;r’“ and wyx = wWpik. By (P7), we have Py 2™ = 2™ for some ¢ € C. By
Theorem 3.2, we get M = L,,, or M = {0}. O

4. Reducing subspaces for 7. . on Dirichlet space
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In this section, we focus on a class of weighted Dirichlet space Ds(D?) (§ > 0),
Ds(D?) = H2(D?) with w = {w, = (n1 +1)°(ng +1)°,n € Z%}.

We also suppose that 0 < k; < ;. In this case,

H2 . (n(i+kr§§)6 _H2 L (n(i"l‘li"l‘)%)é neQ,

1= n;+1 1= n;+1 ’ ’
2 (nitki+1)? 2 (ng+li+1)° 2 (ni+1)°

A — | il | B 1) —Ilici 2 —E A1) n €,
n— 2 (nitki+1)° 2 (n +1;4+1)° (ni+1)°

H¢:1 7(%“)5 _Hi 1" (ng +1)5 "‘Hl 1 (ni—1;+1)%° n € Qs,

2 (n;+k; +1) 2 (ni+l1; +1) 2 (n;+1) (n1+1
H'L:l Tt H,L- 1 W*Hi 1 (ni—ki+1)° +Hz 1 (ni—l;+1)%° n e Q47

and

(ni + L + p(ki +1;) +1)°
(ni +p(ki +1;) +1)°

(ni + ki +plki + 1) +1)°
(ni +p(ki +1;) +1)°

Qn(p) =

(ni + p(k; +1;) +1)° (ni +p(ki +1;) +1)°
L (i — ki p(ks + 1) +1)° 0 25 (ne =L+ plki + 1) +1)°

(==
- |
e T

Firstly, we will show in this case w satisfies (P1)—(P7). Clearly, (P1) holds. The next Lemma
shows that (P2) holds.

Lemma 4.1 Letn € Z?._. Then the following statements are equivalent:
(1) A =S (kg — 12)(711 + 1) + (k’l - ll)(nz + 1) =0 and klkg = lllg,'

I Y i ko _ .
(i) n1+1 T not1? ni+l T mno+l and kikz = lLily;

(i) Qn(p) = 0;
(iv) There exist {p;} C N such that jggloopj = 400 and Q,(p;) =0 for j € N.

Proof Firstly, we prove that (i) holds if and only if (ii) holds. Note that (ii)=-(i) is obvious.
Conversely, if (i) holds,

kl(kg - lg)(nl + ].) + kl(kl - ll)(TLQ + ].) = l2(l1 - kl)(nl + 1) + kl(kl - ll)(ng + ].) = 0.

— b bh ko i
Since k1 < 1y, we get an = 57, and then 17 = 5o e, (ii) holds.

Secondly, we prove that (ii)=-(iii). By computation, we have @, (p) = 0 if and only if

2
H(nz +p(ki + 1) — ki +1)° (ni + p(ks + i) — 1 +1)°
i=1
2 2
[H(ni +p(ki + 1) + ki +1)° = [ [0 + p(ki + 1) + 1 + 1)5}
i=1 i=1
2 2 2
H (ni +p(k; + 1) + 1)25[H(ni +p(k; + 1) — 1l +1)° —H(ni-i-p(ki-l-li) —ki-i-l)é].
i=1 i=1 i=1

If (ii) holds, then
2 2
L1 +pki + 1) + ki +1)° = [ [ (s + p(ks + 1) + 1+ 1)°

=1 i=1
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2 2
= H(nz +p(ki + 1) — L+ 1)° — H(le +p(ki + 1) — ki +1)° = 0.
i=1 i=1
Therefore, (iii) holds.
Since (iii)=-(iv) is obvious, we only need to prove that (iv)=(i). Let

2 2 2
hl(t):H(ait+1)5(bit+1)5(Hclt—i-l Hdt—i—l)
i=1 i=1 i=1
2 2 2
ha(t) = [ [ (st + 1)25(H(bit +1)° — [J(ait + 1)5), >0,
=1 =1 =1
where
n; +1 k; li ki Li :
P = =€ ———, b= ———, ci=e;+ ——, di =€+ ——, i=1,2.
T Rrn T TR T T R T R T e
Let ¢ = faka—hla__ hep

(k1411) (k2 +l2)
cl+02—d1—d2:b1+b2—a1—a2:255,
ko — 1o ki—11
—didy = 4.1
C1C2 102 61k2+12+€2k1+ll+x, (4.1)
ko — o k1 —1

biby —ajas = ¢ +e —T

It follows that lim,_,o+ (hy(t) — ho(t)) = 0. Since (iv) holds, the definition of Q,,(p;) shows that

1
hl(tj) = hg(tj) for tj = ]T (42)
J

By L’Hospital’s Rule, we have
M) = ha(®) B~ ()
t—0+ 12 t—0+ 2t t—0+ 2

Moreover,

i 2 ()

t—ot 2

-1
= (52((11 +ag 4+ by + bg) + )(Cl +co+dy + dg))(Cl +co —dy — dz) + (5(0102 - dldg)

A
- - o 2 1— b

= ((30° = 8)(e1 +e2) =0 5)2$+6(61k2+l2 T T
lim M

t—0t+ 2

5(5 —
2

= ((30% = 8)(e1 + e) — 6% +0)2x + 6(ey —

1
)(bl —+ b2 =+ ay =+ ag))(bl + bg —ay — ag) =+ 5(b1b2 — alag)

ko — 1o ki—14
bt CE10 - ).

= (262(61 —|— 62) —|—

By (4.2), we get

lim i (?) = lim hQ(t).
t—0+ 2 o+ 12

Since § > 0, we get x =0, i.e., kiks = l1ls.
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Furthermore,
k1 ko
cit+ca=di+dy=e+ex+ + ,
1+ 1 2 1 Oy R S
k1 ko

a1+a2:b1+b2:€1+627

ki +l ket
C1Cy — d1d2 = b1b2 — a1as.

Case 1. 6 = 1. L’Hospital’s Rule shows that

ha(t) — ha(t hy (t) — hy (t

L) —ha() B () = b ()
t—0+ t3 t—0+ 6

On the basis of careful calculation, we get

"

t
lim 17() = 252(61 + €2 — 1)(0162 — dldg),
t—0+ 6

"

. t
tLl%lJr QT() = 26%(e1 + €2)(b1by — araz).

Therefore, 2(e; + e2 — 1)(c1ca — d1da) = 2(e1 + e2)(c1ea — dids), i.e., c1ca — dida = 0.
Case 2. § # 1. Dividing both sides of (4.2) by Hle(ez‘tj +1)% ) we get

fi(t5) f2(ty) = f(5),

where
o =TI By,
fo(t) = [J(eit +1)° = T [ (dit + 1)°,
fs(8) = [Tt + 1)° = [J(ait + 1), t>0.

Similarly, by lim_o+ f1(t) = 1, we get limy_,o+ (f5(t) = f3(t)) = limy_0+ (f2 (£) = f5 (£)) = 0. By
L’Hospital’s Rule again, we have
f2 (1) = f5 (1)
t—0+ t3 t—0+ 6
= ((5 — 1)((31 + 02)(0162 — d1d2) — (5((5 — 1)(b1 + bg)(ble — a1a2)
= (5 — 1)(6102 — dldg)(cl —+ co — bl — bg)

= 2(5(5 — 1)(0162 — d1d2).
So C1Cy — dldg =0.

Finally, equality (4.1) implies that A, = (n1 + 1)(k2 — l2) + (n2 + 1)(k1 — 1) = 0. So we
complete the proof. O

Lemma 4.2 The property (P3) holds on Ds(D?). That is, if Q,(p) =0, then Q,4(p) # 0 and
QnJrk (p> §é 0.
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Proof If Q,(p) =0, Lemma 4.1 deduces that A4, = (k2 —l2)(n1+1)+ (k1 —11)(n2+1) = 0 and

klkg = lllg. By kl < ll, we have k2 > 12. Then An+l = An + (kQ - lg)(ll - kl) 7é 0. It follows

that Qn4i(p) £ 0. Similarly, we have Q11 (p) Z 0. O

Lemma 4.3 The property (P4) holds on Ds(D?). That is, if Q,(p) = 0, then

r(n+plk+1)+1,k)

li —1)=0.
pﬂlinoo r(n+pk+1),1) )
Proof Let
n; +1 l;
€i=k:+li,bi=€i+1, Ci=€i+ki_:_li.

By the definition of function r(n,m), we have

r(ntpk+ 0 +LE) | Ontprkt) @napead) 4 h) - ()

r(n+p(k+1),0) Wrtp(k )+ Drntp(k)+1 RG)

where
2 2

A®) =T]let+1)°(bit +1)°, fa(t) = [ (et + 1), ¥t >0.

i=1 i=1
By L’Hospital’s Rule, we get
i) = o) L fi(E) = f5(0)
TR O TRy
)

kike — 11l
:(5(61+€2+b1+b272617202 =25 172 12

(lﬁ + 11)<k‘2 + lg) ’

By Qn(p) =0, Lemma 4.1 shows that k1ks = l1l5. Hence,

. r(n+pk+1)+1k) _ o 1) = ()
lim p —1)= lim ——>~+
p—r+oo r(n+plk+1),0) t—ot  tfa(t)
Lemma 4.4 The property (P5) holds on Ds(D?). That is, for n € Q1,m € Qq, if Q.(p) Z 0
and A\, = A, then @, (p) #Z 0.

=0. O

Proof Suppose Q.,(p) = 0, Lemma 4.1 shows that l1lo = k1ke. Since m € Qq4, we get A, =
Qm(0) = 0. Therefore, A, = A\, = 0. By the definition of \,, with n € Q, there is w11 = Wni,
ie, (mi+ki+1)(na+ke+1)=(n1+1l+1)(n2+ 13+ 1). Together with l1ls = k1ko, we obtain
that

An = (kz — lg)(’nl + 1) + (kl - ll)(ng + ].) =0.

Lemma 4.1 implies that @, (p) = 0, which contradicts the assumption. O

Lemma 4.5 The property (P6) holds on Ds(D?). That is, if Q,(p) = Qm(p) with n,m € Z%
and n # m, then the following statements hold:

(j) If Qn+l(p) = Qm-&-l(p)’ then Qn+l(p) #0, Qn(p) #0;
(i) If Quir(p) = Qmir(p), then Qnyx(p) # 0, Qn(p) #Z 0.

Proof If kiks # l1l2, Lemma 4.1 implies that (P6) holds.
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If kiky = 11, then loky # koly. Otherwise, k3k; = kolily = I3k, It is easy to see kg = Iy
and k; = [y, which contradicts k # [.

Here, we only prove that if @, (p) =Qm (p) and Q7z+l(p) = Q77z+l(p)7 then Qn+l(p) # 0, since
the proof of others is similar.

Suppose Qn+1(p) =0. Then Q,,41(p) = 0. Lemma 4.1 implies that
(k‘l — ll)(ng + 1y + 1) + (kz — lg)(’ﬂl + 1+ 1) =0,
(Iﬁ — ll)(mg + Iy + 1) + (k‘g — lg)(ml + 1 + 1) =0,
(k1 —1

1)(712 — mg) + (kg — lg)(’ﬂl - ml) =0. (43)
Let v, (t) = Hle(,?_tllt +1)° for t > 0. By Q,(p) = Qun(p), there is
Vi ()Vim—k () Vim—1 () gn(t) = v (O vn—k () vn—i(t)gm(t), Vi= %a (4.4)
where

gn(t) = V7L—k(t)yn—l(t)[’/n+k(t) - V7z+l(t)] + Vﬁ(t)[l’n—k(t) - Vn—l(t)}-

Denote
e-—ni—’—l g-—mi+1 S k; o l; i—1.9
1 T z+l17 1_k1—|—lz7 l_k1+lz’yz_kz+lz’ - 9 e
Set € = ej(x2 — ya2) + ea(z1 — y1). By (4.3) and kiky = l1lo, there is

(h = k1)l — k2)

§=¢1(z2 —y2) +ea(z1 —y1) = #0
H§=1(ki + li)
By computation, we have the following equalities:
T1tr2=y1+y2=1,
lim vV(t) =0
Jim 1,7 (8) = 6(e1 + e2),
lim VT(LQ)(t) = (5((5 — 1)(61 + 62)2 + 2deqeo,
t—0+
i _ W) (4) =
tgrél+(Vnik Vnx1)' () =0,
lim (Vnak — vntr) @ (1) = £25€,
t—0+
lim [(vnsk — vaar) @ (1) = 66(8 — 1)(£(e1 + e2) + 1)E,
t—0t
Therefore,
; — 1 W) = 1 @) (4) = i (3)(¢) = —
Jm gn(t) = lim g,°(¢) = lim g.7(t) =0, lim g."(t) = —126¢. (4.5)

Note that lim,_,g¢ Z2Vm=tVm=l(4) = 1 and lim;_,q+ (g%g) (t) — gg,?{)(t)) = 0. As in Lemma 4.1,

UnVn—kVn—1
gnL(t)

equality (4.4) deduces that lim;_ o+ 9;5“ = lim;_,o+ #%z~>. Combining L’Hospital Rule, we get

g )—gP @)
+ 24

© — lim;_,q = 0. Similarly, by

: In(t)—gm
lim,_, o+ %

(Vim—kVim—1)(t) Vimgn)(t) _ (¥ngm)(t)

(Vn—kVn—1)(t) t4 tt

we get
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Since
Vmgn) () = v gn + D gl + 60298 + WD g® + vingl?,
equality (4.5) shows that

lim (vmgn — Vngm)(4) (t) =4 lim (Vf,pgfl?’) — Vﬁl)gg))(t) = —486%(¢) + €3 — €1 — e2)¢ =0,

t—0+ t—0+
we obtain (k1 + 11)(n2 — ma) + (k2 + l2)(n1 — mq1) = 0. Together with (4.3), we have
k‘l(ng — m2) = kg(ml — 77,1),
lo(n1 —mq) = l1(ma — na),
(k?llg — kgll)(’nl — ml)(ng — mg) =0.
Since kqly # koly, there must be n; = mq, no = ma, which contradicts n # m. O
Lemma 4.6 The property (P7) holds on Ds(D?). That is, if n,m € A such that n # m,

Witk = Wntk and Wy p(ktl) = Wnin(kti)(Yh € Zy ), then 2" & Ly,.

Proof In fact, we will prove that l1ky # lok; and n = (%(mg +1) -1, %(ml +1)—1). By

Wm = Wn,y Wmtk = Wntk, aNd Wikl = Wntk+i, We get respectively

(m1 +1)(ma +1) = (n1 +1)(n2 + 1), (4.6)
(mi+ki+h+D(metka+lo+1)=(n1+k+1+1)(ne+kat+1la+1). (4.8)

Putting (4.6) into (4.7), we have
k1 (m2 — 712) + kg(ml - nl) =0. (49)
Putting (4.7) into (4.8), we have
ll(mQ - ng) + lg(ml - nl) =0. (410)
By (4.9) and (4.10), we get kila(my — n1)(me — na) = kali(my — ny)(mg — na).
If k1ls # koly, then my = nq, mo = ns, which contradicts n # m.
If k1ly = koly, equality (4.6) implies

l=— 4.11
ms + mi+1 ( )

Now putting (4.11) into (4.10), it means
(n1 4+ 1)(n2 +1)

l — 1 l — =0.
1( e (n2 +1)) +la(m1 —n1)
Thus,
1
ll :;211 1(711 — ml) = 12(n1 — ml).
Therefore,
l2 ll
ngz—(m1+1)—1, nlz—(mg—f—l)—l.

ll 12
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Assume 2™ € L,,. There are u,v € Z such that

h

ly
That iS7 U]Cl +’Ull = 7%(11,]{32 +Ulg). Tog‘ether with llkg = kllg, we get Ukl +’Ull = ’U,kg +’Ulg =0

l
(ma+1) —1=my +uky + vl and Z—Q(ml—i—l)—l:mg—i—uk‘g—&—vlg.
1

and mj = mq, which contradicts n # m. O

Let M be a nonzero reducing subspace for T,,. Let P be the orthogonal projection from
Ds(D?) onto M. By Lemma 4.6, we have Pz™ = az™ + bzm/, where a,b € C and m’' =
(%(mg +1) -1, %(ml + 1) — 1). In particular, if kily # kolq, then b = 0; if k1ly = koly and
m' ¢ 7%, then b = 0. And [az™ + bz | @bz — az™] = Ly @ Ly when a2 + b # 0. Since
Ds(D?) = @D,..ca Lm and M is nonzero, there exists mg € A such that Pz™ # 0, and

[Pz™0] = span{(Pz"°)z" ! . w,v € Z,m + uk + vl = 0} C M.

If M is minimal, M = [Pz™°]. As in [27, Theorem 3.8] and [28, Lemma 2.5], we can prove that
M is the orthogonal sum of some minimal reducing subspaces. Therefore, we get Theorem 1.2.

Next, we consider the unitary equivalence of L,, and L,,,, where m, m’ € A. Recall that two
reducing subspaces M; and M, for T, are called unitarily equivalent if there exists an operator
U on Ds(D?) such that Ulyy, is unitary from M; onto Mo, Ulpyr = 0 and U commutes with
both T}, and T7. On the basis of the results given in section 2 and section 3, we can obtain the

following results as in [27].

Lemma 4.7 Let k # I(k,l € N?). Suppose m, m’ € A, then the following statements hold:

(i) If kyly # koly, then Ly, and L, are unitarily equivalent if and only if m = m’.

(ii) If kily = koly, then L, and L,, are unitarily equivalent if and only if m’ = m or
m' = (%(mg +1) -1, %(ml + 1) —1). In particular, if m" ¢ A, then L,, and L,, are unitarily

equivalent if and only if m’ = m.

Proof Let U € V*(¢) and U|r,, be unitary from L,, onto L, . If @,(p) = 0, Lemma 2.3
shows that m = m/ and Uz™ = c¢z™ for ¢ € C. By |[Uz™| = ||z™|, we get ¢ = 1. If
Qn(p) £ 0, Lemma 4.6 shows that if kilo # koly, then m = m/; if kily = koly, then m’ €
{m, (E(ma+1) =1, 2(m1 +1) = 1)}
Conversely, the sufficiency of (i) is obvious. Set U|;. = 0 and
ymtik+jl Zm'+7,'k+jl

U = .
( vV Wm+ik+jl ) ( VWm/ +ik+3l )

It is easy to check that U|r, is unitary from L,, onto L,, . So we get the sufficiency of (ii). O

Finally, by above Lemma and [7, Corollary 8.2.6], we can prove Theorem 1.3 as follows.

Proof of Theorem 1.3 If kyly # koly, then L, and L,, are not unitarily equivalent when
m # m’. Since the number of elements in A is |l;ks — k1l2|, we have V*(p) is *-isomorphic to
J_, C, where j = [l1ko — loki|.
If k1l = kaly, let s; = ged{ks, l;}, ki = sipi, li = 8iq;, for i = 1,2. Then pi1ga = p2qi. Since
ged{p1,q1} =1, p2 = sp; for some s € Z . Similarly, ¢; = tqs for some ¢t € Z.. So p1g2 = stpige.
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It means that s =t =1, i.e., po = p; and ¢2 = q1.

Case 1. s1 = so = r. Let m/,m € A such that m’ # m. Then L,, and L,,  are unitarily

equivalent if and only if m’ = (mg, mq). So

{(m1,ma) €A; my =ma=35,5=0,1,2,....,r =1} ={m e A; m=m'},

{meA; mi#ma} C{meA; m € A,m#m'}.

Therefore, V*(¢) is *-isomorphic to @;2, M2(C) ® @;_, C.

Case 2. s1 # so. Without loss of generality, we assume so > s71.
{(tsl—l,O):teN}g{meA:m':(z—l—l, tso — 1) € A},
2

{(s1—=1tsa—1):teN}C{meA:m = (ts1 — 1,50 — 1) € A}.

Therefore, V*(¢) is *-isomorphic to the direct sum of countably many Ms(C) @ C. O
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