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1. Introduction

A manifold M is called a generalized Kähler manifold [1] if it carries the data (g, I+, I−, b),

where g is a Riemann metric on M , I± are two complex structures on M , b is a 2-form on M .

Moreover, I± are parallel with respect to the connections ∇± = ∇+ 1
2g

−1H, respectively, where

∇ is the Levi-Civita connection of g and H = db. The generalized Calabi-Yau manifold is an

important kind of this generalized Kähler manifold. Let (M, g, I+, I−, b) be an n-dimensional

generalized Kähler manifold. Let E be a holomorphic vector bundle on M endowed with two

holomorphic structures ∂̄+ and ∂̄− with respect to the complex structures I+ and I−, respective-

ly. An I±-Higgs bundle (E, ∂̄+, ∂̄−, ϕ) over (M, g, I+, I−, b) is an I±-holomorphic vector bundle

(E, ∂̄+, ∂̄−) together with a Higgs field ϕ ∈ Ω1,0
M (End(E)) satisfying ∂̄±ϕ = 0.

Suppose H is a Hermitian metric on (E, ∂̄+, ∂̄−, ϕ). Let FH
± be the curvatures of the Chern

connections ∇H
± on (E, ∂̄+, ∂̄−, ϕ) associated to the Hermitian metric H and the holomorphic

structures ∂̄±. We consider the Hitchin-Simpson connection [2]

∇H
±,ϕ = ∇H

± + ϕ+ ϕ∗H ,
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where ϕ∗H is the adjoint of ϕ with respect to the metric H. The curvature of this connection is

FH
±,ϕ = FH

± + [ϕ, ϕ∗H ] + ∂H
± ϕ+ ∂̄±ϕ

∗H .

A Hermitian metric H on I±-Higgs bundle (E, ∂̄+, ∂̄−, ϕ) is said to be α-Hermite-Yang-Mills-

Higgs if
√
−1(αFH

+,ϕ ∧ ωn−1
+ + (1− α)FH

−,ϕ ∧ ωn−1
− ) = (n− 1)!λ · IdE · dvolg, (1.1)

where α ∈ (0, 1), λ ∈ R, and ω±(·, ·) = g(I±·, ·) are the fundamental 2-forms of g. Once I+ =

I−, (1.1) reduces to the Hermite-Yang-Mills-Higgs equation, also known as Hermite-Einstein

equation. When ϕ = 0, (1.1) is nothing but α-Hermite-Einstein equation for I±-holomorphic

vector bundle introduced by Hu, Moraru and Seyyedali [3].

During the past three decades, the existence of Hermite-Yang-Mills metrics on holomorphic

bundles has attracted a lot of attention. The classical Donaldson-Uhlenbeck-Yau theorem s-

tates that the stability of holomorphic vector bundle over closed Kähler manifold implies the

existence of Hermite-Yang-Mills metric [4, 5]. The inverse of this theorem is also true due to

the work of Kobayashi [6] and Lübke [12]. So we have a correspondence, also called Hitchin-

Kobayashi correspondence, which exhibits a deep relation between the stability in the sense of

algebraic geometry and the existence of special metrics. And there are many interesting general-

ized Hitchin-Kobayashi correspondence (or Donaldson-Uhlenbeck-Yau theorem) along different

directions [2, 3, 8–12,12–24]. As for manifolds with boundary, Donaldson first solved the Dirich-

let problem for Hermite-Yang-Mills equations over compact Kähler manifolds with non-empty

boundary [25]. This result was generalized to the general Hermitian manifolds in [26]. Just very

recently, the author [23] considered the Dirichlet boundary value problem for α-Hermite-Yang-

Mills equations on I±-holomorphic vector bundles. In this paper, we will consider a more general

setting and prove the following theorem.

Theorem 1.1 Let (M, g, I+, I−, b) be a compact generalized Kähler manifold with non-empty

boundary ∂M such that dvolg =
ωn

±
n! . Suppose (E, ∂̄+, ∂̄−, ϕ) is an I±-Higgs bundle on M .

Then for any Hermite metric H̃ on the restriction of (E, ∂̄+, ∂̄−, ϕ) to ∂M , there is a unique

α-Hermite-Yang-Mills-Higgs metric H on (E, ∂̄+, ∂̄−, ϕ) such that H = H̃ on ∂M .

An I±-Higgs bundle (E, ∂̄+, ∂̄−, ϕ) over a generalized Kähler manifold M is said to be ad-

mitting an approximate α-Hermite-Yang-Mills-Higgs structure, if for every ε > 0, there exists a

Hermitian metric Hε on (E, ∂̄+, ∂̄−, ϕ) such that

sup
M

|
√
−1(αFHε

+,ϕ ∧ ωn−1
+ + (1− α)FHε

−,ϕ ∧ ωn−1
− )− (n− 1)!λ · IdE · dvolg|Hε < ε. (1.2)

Kobayashi [27] first introduced this notion for holomorphic vector bundles (i.e., I+ = I−

and ϕ = 0). He proved that a holomorphic vector bundle over a compact Kähler manifold

admitting such a structure must be semi-stable. Later, Bruzzo and Graña Otero [28] generalized

this result to numerically effective Higgs bundles. When X is projective, Kobayashi [27] also

solved the inverse that a semi-stable holomorphic vector bundle must admit an approximate

Hermite-Einstein structure. Moreover, he conjectured that this should be true for general Kähler
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manifolds. This was confirmed by [15, 29, 30]. In 2016, Nie and Zhang [31] generalized this

correspondence to the non-Kähler case. In 2018, Zhang et al. [22] showed this is also true for a

class of non-compact Gauduchon manifolds.

In this paper, we are interested in the existence of approximate α-Hermite-Yang-Mills-Higgs

structures on I±-Higgs bundles over closed generalized Kähler manifolds. And we will prove the

following theorem.

Theorem 1.2 Let (M, g, I+, I−, b) be a closed generalized Kähler manifold such that g is

Gauduchon with respect to both I+ and I−, and dvolg =
ωn

±
n! . Suppose (E, ∂̄+, ∂̄−, ϕ) is an I±-

Higgs bundle on M . Then (E, ∂̄+, ∂̄−, ϕ) is α-semi-stable if and only if it admits an approximate

α-Hermite-Yang-Mills-Higgs structure, i.e., satisfying the inequality (1.2).

Remark 1.3 The proof of the necessity is the same as in [31], so we omit it. The proof of

the existence of approximate α-Hermite-Yang-Mills-Higgs structure is based on Uhlenbeck-Yau’s

continuity method. Since the stability condition is not a strict inequality, we cannot apply the

methods in [3,5,16] directly. To fix this, we will adopt Li-Zhang’s arguments [15] and Nie-Zhang’s

arguments [31] to our settings.

This paper is organized as follows. In Section 2, we will introduce the α-Hermite-Yang-Mills-

Higgs flow on generalized Kähler manifolds and prove the long-time existence of the flow over a

compact generalized Kähler manifold. In Section 3, we deal with convergence of the α-Hermite-

Yang-Mills-Higgs flow over a compact generalized Kähler manifold with boundary, in which we

complete the proof of Theorem 1.1. At last, we will prove Theorem 1.2 in detail.

2. α-Hermite-Yang-Mills-Higgs flow on generalized Kähler manifold

Suppose (E, ∂̄+, ∂̄−, ϕ) is an I±-Higgs bundle on a generalized Kähler manifold (M, g, I+, I−, b)

whose associated bi-Hermitian structure (g, I+, I−) is such that dvolg =
ωn

±
n! . Let us fix the

I±-holomorphic structures ∂̄± and a Hermitian metric H0 on (E, ∂̄+, ∂̄−, ϕ). For any positive-

definite Hermitian endomorphism h ∈ Herm+(E,H0), define the Hermitian metric H := H0h

by ⟨s, t⟩H := ⟨hs, t⟩H0 , where s, t ∈ C∞(E). Let ∇H
± = ∂̄± + ∂H

± be the corresponding Chern

connections. Denote by ∇H
±,ϕ = ∇H

± + ϕ + ϕ∗H the Hitchin-Simpson connections. The relation

between ∇H
±,ϕ and ∇H0

±,ϕ is given by

∇H
±,ϕ = ∇H0

±,ϕ + h−1(∂H0
± + ϕ∗H0 )h. (2.1)

Then the curvatures with respect to ∇H
± and ∇H0

± satisfy

FH
±,ϕ = FH0

±,ϕ + (∂̄± + ϕ)(h−1(∂H0
± + ϕ∗H0 )h). (2.2)

Let us turn to a family of Hermitian metrics H(t) on (E, ∂̄+, ∂̄−, ϕ) with an initial metric

H(0) = H0. We will follow the classical heat flow method to derive the existence of α-Hermite-

Yang-Mills-Higgs metric. We consider the following α-Hermite-Yang-Mills-Higgs flow:

H−1 ∂

∂t
H = −(α

√
−1Λ+(F

H
+ + [ϕ, ϕ∗H ]) + (1− α)

√
−1Λ−(F

H
− + [ϕ, ϕ∗H ])− λ · IdE), (2.3)
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where Λ± are the contraction operators associated to ω±, respectively.

If ϕ = 0, (2.3) is the Hermite-Yang-Mills flow considered in [23]. After taking a local holo-

morphic basis {ea}ra=1 on E and local complex coordinates {zi}ni=1 on M , the flow (2.3) can be

written as follows:

∂H

∂t
=− α

√
−1Λ+∂̄+∂+H + α

√
−1Λ+∂̄+HH−1∂+H − α

√
−1Λ+H[ϕ, ϕ∗H ]−

(1− α)
√
−1Λ−∂̄−∂−H + (1− α)

√
−1Λ−∂̄−HH−1∂−H−

(1− α)
√
−1Λ−H[ϕ, ϕ∗H ] + λ ·H, (2.4)

where ∂± denote the (1, 0)-parts of the exterior differential d with respect to the complex struc-

tures I±, respectively. Hence the above evolution equation is non-linear strictly parabolic.

For later use, we define

∆∂̄,α := α∆∂̄+
+ (1− α)∆∂̄−

,

where

∆∂̄±
:= −

√
−1Λ±∂̄±∂±.

We first prove the following proposition.

Proposition 2.1 Let H(t) be a solution of the flow (2.3). Then

(∆∂̄,α − ∂

∂t
)|α

√
−1Λ+(F

H
+ + [ϕ, ϕ∗H ]) + (1− α)

√
−1Λ−(F

H
− + [ϕ, ϕ∗H ])− λ · IdE |2H ≥ 0.

Proof For simplicity, set

ξ = α
√
−1Λ+(F

H
+ + [ϕ, ϕ∗H ]) + (1− α)

√
−1Λ−(F

H
− + [ϕ, ϕ∗H ])− λ · IdE .

Then from (2.1) and (2.2), we have

∆∂̄±
|ξ|2H =−

√
−1Λ±∂̄±∂±tr{ξH−1ξ̄TH}

=−
√
−1Λ±∂̄±tr{∂±ξH−1ξ̄TH − ξH−1∂±HH−1ξ̄TH+

ξH−1∂̄±ξ
T
H + ξH−1ξ̄THH−1∂±H}

=2Re⟨−
√
−1Λ±∂̄±∂

H
± ξ, ξ⟩H + |∂H

± ξ|2H + |∂̄±ξ|2H ,

and

∂

∂t
(
√
−1Λ±F

H
±,ϕ) =

√
−1Λ±{∂̄±(−h−1 ∂h

∂t
h−1∂H0

± h+ h−1∂H0
± (

∂h

∂t
))−

[ϕ, h−1 ∂h

∂t
h−1ϕ∗H0h] + [ϕ, h−1ϕ∗H0

∂h

∂t
]}

=−
√
−1Λ±{∂̄±∂H

± ξ + [ϕ, [ϕ∗H , ξ]]}.

Hence

(∆∂̄,α − ∂

∂t
)|ξ|2H =∆∂̄,α|ξ|2H − 2Re⟨ ∂

∂t
ξ, ξ⟩H

=α(|∂H
+ ξ|2H + |∂̄+ξ|2H) + (1− α)(|∂H

− ξ|2H + |∂̄−ξ|2H)−

2αRe
√
−1Λ+⟨[ϕ∗H , ξ], [ϕ∗H , ξ]⟩−
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2(1− α)Re
√
−1Λ−⟨[ϕ∗H , ξ], [ϕ∗H , ξ]⟩ ≥ 0. 2

Let us recall the Donaldson’s distance on the space of Hermitian metrics.

Definition 2.2 Let H and H̃ be two Hermitian metrics on (E, ∂̄+, ∂̄−, ϕ). We define

σ(H, H̃) = tr(H−1H̃) + tr(H̃−1H)− 2r,

where r = rk(E).

It is well-known that a sequence of metrics Hi converges to some H in the usual C0-topology

iff supM σ(Hi,H) → 0.

Proposition 2.3 Let H, H̃ be two Hermitian metrics satisfying (1.1). Then

∆∂̄,ασ(H, H̃) ≥ 0.

Proof Let h = H̃−1H. From (2.2) we have

tr{
√
−1h(Λ±F

H
±,ϕ − Λ±F

H̃
±,ϕ)} =−∆∂̄±

tr(h) + tr(−
√
−1Λ±∂̄±hh

−1∂H̃
± h)+

tr(
√
−1hΛ±[ϕ, ϕ

∗H − ϕ∗H0 ]),

and

tr{
√
−1h−1(Λ±F

H̃
±,ϕ − Λ±F

H
±,ϕ)} =−∆∂̄±tr(h

−1) + tr(−
√
−1Λ±∂̄±h

−1h∂H
± h−1)+

tr(
√
−1h−1Λ±[ϕ, ϕ

∗H0 − ϕ∗H ]).

On the other hand [4],

tr(−
√
−1Λ±∂̄±hh

−1∂H̃
± h) ≥ 0, tr(−

√
−1Λ±∂̄±h

−1h∂H
± h−1) ≥ 0.

Hence we complete the proof by the following identities:

tr(
√
−1hΛ±[ϕ, ϕ

∗H − ϕ∗H0 ]) = |[ϕ, h]h− 1
2 |2H0

, tr(
√
−1h−1Λ±[ϕ, ϕ

∗H0 − ϕ∗H ]) = |[ϕ, h−1]h
1
2 |2H0

. 2

Next, given two solutions H = H(t), H̃ = H̃(t) of the flow (2.3) with the same initial data

H0, it is easy to check the following proposition.

Proposition 2.4 Assume H = H(t), H̃ = H̃(t) are two solutions of the α-Hermite-Yang-Mills-

Higgs flow (2.3) with the same initial data H0, then we have

(∆∂̄,α − ∂

∂t
)σ(H(t), H̃(t)) ≥ 0.

Proof Set h(t) = H̃(t)−1H(t). Notice that

∂

∂t
tr(h) = tr(H̃−1HH−1 ∂

∂t
H − H̃−1 ∂

∂t
H̃H̃−1H),

∂

∂t
tr(h−1) = tr(−H−1 ∂

∂t
HH−1H̃ +H−1H̃H̃−1 ∂

∂t
H̃).

These two identities together with Proposition 2.3 show that

(∆∂̄,α − ∂

∂t
)(tr(h) + tr(h−1)) ≥ 0. 2
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We are going to prove the long-time existence of the α-Hermite-Yang-Mills-Higgs flow (2.3)

over a compact generalized Kähler manifold. If the base manifold M is closed, we consider the

following problem:{
H−1 ∂

∂tH = −(α
√
−1Λ+(F

H
+ + [ϕ, ϕ∗H ]) + (1− α)

√
−1Λ−(F

H
− + [ϕ, ϕ∗H ])− λ · IdE),

H(0) = H0.

(2.5)

And when M is a compact manifold with a non-empty smooth boundary ∂M , for any given

initial metric H̃ over ∂M we will consider the following boundary value problem:
H−1 ∂

∂tH = −(α
√
−1Λ+(F

H
+ + [ϕ, ϕ∗H ]) + (1− α)

√
−1Λ−(F

H
− + [ϕ, ϕ∗H ])− λ · IdE),

H(0) = H0,

H|∂M = H̃.

(2.6)

From the standard parabolic PDE theory [32], we first give the short-time existence.

Theorem 2.5 For sufficiently small ϵ > 0, (2.5) and (2.6) have a smooth solution H(t) defined

for 0 ≤ t < ϵ.

Next, we can show the long-time existence by a standard argument in [4].

Lemma 2.6 Suppose that a smooth solution Ht to (2.5) or (2.6) is defined for 0 ≤ t < T . Then

Ht converges in C0 to some continuous non-degenerate metric HT as t → T .

Proof We first prove the convergence. It suffices to prove that, given any ε > 0 one can find

δ > 0 such that

sup
M

σ(Ht,Ht′) < ε, for all t, t′ > T − δ.

This can be easily derived from the continuity at t = 0 combining with the maximum principle

and Proposition 2.4.

Now we are left to prove HT is non-degenerate. By Proposition 2.1 we know that

sup
M×[0,T )

|α
√
−1Λ+(F

H
+ + [ϕ, ϕ∗H ]) + (1− α)

√
−1Λ−(F

H
− + [ϕ, ϕ∗H ])− λ · IdE |2H < C,

where C = C(H0) is a uniform constant. A direct calculation yields

| ∂
∂t

(log trh)| ≤ |α
√
−1Λ+F

H
+,ϕ + (1− α)

√
−1Λ−F

H
−,ϕ − λ · IdE |H .

Similarly,

| ∂
∂t

(log trh−1)| ≤ |α
√
−1Λ+(F

H
+ + [ϕ, ϕ∗H ]) + (1− α)

√
−1Λ−(F

H
− + [ϕ, ϕ∗H ])− λ · IdE |H .

Hence we conclude that σ(H,H0) is uniformly bounded on M × [0, T ), which means that HT is

non-degenerate. 2

For further consideration, one can prove the following lemma in the very same way as [4,

Lemma 19] and [2, Lemma 6.4]. So the proof is omitted here.

Lemma 2.7 Let (M, g, I+, I−, b) be a compact generalized Kähler manifold without boundary
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(or compact with non-empty boundary). Let H(t), for 0 ≤ t < T , be a 1-parameter family of

Hermitian metrics on I±-Higgs bundle (E, ∂̄+, ∂̄−, ϕ) over (M, g, I+, I−) (satisfying the Dirichlet

boundary condition), satisfying

(1) H(t) converges in C0 to some continuous metric HT as t → T ;

(2) supM |α
√
−1Λ+(F

H
+ +[ϕ, ϕ∗H ])+(1−α)

√
−1Λ−(F

H
− +[ϕ, ϕ∗H ])−λ · IdE |H0 is uniformly

bounded for t < T .

Then H(t) is bounded in C1, and also bounded in Lp
2 (1 < p < +∞) uniformly in t.

Now we are ready to prove the long-time existence.

Theorem 2.8 Eqs. (2.5) and (2.6) have a unique solution H(t) which exists for 0 ≤ t < ∞.

Proof From Theorem 2.5, there is a solution H(t) to (2.5) or (2.6) existing for 0 ≤ t < T . And

from Lemma 2.6, H(t) converges in C0 to a continuous non-degenerate metric HT . This together

with supM |α
√
−1Λ+(F

H
+ + [ϕ, ϕ∗H ]) + (1 − α)

√
−1Λ−(F

H
− + [ϕ, ϕ∗H ]) − λ · IdE |H0 is bounded

uniformly in t implies that H(t) are bounded in C1, and also bounded in Lp
2 (1 < p < +∞)

uniformly in t. Since (2.5) and (2.6) are quadratic in the first derivative of H, one can apply

Hamilton’s techniques [32] to deduce that H(t) → HT in C∞, and the solution can be extended

past T . Hence we have proved the long-time existence of problem (2.5) and (2.6). The uniqueness

comes from Proposition 2.4 and the maximum principle. 2

3. Dirichlet problem for α-Hermite-Yang-Mills-Higgs equations

In the previous section, we have proved the long-time existence of (2.6). So it remains to

show that the solution H(t) converges to a metric H∞ as the time t → +∞, and that the limit

H∞ is α-Hermite-Yang-Mills-Higgs.

Suppose H(t) is a solution to (2.6) for 0 ≤ t < ∞. We still set

ξ = α
√
−1Λ+(F

H
+ + [ϕ, ϕ∗H ]) + (1− α)

√
−1Λ−(F

H
− + [ϕ, ϕ∗H ])− λ · IdE .

From Proposition 2.1 we have

(∆∂̄,α − ∂

∂t
)|ξ|H ≥ 0, (3.1)

here we also used the fact that |∇|ζ|H |2 ≤ |∇H
± ζ|2H holds for any section ζ of End(E).

Next, using [33, Proposition 1.8 of Chapter 5], we can solve the following Dirichlet problem:{
∆∂̄,αv = −|α

√
−1Λ+(F

H
+ + [ϕ, ϕ∗H ]) + (1− α)

√
−1Λ−(F

H
− + [ϕ, ϕ∗H ])− λ · IdE |H0

,

v|∂M = 0.
(3.2)

For convenience, we set w(x, t) =
∫ t

0
|ξ|H(x, ς)dς − v(x), where v(x) is a solution to the problem

above. Using (3.1), (3.2) and the boundary condition satisfied by H, we can conclude that for

t > 0, |ξ|H vanishes over the boundary ∂M . Then we have
(∆∂̄,α − ∂

∂t )w(x, t) ≥ 0,

w(x, 0) = −v(x),

w(x, t)|∂M = 0.

(3.3)
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Hence the maximum principle implies that∫ t

0

|ξ|H(x, ς)dς ≤ sup
x̂∈M

v(x̂), (3.4)

for any x̂ ∈ M and 0 ≤ t < +∞.

Let 0 ≤ t1 ≤ t, h̄ = H−1(x, t1)H(x, t). Obviously, h̄ satisfies

h̄−1 ∂

∂t
h̄ = −ξ,

which means
∂

∂t
log(trh̄) ≤ |ξ|H .

Integrating it over [t1, t] gives

tr(h̄) = tr(H−1(x, t1)H(x, t)) ≤ r exp
(∫ t

t1

|ξ|Hdς
)
.

One can also get a similar estimate for h̄−1. Combining them together, we have

σ(H(x, t),H(x, t1)) ≤ 2r
(
exp(

∫ t

t1

|ξ|Hdς)− 1
)
. (3.5)

By using (3.4) and (3.5), we conclude that H(t) converges in C0 to some continuous metric

H∞ as t −→ +∞. Then using Lemma 2.7 again, we know that H(t) has uniform C1 and Lp
2

bounds. This together with the fact that |H−1 ∂
∂tH| is uniformly bounded and the standard

elliptic regularity arguments shows that, by passing to a subsequence if necessary, H(t) → H∞

in C∞ topology. And from (3.4) we have

α
√
−1Λ+(F

H∞
+ + [ϕ, ϕ∗H∞ ]) + (1− α)

√
−1Λ−(F

H∞
− + [ϕ, ϕ∗H∞ ])− λ · IdE ,

i.e., H∞ is the desired α-Hermite-Yang-Mills-Higgs metric satisfying the Dirichlet boundary

condition. The uniqueness comes from Proposition 2.3 and the maximum principle. Therefore,

we complete the proof of Theorem 1.1.

4. Proof of Theorem 1.2

Suppose (E, ∂̄+, ∂̄−, ϕ) is an I±-Higgs bundle on the generalized Kähler manifold (M, g, I+, I−, b)

with dvolg =
ωn

±
n! . In this section, we assume that the Riemann metric g is Gauduchon with re-

spect to both I+ and I−, i.e., dd
c
±ω

n−1
± = 0, where dc± = I± ◦ d ◦ I±. Then we can associate

to (E, ∂̄+, ∂̄−, ϕ) two degrees deg±(E) and two slopes µ±(E) in the standard way [16, Definition

1.4.1]:

deg±(E) =

√
−1

2π

∫
M

tr(FH
± ) ∧

ωn−1
±

(n− 1)!

and

µ±(E) =
deg±(E)

rank(E)
.

Note that deg±(E) are independent of the choice of H on (E, ∂̄+, ∂̄−, ϕ). Given these degrees

and slopes, we now define the α-degree degα(E) and α-slope µα(E) as [3, Definition 3.3]:

degα(E) = α deg+(E) + (1− α) deg−(E)
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and

µα(E) = αµ+(E) + (1− α)µ−(E),

respectively.

An I±-Higgs bundle (E, ∂̄+, ∂̄−, ϕ) is called α-stable resp., α-semistable), if for any proper

coherent ϕ-invariant subsheaf F of (E, ∂̄+, ∂̄−, ϕ), one has

µα(F) < µα(E) (resp., µα(F) ≤ µα(E)).

By Uhlenbeck-Yau’s continuity method [5], we are going to show that the α-semi-stability

implies approximate α-Hermite-Yang-Mills-Higgs structure.

Set

Herm+(E,H) = {ξ ∈ End(E)|ξ∗H = ξ, ξ > 0}.

Fixing a proper background Hermitian metric H0 on I±-Higgs bundle (E, ∂̄+, ∂̄−, ϕ), we consider

the following perturbed equation

Φ(Hε) + ε log hε = 0, ε ∈ (0, 1], (4.1)

where

Φ(Hε) = α
√
−1Λ+(F

Hε
+ + [ϕ, ϕ∗Hε ]) + (1− α)

√
−1Λ−(F

Hε
− + [ϕ, ϕ∗Hε ])− λ · IdE

and hε = H−1
0 Hε ∈ Herm+(E,H0). By the results in [14], (4.1) is solvable for all ε ∈ (0, 1].

Using the assumption of α-semi-stability of I±-Higgs bundle (E, ∂̄+, ∂̄−, ϕ), we can show that

lim
ε→0

εmax
M

| log hε|H0 = 0. (4.2)

This implies that maxM |Φ(Hε)|Hε converges to zero as ε → 0.

By an appropriate conformal change [16,31], we can assume that H0 satisfies

tr(Φ(H0)) = 0.

Fix a background Hermitian metric H0 satisfying tr(Φ(H0)) = 0. From (4.1), we have

0 = −∆∂̄,α(tr log hε) + εtr(log hε),

which together with the maximum principle gives

dethε = 1.

Using the arguments in [3, 31], the following lemma can be easily proved.

Lemma 4.1 If hε ∈ Herm+(E,H0) satisfies Lε(hε) = 0 for some ε > 0, then

(1) − 1
2∆∂̄,α(log hε|2H0

) + ε| log hε|2H0
≤ | log hε|H0 |Φ(H0)|H0 ;

(2) maxM | log hε|H0 ≤ 1
ε ·maxM |Φ(H0)|H0 ;

(3) maxM | log hε|H0 ≤ C · (maxM |Φ(H0)|H0 + ∥ log hε∥L2), where C depends only on g and

H0.

Let us recall some basic facts. Fixing ξ ∈ Herm(E,H), from [16, p. 237], one can choose an

open dense subset W ⊆ M satisfying at each y ∈ W there exist an open neighbourhood U of y,
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a local unitary basis {ei}ri=1 w.r.t. H and smooth real functions {λi}ri=1 such that

ξ(x) =
r∑

i=1

λi(x) · ei(x)⊗ ei(x)

for all x ∈ U , where {ei}ri=1 denotes the dual basis. Let Ω ∈ C∞(R×R,R) and A =
∑r

i,j=1 A
i
jei⊗

ej ∈ End(E), where we assume rk(E) = r. We denote Ω(ξ)(A) by

Ω(ξ)(A) = Ω(λi, λj)A
i
jei ⊗ ej .

By [31, Proposition 3.1], we have:

Proposition 4.2 For some ε > 0, if hε ∈ Herm+(E,H0) solves (4.1), then∫
M

tr(Φ(H0)sε)
ωn
±
n!

+ α

∫
M

⟨Ω(sε)((∂̄+ + ϕ)sε), (∂̄+ + ϕ)sε⟩H0

ωn
±
n!

+

(1− α)

∫
M

⟨Ω(s)((∂̄− + ϕ)sε), (∂̄− + ϕ)sε⟩H0

ωn
±
n!

= −ε∥sε∥2L2 , (4.3)

where sε = log hε and

Ω(x, y) =

{
ey−x−1
y−x , x ̸= y;

1, x = y.

We are ready to prove the following theorem.

Theorem 4.3 If the I±-Higgs bundle (E, ∂̄+, ∂̄−, ϕ) is α-semi-stable, then it admits an approx-

imate α-Hermite-Yang-Mills-Higgs structure.

Proof Let {hε}0<ε≤1 be the solutions of equation (4.1) with the background metric H0. Then∫
X

| log hε|2
ωn
±
n!

= −1

ε

∫
M

⟨Φ(Hε), log hε⟩Hε

ωn
±
n!

.

Case 1. There exists a constant C1 > 0 such that ∥ log hε∥L2 < C1 < +∞. By Lemma 4.1,

max
M

|Φ(Hε)|Hε = ε ·max
M

| log hε|Hε < εC · (C1 +max
M

|Φ(H0)|H0).

Hence maxM |Φ(Hε)|Hε → 0 as ε → 0.

Case 2. limε→0

∫
X
| log hε|2

ωn
±
n! → ∞.

Claim. If the I±-Higgs bundle (E, ∂̄+, ∂̄−, ϕ) is α-semi-stable, then

lim
ε→0

max
M

|Φ(Hε)|Hε = lim
ε→0

εmax
M

| log hε|Hε = 0. (4.4)

We will show that if the above claim does not hold, there exists an I±-Higgs subsheaf con-

tradicting the α-semi-stability.

Let us assume that the claim does not hold, then there exist δ > 0 and a subsequence

εi → 0, i → +∞ so that ∫
X

| log hε|2
ωn
±
n!

→ +∞

and

max
M

|Φ(Hεi)|Hεi
= εi max

M
| log hεi |Hεi

≥ δ. (4.5)
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Let uεi = sεi/li, where sεi = log hεi and li = ∥sεi∥L2 . Then we have tr(uεi) = 0 and

∥uεi∥L2 = 1. Then using (4.5) and Lemma 4.1, we have

li ≥ −max
M

|Φ(H0)|H0 +
δ

Cεi
(4.6)

and

max
M

|uεi | ≤
C

li
(max

M
|Φ(H0)|H0 + li) < C2 < +∞. (4.7)

Step 1. We first show that ∥uεi∥L2
1
are uniformly bounded. Since ∥uεi∥L2 = 1, it suffices to

prove ∥∇uεi∥L2 are uniformly bounded.

By Proposition 4.2, for each hεi , it holds∫
M

tr{Φ(H0)uεi}
ωn
±
n!

+ αli

∫
M

⟨Ω(liuεi)((∂̄+ + ϕ)uεi), (∂̄+ + ϕ)uεi⟩H0

ωn
±
n!

+

(1− α)li

∫
M

⟨Ω(liuεi)((∂̄− + ϕ)uεi), (∂̄− + ϕ)uεi⟩H0

ωn
±
n!

= −εili. (4.8)

Substituting (4.6) into (4.8) gives

δ

C
+

∫
M

tr{Φ(H0)uεi}
ωn
±
n!

+ αli

∫
M

⟨Ω(liuεi)((∂̄+ + ϕ)uεi), (∂̄+ + ϕ)uεi⟩H0

ωn
±
n!

+

(1− α)li

∫
M

⟨Ω(liuεi)((∂̄− + ϕ)uεi), (∂̄− + ϕ)uεi⟩H0

ωn
±
n!

≤ εi max
M

|Φ(H0)|H0 , (4.9)

Consider the function

lΩ(lx, ly) =

{
el(y−x)−1

y−x , x ̸= y;

l, x = y.

We have

lΩ(lx, ly) →

{
+∞, x ≤ y;

(x− y)−1, x > y,
(4.10)

increases monotonically as l → +∞. Let ξ ∈ C∞(R×R,R+) satisfy ξ(x, y) < (x−y)−1 whenever

x > y. From (4.9), (4.10) and the arguments in [2, Lemma 5.4], it follows

δ

C
+

∫
M

tr{Φ(H0)uεi}
ωn
±
n!

+ α

∫
M

⟨ξ(uεi)((∂̄+ + ϕ)uεi), (∂̄+ + ϕ)uεi⟩H0

ωn
±
n!

+

(1− α)

∫
M

⟨ξ(uεi)((∂̄− + ϕ)uεi), (∂̄− + ϕ)uεi⟩H0

ωn
±
n!

≤ εi max
M

|Φ(H0)|H0 (4.11)

for i ≫ 1. From (4.7), we can assume that (x, y) ∈ [−Ĉ, Ĉ] × [−Ĉ, Ĉ]. In particular, we can

safely take ξ(x, y) = 1
3Ĉ

. When (x, y) ∈ [−Ĉ, Ĉ] × [−Ĉ, Ĉ] and x > y, we have 1
3Ĉ

< 1
x−y .

Therefore,

δ

C
+

∫
M

tr{Φ(H0)uεi}
ωn
±
n!

+

∫
M

1

3Ĉ
(α|(∂̄+ + ϕ)uεi |2H0

+ (1− α)|(∂̄− + ϕ)uεi |2H0
)
ωn
±
n!

≤ εi max
M

|Φ(H0)|H0 (4.12)

for i ≫ 1. Hence∫
M

(α|(∂̄+ + ϕ)uεi |2H0
+ (1− α)|(∂̄− + ϕ)uεi |2H0

)
ωn
±
n!

≤ 3Ĉ2 max
M

|Φ(H0)|H0Vol(M, g),
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which means uεi are bounded in L2
1. So we can choose a subsequence {uεij

} such that uεij
⇀ u∞

in L2
1, denoted by {uεi} for simplicity. Noting that L2

1 ↪→ L2,

1 =

∫
M

|uεi |2H0
→

∫
M

|u∞|2H0
.

This implies that ∥u∞∥L2 = 1. Therefore, u∞ is non-trivial.

Using (4.11) and following a similar discussion as in [2, Lemma 5.4], we have

δ

C
+

∫
M

tr{Φ(H0)u∞}
ωn
±
n!

+ α

∫
M

⟨ξ(u∞)((∂̄+ + ϕ)u∞), (∂̄+ + ϕ)u∞⟩H0

ωn
±
n!

+

(1− α)

∫
M

⟨ξ(u∞)((∂̄− + ϕ)u∞), (∂̄− + ϕ)u∞⟩H0

ωn
±
n!

≤ 0. (4.13)

Step 2. We will construct an I±-Higgs subsheaf which contradicts the α-semi-stability of

(E, ∂̄+, ∂̄−, ϕ) by Uhlenbeck and Yau’s trick in [5].

From (4.13) and [2, Lemma 5.5], the eigenvalues of u∞ are constant almost everywhere. Let

λ1 < λ2 < · · · < λl be the distinct eigenvalues of u∞. In the meanwhile, tr(u∞) = tr(uεi) = 0

and ∥u∞∥L2 = 1 force 2 ≤ l ≤ r. For each λj (1 ≤ j ≤ l − 1), construct a function Πj : R → R
such that Πj = 0 when x ≥ λj+1 and Πj = 1 when x ≤ λj .

Set πj = Πj(u∞). As in [2, 3], πj is an L2
1-subsystem with the following properties: πj =

π2
j = π

∗H0
j ; (IdE − πj)∂̄±πj = 0; (IdE − πj)[ϕ, πj ] = 0.

From the regularity statement of L2
1-subbundle in [5], {πj}l−1

j=1 determine l − 1 I±-Higgs

subsheaves of (E, ∂̄+, ∂̄−, ϕ). Since tr(u∞) = 0 and noting that

u∞ = λl · IdE −
l−1∑
j=1

(λj+1 − λj)πj ,

we have

λl · rk(E) =
l−1∑
j=1

(λj+1 − λj)rk(Ej), (4.14)

where Ej = πj(E).

Construct

ν = λl · degα(E)−
l−1∑
j=1

(λj+1 − λj) degα(Ej).

On the one hand, substituting (4.14) into ν yields

ν =
l−1∑
α=1

(λj+1 − λj)rk(Ej)(
degα(E)

rk(E)
− degα(Ej)

rk(Ej)
). (4.15)

On the other hand, we have the following Chern-Weil formula [3]

degα(Ej) =
1

2π

∫
M

(
tr(πjΥH0

)− α|(∂̄+ + ϕ)πj |2H0
− (1− α)|(∂̄− + ϕ)πj |2H0

)ωn
±
n!

, (4.16)

where

ΥH0 = α
√
−1Λ+(F

H0
+ + [ϕ, ϕ∗H0 ]) + (1− α)

√
−1Λ−(F

H0
− + [ϕ, ϕ∗H0 ]).
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Substituting (4.16) into ν, we have

2πν =λl

∫
M

tr(ΥH0)
ωn
±
n!

−
l−1∑
j=1

(λj+1 − λj)×

{∫
M

tr(πjΥH0)−
∫
M

(α|(∂̄+ + ϕ)πj |2H0
+ (1− α)|(∂̄− + ϕ)πj |2H0

)
}

=

∫
M

tr(λl · IdE −
l−1∑
j=1

(λj+1 − λj)πj)ΥH0+

l−1∑
j=1

(λj+1 − λj)

∫
M

(α|(∂̄+ + ϕ)πj |2H0
+ (1− α)|(∂̄− + ϕ)πj |2H0

)

=

∫
M

tr(u∞ΥH0) +

∫
M

α⟨
l−1∑
α=1

(λj+1 − λj)(dΠj)
2(u∞)((∂̄+ + ϕ)u∞), (∂̄+ + ϕ)u∞⟩H0+

∫
M

(1− α)⟨
l−1∑
α=1

(λj+1 − λj)(dΠj)
2(u∞)((∂̄− + ϕ)u∞), (∂̄− + ϕ)u∞⟩H0 ,

where the function dΠj : R× R → R is given by

dΠj(x, y) =

{
Πj(x)−Pj(y)

x−y , x ̸= y;

Π′
j(x), x = y.

It is easy to check that, if λa ̸= λb,

l−1∑
j=1

(λj+1 − λj)(dΠj)
2(λa, λb) = |λa − λb|−1. (4.17)

Since tr(u∞) = 0, by (4.13) and [15, p. 793-794], we have

2πν ≤ − δ

C
< 0. (4.18)

Combining (4.15) with (4.18) gives

l−1∑
j=1

(λj+1 − λj)rk(Ej)(
degα(E)

rk(E)
− degα(Ej)

rk(Ej)
) < 0,

which contradicts the α-semi-stability of (E, ∂̄+, ∂̄−, ϕ). 2

References
[1] M. GUALTIERI. Generalized complex geometry. Ann. of Math. (2), 2011, 174(1): 75–123.

[2] C. T. SIMPSON. Constructing variations of Hodge structure using Yang-Mills theory and applications to

uniformization. J. Amer. Math. Soc., 1988, 1(4): 867–918.

[3] Shengda HU, R. MORARU, R. SEYYEDALI. A Kobayashi-Hitchin correspondence for I±-holomorphic

bundles. Adv. Math., 2016, 287: 519–566.

[4] S. K. DONALDSON. Anti self-dual Yang-Mills connections over complex algebraic surfaces and stable vector

bundles. Proc. London Math. Soc. (3), 1985, 50(1): 1–26.

[5] K. UHLENBECK, S. T. YAU. On the existence of Hermitian-Yang-Mills connections in stable vector bundles.

Comm. Pure Appl. Math., 1986, 39(S): suppl., S257–S293.

[6] S. KOBAYASHI. Curvature and stability of vector bundles. Proc. Japan Acad. Ser. A Math. Sci., 1982,

58(4): 158–162.



550 Ruixin WANG, Wen WANG and Songting YIN
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