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Abstract The intersection problem for kite-GDDs is the determination of all pairs (T, s) such

that there exists a pair of kite-GDDs (X,H,B1) and (X,H,B2) of the same type T satisfying

|B1 ∩ B2| = s. In this paper the intersection problem for a pair of kite-GDDs of type 2u is

investigated. Let J(u) = {s : ∃ a pair of kite-GDDs of type 2u intersecting in s blocks};
I(u) = {0, 1, . . . , bu − 2, bu}, where bu = u(u − 1)/2 is the number of blocks of a kite-GDD of

type 2u. We show that for any positive integer u ≥ 4, J(u) = I(u) and J(3) = {0, 3}.
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1. Introduction

Let H be a simple graph and G a subgraph of H. A G-design of H ((H,G)-design in short)

is a pair (X,B) where X is the vertex set of H and B is an edge-disjoint decomposition of H

into isomorphic copies (called blocks) of the graph G. If H is the complete graph Kv, we refer

to such a G-design as one of order v. If G is the complete graph Kk, a Kk-design of order v is

called a Steiner system S(2, k, v).

The intersection problem for (H,G)-designs is the determination of all pairs (v, s) such that

there exists a pair of (H,G)-designs (X,B1) and (X,B2) with |X| = v and |B1 ∩ B2| = s. The

intersection problem for S(2, k, v)’s was first introduced by Kramer and Mesner [1]. A complete

solution to the intersection problem for S(2, 3, v)’s was made by Lindner and Rosa [2]. The

intersection problem for S(2, 4, v)’s was dealt with by Colbourn et al. [3], apart from three

undecided values for v = 25, 28 and 37. Billington and Kreher [4] completed the intersection

problem for all connected simple graphs G where the minimum of the number of vertices and

the number of edges of G is not bigger than 4. Chang et al. has completely solved the triangle

intersection problem for S(2, 4, v) designs and a pair of disjoint S(2, 4, v)s (see [5, 6]). Chang et

al. has completely solved the fine triangle intersection problems for kite systems [7] and (K4−e)-

designs [8,9]. The intersection problem is also considered for many other types of combinatorial

structures. The interested reader may refer to [10–16].
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Let K be a set of positive integers. A group divisible design K-GDD is a triple (X,G,A)

satisfying the following properties: (1) G is a partition of a finite set X into subsets (called

groups); (2) A is a set of subsets of X (called blocks), each of cardinality from K, such that

every 2-subset of X is either contained in exactly one block or in exactly one group, but not in

both. If G contains ui groups of size gi for 1 ≤ i ≤ r, then we call gu1
1 gu2

2 · · · gur
r the group type

(or type) of the GDD. If K = {k}, we write a {k}-GDD as a k-GDD.

Two k-GDDs (X,G,A1) and (X,G,A2) are said to intersect in s blocks if |A1 ∩ A2| = s.

The intersection problem for group divisible designs is to determine all pairs (T, s) such that

there exists a pair of group divisible designs (X,G,A1) and (X,G,A2) of type T satisfying

|A1 ∩ A2| = s. Butler and Hoffman [17] completely solved the intersection problem for 3-GDDs

of type gu. Zhang, Chang and Feng solved the intersection problem for 4-GDDs of type 3u

(see [18]) and the intersection problem for 4-GDDs of type 4u (see [19]).

Let H = {H1,H2, . . . ,Hm} be a partition of a finite set X into subsets (called holes), where

|Hi| = ni for 1 ≤ i ≤ m. Let Kn1,n2,...,nm
be the complete multipartite graph on X with the

i-th part on Hi, and G be a subgraph of Kn1,n2,...,nm . A holey G-design is a triple (X,H,B)
such that (X,B) is a (Kn1,n2,...,nm , G)-design. The hole type (or type) of the holey G-design

is {n1, n2, . . . , nm}. We use an “exponential” notation to describe hole types: the hole type

gu1
1 gu2

2 · · · gur
r denotes ui occurrences of gi for 1 ≤ i ≤ r. Obviously, if G is the complete graph

Kk, a holey Kk-design is just a k-GDD. If G is the graph with vertices a, b, c, d and edges

ab, ac, bc, cd (such a graph is called a kite), then a holey G-design is said to be a kite-GDD.

A pair of holey G-designs (X,H,B1) and (X,H,B2) of the same type is said to intersect in

s blocks if |B1 ∩ B2| = s. In this paper we focus on the intersection problem for kite-GDDs of

type 2u. Let J(u) = {s : ∃ a pair of kite-GDDs of type 2u intersecting in s blocks}. Throughout
this paper we always assume that v = 2u with u ≥ 4, I(u) = {0, 1, . . . , bu − 2, bu}, where

bu = u(u − 1)/2 is the number of blocks of a kite-GDD of type 2u. In the following, we always

denote the copy of the kite with vertices a, b, c, d and edges ab, ac, bc, cd by [a, b, c− d].

As the main result of the present paper, we are to prove the following theorem.

Theorem 1.1 For any positive integer u ≥ 4, J(u) = I(u) and J(3) = {0, 3}.
Obviously, J(u) ⊆ I(u). We need to show that I(u) ⊆ J(u).

2. Basic design constructions

We introduce the following two important construction.

Construction 2.1 ([7]) (Weighting Construction) Suppose that (X,G,A) is a K-GDD, and let

ω : X 7−→ Z+ ∪ {0} be a weight function. For every block A ∈ A, suppose that there is a pair

of holey G-designs of type {ω(x) : x ∈ A}, which intersect in bA blocks. Then there exists a pair

of holey G-designs of type {
∑

x∈H ω(x) : H ∈ G}, which intersect in
∑

A∈A bA blocks.

The following construction is simple but very useful, which is a variation in [7, Construction

2.2].
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Construction 2.2 (Filling Construction) Let m be a nonnegative integer and gi, a ≡ 0 (modm)

for 1 ≤ i ≤ s. Suppose that there exists a pair of holey G-designs of type {g1, g2, . . . , gs}, which
intersect in b blocks. If there is a pair of holey G-designs of type mgi/ma1, which intersect in bi

blocks for 1 ≤ i ≤ s− 1 and there is a pair of holey G-designs of type m(gs+a)/m which intersect

in bs blocks, then there exists a pair of holey G-designs of type m(
∑s

i=1 gi+a)/m intersecting in

b+
∑s

i=1 bi blocks.

Proof Let (X,G,A) and (X,G,B) be two holey G-designs of type {g1, g2, . . . , gs} satisfying

|A∩B| = b. Let G = {G1, G2, . . . , Gs} with |Gi| = gi, 1 ≤ i ≤ s and Y be any given set of length

a such that X∩Y = ∅. For 1 ≤ i ≤ s−1, construct a pair of holey G-designs (Gi∪Y,Gi∪{Y }, Ci)
and (Gi∪Y,Gi∪{Y },Di) of type m

gi/ma1 satisfying |Ci∩Di| = bi and construct a pair of holey G-

designs (Gs∪Y,Gs∪{Y }, Cs) and (Gs∪Y,Gs∪{Y },Ds) of typem
(gs+a)/m satisfying |Cs∩Ds| = bs.

Then (X ∪Y, (
∪s

i=1 Gi)∪{Y },A∪ (
∪s

i=1 Ci)) and (X ∪Y, (
∪s

i=1 Gi)∪{Y },B∪ (
∪s

i=1 Di)) are two

holey G-designs of type m(
∑s

i=1 gi+a)/m. Obviously, the two holey G-designs have b +
∑s

i=1 bi

common blocks. 2
We quote the following result for later use.

Lemma 2.3 ( [20]) The necessary and sufficient conditions for the existence of 3-GDD and

4-GDD are as follows:

• A 3-GDD of type gu exists if and only if u ≥ 3, (u − 1)g ≡ 0 (mod 2), and u(u − 1)g2 ≡
0 (mod 6).

• A 4-GDD of type gu exists if and only if u ≥ 4, (u − 1)g ≡ 0 (mod 3), and u(u − 1)g2 ≡
0 (mod 12), with the exception of (g, u) ∈ {(2, 4), (6, 4)}.

• A 4-GDD of type 3um1 exists if and only if either u ≡ 0 (mod 4) and m ≡ 0 (mod 3),

0 ≤ m ≤ (3u− 6)/2; or u ≡ 1 (mod 4) and m ≡ 0 (mod 6), 0 ≤ m ≤ (3u− 3)/2; or u ≡ 3 (mod 4)

and m ≡ 3 (mod 6), 0 < m ≤ (3u− 3)/2.

In Section 3, we examine J(u) for small positive integer u ∈ {3, 4, 5, 6, 7, 8, 9, 10, 11, 18, 19, 20}.
In Section 4, we will examine J(u) for positive integer u ≥ 12. In Section 5, We will prove the

Theorem 1.1.

3. Ingredients

Let (X,G,B) be a kite-GDD of type T . Then (X,G, πsB) is also a kite-GDD of the same type

T , where the πs is a permutation of X and keep group type T the same. For example, in the

following, let B = {[0, 1, 5 − 4], [0, 2, 4 − 3], [1, 2, 3 − 5]} and G = {{0, 3}, {1, 4}, {2, 5}}. Taking

π0 : X → X and π0 = (2 5), we have that π0B = (2 5)B = {[0, 1, 2− 4], [0, 5, 4− 3], [1, 5, 3− 2]}
and π0G = (2 5)G = {{0, 3}, {1, 4}, {5, 2}} = G. Then (X,G,B) and (X,G, πsB) are a pair of

kite-GDD of type 23. We have that |π0B ∩ B| = 0 and π0G = G.

Lemma 3.1 For integer u = 3, J(3) = {0, 3}.

Proof Take the vertex set X = {0, 1, 2, 3, 4, 5}. Let B = {[0, 1, 5 − 4], [0, 2, 4 − 3], [1, 2, 3 − 5]}.
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Then (X,G,B) is a kite-GDD of type 23, where G = {{0, 3}, {1, 4}, {2, 5}}. Consider the following
permutations on X. π0 = (2 5), π3 = (1). We have that for each s ∈ {0, 3}, |πsB ∩ B| = s and

πsG = G. 2
Lemma 3.2 For integer u = 4, J(4) = I(4).

Proof Take the vertex set X = {0, 1, 2, 3, 4, 5, 6, 7}. Let B1 = {[1, 7, 0− 5], [1, 3, 2− 5], [3, 5, 4−
6], [5, 7, 6−1], [3, 6, 0−2], [2, 7, 4−1]}, B2 = (B1 \{[3, 5, 4−6], [5, 7, 6−1], [2, 7, 4−1]})∪{[3, 5, 4−
2], [5, 6, 7− 2], [1, 6, 4− 7]} and B3 = (B1 \ {[3, 5, 4− 6], [2, 7, 4− 1]}) ∪ {[3, 5, 4− 1], [2, 7, 4− 6]}.
Then (X,G,Bi) is a kite-GDD of type 24 for i = 1, 2, 3, where G = {{0, 4}, {1, 5}, {2, 6}, {3, 7}}.
Consider the following permutations on X.

π0 = (2 6)(3 7), π1 = (1 5), π2 = (2 6), π3 = π4 = π6 = (1).

We have that for each s ∈ I(4) \ {4, 6}, |πsB2 ∩ B1| = s and πsG = G. For each s ∈ {4, 6},
|π4B3 ∩ B1| = 4, |π6B1 ∩ B1| = 6 and πsG = G. 2
Lemma 3.3 For integer u = 5, J(5) = I(5).

Proof Take the vertex set X = {0, 1, . . . , 9}. Let B1 = [1, 9, 3−4], [2, 8, 4−0], [3, 7, 8−0], [6, 4, 1−
5], [9, 5, 2 − 6], [4, 9, 7 − 5], [6, 9, 8 − 5], [0, 1, 2 − 3], [0, 3, 5 − 6], [0, 6, 7 − 1], B2 = (B1 \ {[3, 7, 8 −
0], [6, 9, 8 − 5]}) ∪ {[3, 7, 8 − 5], [6, 9, 8 − 0]}. B3 = (B1 \ {[0, 1, 2 − 3], [0, 3, 5 − 6], [0, 6, 7 − 1]}) ∪
{[0, 7, 1 − 2], [0, 2, 3 − 5], [0, 5, 6 − 7]}, B4 = (B1 \ {[3, 7, 8 − 0], [6, 9, 8 − 5], [4, 9, 7 − 5], [0, 6, 7 −
1]}) ∪ {[3, 7, 8 − 5], [6, 9, 8 − 0], [4, 9, 7 − 1], [0, 6, 7 − 5]}, B5 = (B3 \ {[3, 7, 8 − 0], [6, 9, 8 − 5]}) ∪
{[3, 7, 8 − 5], [6, 9, 8 − 0]}. Then (X,G,Bi) is a kite-GDD of type 25 for i = 1, 2, . . . , 5, where

G = {{0, 9}, {1, 8}, {2, 7}, {3, 6}, {4, 5}}. Consider the following permutations on X.

π0 = (2 7)(3 6), π1 = (1 8)(2 7), π2 = (3 6),

π3 = (4 5), π4 = (2 7), π5 = π6 = π7 = π8 = π10 = (1).

We have that for each s ∈ {0, 1, . . . , 4, 10}, |πsB1∩B1| = s and πsG = G. For each s ∈ {5, 6, 7, 8},
|πsB10−s ∩ B1| = s and πsG = G. 2
Lemma 3.4 For integer u = 6, J(6) = I(6).

Proof Take the vertex set X = {0, 1, . . . , 11}. Let B1 = {[0, 1, 8 − 11], [1, 2, 9 − 11], [2, 3, 7 −
0], [3, 4, 8−6], [4, 0, 5−3], [6, 10, 5−2], [6, 11, 7−4], [8, 10, 7−5], [8, 9, 5−1], [10, 0, 9−7], [10, 11, 3−
0], [0, 11, 2− 10], [1, 3, 6− 2], [11, 4, 1− 10], [6, 9, 4− 2]}, B2 = (B1 \ {[1, 2, 9− 11], [10, 0, 9− 7]})∪
{[1, 2, 9 − 7], [10, 0, 9 − 11]}, B3 = (B1 \ {[2, 3, 7 − 0], [6, 11, 7 − 4], [8, 10, 7 − 5]}) ∪ {[2, 3, 7 −
5], [6, 11, 7 − 0], [8, 10, 7 − 4]}, B4 = (B2 \ {[4, 0, 5 − 3], [6, 10, 5 − 2]}) ∪ {[4, 0, 5 − 2], [6, 10, 5 −
3]}, B5 = (B3 \ {[4, 0, 5 − 3], [6, 10, 5 − 2]}) ∪ {[4, 0, 5 − 2], [6, 10, 5 − 3]}, B6 = (B3 \ {[4, 0, 5 −
3], [6, 10, 5 − 2], [8, 9, 5 − 1]}) ∪ {[4, 0, 5 − 1], [6, 10, 5 − 3], [8, 9, 5 − 2]}, B7 = (B5 \ {[1, 2, 9 −
11], [10, 0, 9−7]})∪{[1, 2, 9−7], [10, 0, 9−11]}, B8 = (B6 \{[1, 2, 9−11], [10, 0, 9−7]})∪{[1, 2, 9−
7], [10, 0, 9 − 11]}. Then (X,G,Bi) is a kite-GDD of type 26 for i = 1, 2, . . . , 6, where G =
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{{0, 6}, {1, 7}, {2, 8}, {3, 9}, {4, 10}, {5, 11}}. Consider the following permutations on X.

π0 = (2 8)(3 9)(5 11), π1 = (0 6)(2 8)(3 9), π2 = (2 8)(3 9), π3 = (0 6), π4 = (0 6),

π5 = (5 11), π6 = (1 7), π7 = π8 = π9 = π10 = π11 = π12 = π13 = π15 = (1).

We have that for each s ∈ I(6)\{3, 7, 8, . . . , 13}, |πsB1∩B1| = s and πsG = G. For s = 3, we have

|π3B2 ∩ B1| = 3 and π3G = G. For each s ∈ {7, 8, . . . , 13}, |πsB15−s ∩ B1| = s and πsG = G. 2
Lemma 3.5 For integer u = 7, J(7) = I(7).

Proof Take the vertex set X = {0, 1, . . . , 13}. Let B1 = {[0, 1, 9 − 7], [10, 13, 9 − 5], [6, 11, 9 −
3], [2, 3, 8−6], [7, 13, 8−0], [9, 4, 8−12], [5, 11, 8−10], [1, 2, 7−4], [6, 12, 7−11], [3, 5, 7−10], [4, 6, 10−
12], [1, 5, 10 − 0], [10, 11, 2 − 5], [4, 0, 2 − 6], [5, 6, 0 − 12], [13, 11, 0 − 3], [1, 6, 3 − 11], [4, 12, 3 −
13], [5, 13, 4− 1], [11, 12, 1− 13], [2, 13, 12− 9]}.

i Ai Ci

2 [0,1,9-7],[10,13,9-5] [0,1,9-5],[10,13,9-7]

3 [0,1,9-7],[10,13,9-5],[6,11,9-3] [0,1,9-3],[10,13,9-7],[6,11,9-5]

4 [0,1,9-7],[10,13,9-5],[2,3,8-6], [7,13,8-0] [0,1,9-5],[10,13,9-7],[2,3,8-0],[7,13,8-6]

5 [0,1,9-7],[10,13,9-5],[6,11,9-3],[2,3,8-6],[7,13,8-0] [0,1,9-3],[10,13,9-7],[6,11,9-5],[2,3,8-0],[7,13,8-6]

6 [0,1,9-7],[10,13,9-5],[6,11,9-3], [0,1,9-3],[10,13,9-7],[6,11,9-5],

[2,3,8-6],[7,13,8-0],[9,4,8-12] [2,3,8-12],[7,13,8-6],[9,4,8-0]

7 [0,1,9-7],[10,13,9-5],[6,11,9-3],[2,3,8-6], [0,1,9-3],[10,13,9-7],[6,11,9-5],[2,3,8-0],

[7,13,8-0],[9,4,8-12],[5,11,8-10] [7,13,8-6],[9,4,8-10],[5,11,8-12]

8 [0,1,9-7],[10,13,9-5],[6,11,9-3],[2,3,8-6], [0,1,9-3],[10,13,9-7],[6,11,9-5],[2,3,8-12],

[7,13,8-0],[9,4,8-12],[1,2,7-4],[6,12,7-11] [7,13,8-6],[9,4,8-0],[1,2,7-11],[6,12,7-4]

Table 1 The blocks of kite-GDD of type 27

Then (X,G,Bi) is a kite-GDD of type 27 for i = 1, 2, . . . , 8, where Bi = (B1 \ Ai) ∪ Ci, i =

2, . . . , 8 and G = {{0, 7}, {1, 8}, {2, 9}, {3, 10}, {4, 11}, {5, 12}, {6, 13}}. Consider the following

permutations on X.

π0 = (2 9)(3 10)(5 12)(6 13), π1 = (0 7)(1 8)(6 13), π2 = (0 7)(2 9)(3 10),

π3 = (2 9)(5 12), π4 = (3 10)(4 11), π5 = (2 9)(3 10),

π6 = (0 7)(1 8), π7 = (6 13), π8 = (5 12),

π9 = (3 10), π10 = (3 10), π11 = (1 8),

π12 = (2 9), π13 = π14 = π15 = π16 = (1), π17 = π18 = π19 = π21 = (1).

We have that for each s ∈ I(7) \ {9, 13, 14 . . . , 19}, |πsB1 ∩ B1| = s and πsG = G. For s = 9,

we have |π9B2 ∩ B1| = 9 and π9G = G. For each s ∈ {13, 14, . . . , 19}, |πsB21−s ∩ B1| = s and

πsG = G. 2
For counting J(u) for 8 ≤ u ≤ 11, we need to search for a large number of instances of

kite-GDDs of type 2u as we have done in Lemma 3.5. To reduce the computation, when u ̸= 11,

we shall first try to determine the intersection numbers of a pair of kite-GDDs of type 2u−
hu
2 hu

1
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with the same group set where

hu =


8, if u = 8,

8, if u = 9,

10, if u = 10.

When u = 11, we shall try to determine the intersection numbers of a pair of kite-GDDs of type

8261 with the same vertex set. These results will be listed in Lemmas 3.6–3.8.

Lemma 3.6 Let M8 = {0, 1, . . . , 15, 22} and s ∈ M8. Then there is a pair of kite-GDDs of type

2481 with the same group set, which intersect in s blocks.

Proof Take the vertex set X = {0, 1, . . . , 15}. Let

B1 : [10, 5, 8− 2], [6, 13, 8− 11], [9, 1, 8− 4], [7, 14, 8− 3], [10, 4, 15− 5], [12, 2, 15− 3],

[0, 9, 15− 1], [15, 6, 14− 2], [13, 5, 14− 4], [12, 4, 13− 0], [10, 3, 11− 7], [10, 2, 9− 5],

[15, 7, 13− 1], [14, 3, 12− 5], [13, 2, 11− 6], [12, 1, 10− 6], [9, 4, 11− 5], [7, 9, 12− 6],

[0, 14, 10− 7], [14, 1, 11− 15], [12, 8, 0− 11], [13, 3, 9− 6];

B2 : [10, 5, 8− 11], [6, 13, 8− 2], [9, 1, 8− 3], [7, 14, 8− 4], [10, 4, 15− 1], [12, 2, 15− 5],

[0, 9, 15− 3], [15, 6, 14− 2], [13, 5, 14− 4], [12, 4, 13− 0], [10, 3, 11− 7], [10, 2, 9− 5],

[15, 7, 13− 1], [14, 3, 12− 5], [13, 2, 11− 6], [12, 1, 10− 6], [9, 4, 11− 5], [7, 9, 12− 6],

[0, 14, 10− 7], [14, 1, 11− 15], [12, 8, 0− 11], [13, 3, 9− 6].

Then (X,G,Bi) is a kite-GDD of type 2481 for each 1 ≤ i ≤ 2, where the group set is G =

{{8, 15}, {9, 14}, {10, 13}, {11, 12}, {0, 1, . . . , 7}}. Consider the following permutations on X.

π0 = (0 4)(2 6 7 3)(8 15)(9 14)(10 13), π1 = (0 4 2 3 5 6)(1 7)(8 15)(10 13),

π2 = (1 4 2 5 7 3), π3 = (0 7 2)(3 4),

π4 = (1 2)(3 4 5), π5 = (0 3 7)(1 4),

π6 = (4 5)(8 15), π7 = (1 2 5 4),

π8 = (0 3 5), π9 = (2 6 5),

π10 = (2 3 5), π11 = (0 7 1),

π12 = (0 6), π13 = (2 6),

π14 = (3 7), π15 = π22 = (1).

We have that for each s ∈ M8 \ {15}, |πsB1 ∩ B1| = s and πsG = G. For s = 15, we have

|π15B2 ∩ B1| = 15 and π15G = G. 2
Lemma 3.7 Let M9 = {0, 1, . . . , 22, 28, 30} and s ∈ M9. Then there is a pair of kite-GDDs of

type 2581 with the same group set, which intersect in s blocks.

Proof Take the vertex set X = {0, 1, . . . , 17}. Let B1 :

[0, 17, 9− 15], [16, 7, 17− 1], [15, 6, 16− 4], [14, 15, 5− 17], [14, 4, 13− 17], [12, 3, 11− 16],

[11, 2, 10− 4], [9, 1, 10− 6], [9, 8, 2− 17], [8, 15, 7− 14], [16, 8, 0− 14], [15, 4, 17− 12],

[14, 2, 16− 3], [15, 3, 13− 0], [14, 6, 12− 16], [11, 5, 13− 2], [0, 10, 12− 7], [9, 4, 11− 1],

[8, 3, 10− 7], [9, 7, 13− 10], [6, 13, 8− 4], [14, 10, 17− 3], [16, 13, 1− 15], [15, 2, 12− 4],

[9, 5, 12− 1], [10, 16, 5− 8], [6, 17, 11− 7], [14, 3, 9− 6], [15, 0, 11− 8], [1, 14, 8− 12].
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B2 = (B1\{[11, 2, 10−4], [9, 1, 10−6]})∪{[11, 2, 10−6], [9, 1, 10−4]}. Then (X,G,Bi) is a kite-GDD

of type 2581 for each 1 ≤ i ≤ 2, where the group set is G = {{8, 17}, {9, 16}, {10, 15}, {11, 14}, {12,
13}, {0, 1, . . . , 7}}. Consider the following permutations on X.

π0 = (0 6 2 7 3)(1 5 4), π1 = (0 3 7 6 4 5 1), π2 = (0 6 7 1 2)(4 5), π3 = (0 5 3)(4 6 7),

π4 = (1 6 4 7)(3 5), π5 = (0 4)(2 6 7 3), π6 = (1 4)(2 7)(5 6), π7 = (0 4 6 7 1),

π8 = (1 6 7)(2 4), π9 = (2 5)(3 6 4), π10 = (0 1)(4 5), π11 = (2 5 7 6),

π12 = (0 7)(2 5), π13 = (0 3 2 5), π14 = (0 1 2), π15 = (3 5 6),

π16 = (1 5 6), π17 = (2 5 4), π18 = (1 3), π19 = (3 6),

π20 = (5 7), π21 = (1 5), π22 = (2 5), π28 = π30 = (1).

We have that for each s ∈ M9 \ {28}, |πsB1 ∩ B1| = s and πsG = G. For s = 28, we have

|π28B2 ∩ B1| = 28 and π28G = G. 2
Lemma 3.8 Let M10 = {0, 1, . . . , 27, 32, 35} and s ∈ M10. Then there is a pair of kite-GDDs

of type 25101 with the same group set, which intersect in s blocks.

Proof Take the vertex set X = {0, 1, . . . , 19}. Let B1 :

[0, 18, 12− 5], [11, 3, 12− 19], [10, 7, 12− 6], [17, 18, 8− 13], [15, 6, 16− 4], [14, 5, 13− 3],

[12, 4, 13− 17], [11, 10, 2− 19], [10, 9, 17− 3], [0, 19, 11− 4], [18, 9, 19− 1], [19, 6, 17− 1],

[16, 5, 18− 1], [17, 15, 4− 19], [16, 14, 3− 19], [15, 2, 13− 18], [1, 12, 14− 8], [11, 6, 13− 0],

[11, 16, 9− 13], [8, 15, 10− 13], [19, 16, 8− 11], [15, 7, 18− 4], [17, 0, 14− 9], [17, 7, 16− 1],

[16, 2, 12− 8], [15, 11, 1− 10], [4, 10, 14− 19], [19, 5, 15− 0], [0, 16, 10− 3], [18, 14, 2− 17],

[11, 7, 14− 6], [19, 7, 13− 1], [10, 6, 18− 3], [17, 11, 5− 10], [12, 9, 15− 3].

B2 = (B1 \{[0, 18, 12−5], [11, 3, 12−19], [10, 7, 12−6]})∪{[0, 18, 12−6], [11, 3, 12−5], [10, 7, 12−
19]}, Then (X,G,Bi) is a kite-GDD of type 25101 for each 1 ≤ i ≤ 2, where the group set is

G = {{10, 19}, {11, 18}, {12, 17}, {13, 16}, {14, 15}, {0, 1, . . . , 9}}. Consider the following permu-

tations on X.

π0 = (0 7 1)(2 4)(3 5 9 6 8), π1 = (0 4 1 3 2)(6 9 8 7), π2 = (0 9 6 1 7 2)(4 5 8),

π3 = (0 8 4)(2 9 6 7 3), π4 = (0 5 9)(1 3)(2 7 8), π5 = (0 7 4 2 6 1)(5 8),

π6 = (2 7)(3 4 5 8), π7 = (0 1 6 7 3)(2 5), π8 = (0 9 7 1 6)(3 4),

π9 = (0 4 3 1 5 9), π10 = (1 3)(2 6 8), π11 = (0 7)(1 9 3 5),

π12 = (0 1 7 6 3), π13 = (0 7 5)(1 4), π14 = (0 8 5 2 9),

π15 = (0 5 6 4 7), π16 = (0 9 2 6), π17 = (0 5 2 4),

π18 = (0 5 6 7), π19 = (0 1 9), π20 = (5 8 7),

π21 = (0 5 4), π22 = (4 6 7), π23 = (1 6),

π24 = (1 5), π25 = (8 9), π26 = (0 5),

π27 = (2 8), π32 = π35 = (1).

We have that for each s ∈ M10\{32}, |πsB1∩B1| = s and πsG = G. For s = 32, |π32B2∩B1| = 32

and π32G = G. 2
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Lemma 3.9 Let M11 = {0, 1, . . . , 29, 40} and s ∈ M11. Then there is a pair of kite-GDDs of

type 8261 with the same group set, which intersect in s blocks.

Proof Take the vertex set X = {0, 1, . . . , 21}. Let B :

[0, 16, 8− 6], [1, 17, 8− 7], [3, 18, 8− 2], [1, 16, 9− 3], [4, 20, 9− 6],

[5, 19, 9− 7], [6, 19, 10− 0], [21, 4, 10− 5], [2, 16, 11− 6], [3, 19, 11− 7],

[4, 18, 11− 5], [18, 6, 15− 2], [7, 20, 15− 4], [19, 0, 15− 3], [17, 5, 15− 1],

[0, 11, 20− 2], [13, 5, 20− 6], [1, 12, 20− 8], [3, 10, 20− 14], [14, 2, 21− 6],

[2, 19, 12− 6], [4, 17, 12− 0], [21, 7, 12− 5], [3, 17, 13− 1], [4, 16, 13− 6],

[7, 18, 13− 2], [5, 16, 14− 4], [6, 17, 14− 3], [0, 18, 14− 7], [7, 10, 16− 15],

[3, 12, 16− 6], [0, 9, 17− 7], [2, 10, 17− 11], [1, 10, 18− 5], [2, 9, 18− 12],

[4, 8, 19− 13], [14, 1, 19− 7], [0, 13, 21− 3], [1, 11, 21− 9], [5, 8, 21− 15].

Then (X,G,B) is a kite-GDD of type 8261, where the group set is G = {{0, 1, . . . , 7}, {8, 9, . . . , 15},
{16, 17, . . . , 21}}. Consider the following permutations on X.

π0 = (0 6 2 7 3)(1 5 4), π1 = (0 6 7 1 2)(4 5), π2 = (0 2 5 6 3 7 4), π3 = (1 6 4 7)(3 5),

π4 = (1 6 7)(2 4), π5 = (0 4)(2 6 7 3), π6 = (0 2 4 3 7), π7 = (2 5)(3 6 4),

π8 = (0 4 3)(1 7), π9 = (0 6 2 5 4), π10 = (0 7)(2 5), π11 = (3 5 7 4),

π12 = (2 6 4 3), π13 = (0 1)(4 5), π14 = (0 4 5 7), π15 = (0 3 6 2),

π16 = (0 1 2), π17 = (2 5 4), π18 = (0 4 6), π19 = (0 6 2),

π20 = (1 4 5), π21 = (1 6), π22 = (3 6), π23 = (5 7),

π24 = (0 7), π25 = (1 5), π26 = (4 5), π27 = (17 20),

π28 = (8 9), π29 = (9 11), π40 = (1).

We have that for each s ∈ M11, |πsB ∩ B| = s and πsG = G. 2
Lemma 3.10 For integer 8 ≤ u ≤ 10, J(u) = I(u).

Proof Obviously, J(u) ⊆ I(u). We need to show that I(u) ⊆ J(u). For 8 ≤ u ≤ 10, take the

corresponding Mu from Lemmas 3.6− 3.8. Let αu ∈ Mu, u = 8, 9, 10. Let

hu =


8, if u = 8,

8, if u = 9,

10, if u = 10.

By Lemmas 3.6–3.8, there is a pair of kite-GDDs of type 2u−
hu
2 hu

1 (X,B(2u)
1 ) and (X,B(2u)

2 ),

which intersect in αu blocks. Here the subgraph Khu is constructed on Y ⊂ X. Let βu ∈ I(hu).

By Lemmas 3.2 and 3.3, there is a pair of kite-GDDs of type 2
hu
2 , (Y,B′(hu)

1 ) and (Y,B′(hu)
2 ) with

βu common blocks. Then (X,B(2u)
1 ∪B′(hu)

1 ) and (X,B(2u)
2 ∪B′(hu)

2 ) are both kite-GDDs of type

2u with αu + βu common blocks. Thus we have

J(u) ⊇ {(αu + βu : αu ∈ Mu, βu ∈ I(hu)}.

It is readily checked that for any integer s ∈ I(u), we have s ∈ J(u). 2
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Lemma 3.11 For integer u = 11, J(11) = I(11).

Proof Take the same set M11 as in Lemma 3.9. Let α ∈ M11. Then there is a pair of kite-

GDDs of type 8261 with the same group set, which intersect in α blocks. Let γ1 and γ2 ∈ I(4).

By Lemma 3.2, there is a pair of kite-GDDs of type 24 intersecting in γi common blocks for

each i = 1, 2. Let γ3 ∈ I(3). By Lemma 3.1, there is a pair of kite-GDDs of type 23 with γ3

common blocks. Now applying Construction 2.2, we obtain a pair of kite-GDDs of type 211 with

α+
∑3

i=1 γi common blocks. Thus we have

J(11) ⊇ {α+

3∑
i=1

γi : α ∈ M11, γ1, γ2 ∈ I(4), γ3 ∈ I(3)} = I(11). 2
Lemma 3.12 Let J̄(3) = {s : ∃ a pair of kite-GDDs of type 43 intersecting in s blocks},
J̄(3) = {0, 1, . . . , 10, 12}.

Proof Take the vertex set X = {0, 1, . . . , 11}. Let B1 = {[9, 3, 10 − 7], [8, 2, 10 − 6], [2, 4, 6 −
3], [6, 5, 1−10], [11, 7, 1−8], [0, 6, 11−8], [4, 8, 3−11], [5, 8, 0−10], [1, 4, 9−5], [7, 4, 0−9], [3, 7, 5−
2], [9, 11, 2 − 7]}. B2 = (B1 \ {[9, 3, 10 − 7], [8, 2, 10 − 6]}) ∪ {[9, 3, 10 − 6], [8, 2, 10 − 7]}, B3 =

(B1 \ {[9, 3, 10 − 7], [8, 2, 10 − 6], [2, 4, 6 − 3]}) ∪ {[9, 10, 3 − 6], [8, 2, 10 − 7], [2, 4, 6 − 10]}, B4 =

(B2 \{[6, 5, 1−10], [11, 7, 1−8]})∪{[6, 5, 1−8], [11, 7, 1−10]}, B5 = (B3 \{[6, 5, 1−10], [11, 7, 1−
8]}) ∪ {[6, 5, 1 − 8], [11, 7, 1 − 10]}. Then (X,G,Bi) is a kite-GDD of type 43 for i = 1, 2, 3, 4, 5,

where G = {{0, 1, 2, 3}, {4, 5, 10, 11}, {6, 7, 8, 9}}. Consider the following permutations on X.

π0 = (2 3)(4 11 5)(6 8 9 7), π1 = (0 1 2 3)(4 11)(6 7)(8 9), π2 = (0 3)(1 2)(4 5)(6 9 7)(10 11),

π3 = (6 8)(10 11), π4 = (0 2)(1 3)(4 5)(6 8)(10 11), π5 = (4 5),

π6 = (5 10), π7 = π8 = π9 = π10 = π12 = (1).

We have that for each s ∈ {0, 1, . . . , 6, 12}, |πsB1∩B1| = s and πsG = G. For each s ∈ {7, 8, 9, 10},
|πsB12−s ∩ B1| = s and πsG = G. 2
Lemma 3.13 For integer u = 18, 19, J(u) = I(u).

Proof Start from a 3-GDD of type 33 from Lemma 2.3. Give each point of the GDD weight 4. By

Lemma 3.12, there is a pair of kite-GDDs of type 43 with α common blocks, α ∈ {0, 1, . . . , 10, 12}.
Then apply Construction 2.1 to obtain a pair of kite-GDDs of type 123 with

∑9
i=1 αi common

blocks, where 9 is the number of blocks of the 3-GDD of type 33 and αi ∈ {0, 1, . . . , 10, 12} for

1 ≤ i ≤ 9. Now for each 1 ≤ j ≤ 3, fill in the j-th group of the resulting kite-GDDs of type 123

with a pair of kite-GDDs of type 26 with βj common blocks, βj ∈ I(6), which exist by Lemma

3.4. By Construction 2.2 we have a pair of kite-GDDs of type 218 with
∑9

i=1 αi +
∑3

j=1 βj

common blocks, which implies

J(18) ⊇
{ 9∑

i=1

αi +
3∑

j=1

βj : αi ∈ {0, 1, . . . , 10, 12}, βj ∈ I(6), 1 ≤ i ≤ 9, 1 ≤ j ≤ 3
}

= 9 ∗ {0, 1, . . . , 10, 12}+ 3 ∗ {0, 1, . . . , 13, 15} = I(18).

Now for each 1 ≤ j ≤ 3, fill in the j-th group of the resulting kite-GDDs of type 123 with
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a pair of kite-GDDs of type 27 with βj common blocks, βj ∈ I(7), which exist by Lemma 3.5.

By Construction 2.2 we have a pair of kite-GDDs of type 219 with
∑9

i=1 αi +
∑3

j=1 βj common

blocks, which implies

J(19) ⊇
{ 9∑

i=1

αi +
3∑

j=1

βj : αi ∈ {0, 1, . . . , 10, 12}, βj ∈ I(7), 1 ≤ i ≤ 9, 1 ≤ j ≤ 3
}

= 9 ∗ {0, 1, . . . , 10, 12}+ 3 ∗ {0, 1, . . . , 19, 21} = I(19). 2
Lemma 3.14 For integer u = 20, J(u) = I(u).

Proof Start from a 4-GDD of type 54 from Lemma 2.3. Give each point of the GDD weight

2. By Lemma 3.2, there is a pair of kite-GDDs of type 24 with α common blocks, α ∈ I(4).

Then apply Construction 2.1 to obtain a pair of kite-GDDs of type 104 with
∑25

i=1 αi common

blocks, where 25 is the number of blocks of the 4-GDD of type 54 and αi ∈ I(4) for 1 ≤ i ≤ 25.

Now for each 1 ≤ j ≤ 4, fill in the j-th group of the resulting kite-GDDs of type 104 with a

pair of kite-GDDs of type 25 with βj common blocks, βj ∈ I(5), which exist by Lemma 3.3.

By Construction 2.2 we have a pair of kite-GDDs of type 220 with
∑25

i=1 αi +
∑4

j=1 βj common

blocks, which implies

J(20) ⊇
{ 25∑

i=1

αi +

4∑
j=1

βj : αi ∈ I(4), βj ∈ I(5), 1 ≤ i ≤ 25, 1 ≤ j ≤ 4
}

= 25 ∗ {0, 1, . . . , 4, 6}+ 4 ∗ {0, 1, . . . , 8, 10} = I(20). 2
Lemma 3.15 Let A10 = {0, 1, 2, 3, 4, 9} and s ∈ A10. Then there is a pair of kite-GDDs of type

2341 with the same group set, which intersect in s blocks.

Proof Take the vertex set X = {0, 1, . . . , 9}. Let B = {[6, 1, 0−7], [1, 2, 7−5], [2, 3, 8−1], [4, 9, 3−
7], [5, 0, 4 − 8], [9, 5, 1 − 3], [9, 2, 0 − 8], [6, 3, 5 − 8], [2, 6, 4 − 7]}. Then (X,G,B) is a kite-GDD of

type 2341, where the group set is G = {{0, 3}, {1, 4}, {2, 5}, {6, 7, 8, 9}}. Consider the following

permutations on X.

π0 = (2 5)(6 9 7), π1 = (0 3)(6 8 9), π2 = (0 3),

π3 = (8 9), π4 = (6 7), π9 = (1).

We have that for each s ∈ A10, |πsB ∩ B| = s and πsG = G. 2
4. Working lemmas

First we need the following definition. Let s1 and s2 be two non-negative integers. If X and

Y are two sets of non-negative integers, then X + Y denotes the set {s1 + s2 : s1 ∈ X, s2 ∈ Y }.
If X is a set of non-negative integers and h is some positive integer, then h ∗ X denotes the

set of all non-negative integers which can be obtained by adding any h elements of X together

(repetitions of elements of X allowed).

Lemma 4.1 For any integer u ≡ 0 (mod 3), u ≥ 12 and u ̸= 18, J(u) = I(u).
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Proof Let u = 3t with t ≡ 0, 1 (mod 4) and t ≥ 4. Start from a 4-GDD of type 3t from Lemma

2.3. Give each point of the GDD weight 2. By Lemma 3.2, there is a pair of kite-GDDs of type

24 with α common blocks, α ∈ I(4). Then apply Construction 2.1 to obtain a pair of kite-GDDs

of type 6t with
∑b

i=1 αi common blocks, where b = 3t(t − 1)/4 is the number of blocks of the

4-GDD of type 3t and αi ∈ I(4) for 1 ≤ i ≤ b. Now for each 1 ≤ j ≤ t, fill in the j-th group of

the resulting kite-GDDs of type 6t with a pair of kite-GDDs of type 23 with βj common blocks,

βj ∈ I(3), which exist by Lemma 3.1. By Construction 2.2 we have a pair of kite-GDDs of type

23t with
∑b

i=1 αi +
∑t

j=1 βj common blocks, which implies

J(u) = J(3t) ⊇
{ b∑

i=1

αi +

t∑
j=1

βj : αi ∈ I(4), βj ∈ I(3), 1 ≤ i ≤ b, 1 ≤ j ≤ t
}

= b ∗ {0, 1, . . . , 4, 6}+ t ∗ {0, 3} = {0, 1, . . . , 6b− 2, 6b}+ {0, 3, 6, . . . , 3t}

= I(3t) = I(u).

For any t ≡ 2, 3 (mod 4) and t ≥ 7, start from a 4-GDD of type 3t−261, which exists from

Lemma 2.3, and give each point of the GDD weight 2. By Lemma 3.2, there is a pair of kite-GDDs

of type 24 with α common blocks, α ∈ I(4). Then apply Construction 2.1 to obtain a pair of kite-

GDDs of type 6t−2121 with
∑b

i=1 αi common blocks, where b = 3(t− 2)(t+ 1)/4 is the number

of blocks of the 4-GDD of type 3t−261 and αi ∈ I(4), 1 ≤ i ≤ b. Now for each 1 ≤ j ≤ t− 2, fill

in the j-th group of the resulting kite-GDDs of type 6t−2121 with a pair of kite-GDDs of type

23 with βj common blocks, βj ∈ I(3), which exist by Lemma 3.1; fill in the last group with a

pair of kite-GDDs of type 26 with γ common blocks, γ ∈ I(6), which exist by Lemma 3.4. By

Construction 2.2 we have a pair of kite-GDDs of type 23t with
∑b

i=1 αi +
∑t−2

j=1 βj + γ common

blocks, which implies

J(u) = J(3t) ⊇
{ b∑

i=1

αi +
t−2∑
j=1

βj + γ : αi ∈ I(4), βj ∈ I(3), γ ∈ I(6), 1 ≤ i ≤ b, 1 ≤ j ≤ t− 2
}

= b ∗ {0, 1, . . . , 4, 6}+ (t− 2) ∗ {0, 3}+ {0, 1, . . . , 13, 15} = I(3t) = I(u).

This completes the proof. 2
Lemma 4.2 For any integer u ≡ 1 (mod 3), u ≥ 13 and u ̸= 19, J(u) = I(u).

Proof Let u = 3t + 1 with t ≡ 0, 1 (mod 4) and t ≥ 4. Start from a 4-GDD of type 3t from

Lemma 2.3. Give each point of the GDD weight 2. By Lemma 3.2, there is a pair of kite-GDDs

of type 24 with α common blocks, α ∈ I(4). Then apply Construction 2.1 to obtain a pair of

kite-GDDs of type 6t with
∑b

i=1 αi common blocks, where b = 3t(t−1)/4 is the number of blocks

of the 4-GDD of type 3t and αi ∈ I(4) for 1 ≤ i ≤ b. Now for each 1 ≤ j ≤ t, fill in the j-th

group of the resulting kite-GDDs of type 6t with a pair of kite-GDDs of type 24 with βj common

blocks, βj ∈ I(4), which exist by Lemma 3.2. By Construction 2.2 we have a pair of kite-GDDs
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of type 23t+1 with
∑b

i=1 αi +
∑t

j=1 βj common blocks, which implies

J(u) = J(3t+ 1)
{ b∑

i=1

αi +
t∑

j=1

βj : αi ∈ I(4), βj ∈ I(4), 1 ≤ i ≤ b, 1 ≤ j ≤ t
}

= b ∗ {0, 1, . . . , 4, 6}+ t ∗ {0, 1, . . . , 4, 6} = I(3t) = I(u).

For any t ≡ 2, 3 (mod 4) and t ≥ 7, start from a 4-GDD of type 3t−261, which exists from

Lemma 2.3, and give each point of the GDD weight 2. By Lemma 3.2, there is a pair of kite-GDDs

of type 24 with α common blocks, α ∈ I(4). Then apply Construction 2.1 to obtain a pair of kite-

GDDs of type 6t−2121 with
∑b

i=1 αi common blocks, where b = 3(t− 2)(t+ 1)/4 is the number

of blocks of the 4-GDD of type 3t−261 and αi ∈ I(4), 1 ≤ i ≤ b. Now for each 1 ≤ j ≤ t− 2, fill

in the j-th group of the resulting kite-GDDs of type 6t−2121 with a pair of kite-GDDs of type

24 with βj common blocks, βj ∈ I(4), which exist by Lemma 3.2; fill in the last group with a

pair of kite-GDDs of type 27 with γ common blocks, γ ∈ I(7), which exist by Lemma 3.5. By

Construction 2.2 we have a pair of kite-GDDs of type 23t+1 with
∑b

i=1 αi+
∑t−2

j=1 βj+γ common

blocks, which implies

J(u) = J(3t+ 1) ⊇
{ b∑

i=1

αi +

t−2∑
j=1

βj + γ : αi ∈ I(4), βj ∈ I(4), γ ∈ I(7), 1 ≤ i ≤ b, 1 ≤ j ≤ t− 2
}

= b ∗ {0, 1, . . . , 4, 6}+ (t− 2) ∗ {0, 1, . . . , 4, 6}+ {0, 1, . . . , 19, 21} = I(3t+ 1) = I(u).

This completes the proof. 2
Lemma 4.3 For any integer u ≡ 2 (mod 3), u ≥ 14 and u ̸= 20, J(u) = I(u).

Proof Let u = 3t + 2 with t ≡ 0, 1 (mod 4) and t ≥ 4. Start from a 4-GDD of type 3t from

Lemma 2.3. Give each point of the GDD weight 2. By Lemma 3.2, there is a pair of kite-GDDs

of type 24 with α common blocks, α ∈ I(4). Then apply Construction 2.1 to obtain a pair of

kite-GDDs of type 6t with
∑b

i=1 αi common blocks, where b = 3t(t − 1)/4 is the number of

blocks of the 4-GDD of type 3t and αi ∈ I(4) for 1 ≤ i ≤ b. Now for each 1 ≤ j ≤ t − 1, fill

in the j-th group of the resulting kite-GDDs of type 6t with a pair of kite-GDDs of type 2341

with βj common blocks, βj ∈ A(10), which exist by Lemma 3.15; fill in the last group with a

pair of kite-GDDs of type 25 with γ common blocks, γ ∈ I(5), which exist by Lemma 3.3. By

Construction 2.2 we have a pair of kite-GDDs of type 23t+2 with
∑b

i=1 αi+
∑t−1

j=1 βj+γ common

blocks, which implies

J(u) = J(3t+ 2) ⊇
{ b∑

i=1

αi +

t−1∑
j=1

βj + γ : αi ∈ I(4), βj ∈ A(10), γ ∈ I(5), 1 ≤ i ≤ b, 1 ≤ j ≤ t− 1
}

= b ∗ {0, 1, . . . , 4, 6}+ (t− 1) ∗ {0, 1, 2, 3, 4, 9}+ {0, 1, . . . , 8, 10} = I(3t+ 2) = I(u).

For any t ≡ 2, 3 (mod 4) and t ≥ 7, start from a 4-GDD of type 3t−261, which exists from

Lemma 2.3, and give each point of the GDD weight 2. By Lemma 3.2, there is a pair of kite-

GDDs of type 24 with α common blocks, α ∈ I(4). Then apply Construction 2.1 to obtain a

pair of kite-GDDs of type 6t−2121 with
∑b

i=1 αi common blocks, where b = 3(t − 2)(t + 1)/4
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is the number of blocks of the 4-GDD of type 3t−261 and αi ∈ I(4), 1 ≤ i ≤ b. Now for each

1 ≤ j ≤ t − 2, fill in the j-th group of the resulting kite-GDDs of type 6t−2121 with a pair of

kite-GDDs of type 2341 with βj common blocks, βj ∈ A(10), which exist by Lemma 3.15; fill

in the last group with a pair of kite-GDDs of type 28 with γ common blocks, γ ∈ I(8), which

exist by Lemma 3.10. By Construction 2.2 we have a pair of kite-GDDs of type 23t+2 with∑b
i=1 αi +

∑t−2
j=1 βj + γ common blocks, which implies

J(u) = J(3t+ 2) ⊇
{ b∑

i=1

αi +
t−2∑
j=1

βj + γ : αi ∈ I(4), βj ∈ A(10), γ ∈ I(8), 1 ≤ i ≤ b, 1 ≤ j ≤ t− 2
}

= b ∗ {0, 1, . . . , 4, 6}+ (t− 2) ∗ {0, 1, 2, 3, 4, 9}+ {0, 1, . . . , 26, 28}

= I(3t+ 2) = I(u).

This completes the proof. 2
5. Conclusion

We prove Theorem 1.1.

Proof of Theorem 1.1 When u ∈ {3, 4, 5, 6, 7, 8, 9, 10, 11, 18, 19, 20}, the conclusion follows

from Lemmas 3.1–3.5, 3.10, 3.11, 3.13 and 3.14. When u ≥ 12, combining the results of Lemmas

4.1–4.3, we complete the proof. 2
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