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Abstract The intersection problem for kite-GDDs is the determination of all pairs (7', s) such
that there exists a pair of kite-GDDs (X, H,B1) and (X, H, B2) of the same type T satisfying
|B1 N Bz| = s. In this paper the intersection problem for a pair of kite-GDDs of type 2% is
investigated. Let J(u) = {s : 3 a pair of kite-GDDs of type 2" intersecting in s blocks};
I(u) = {0,1,...,by — 2,by,}, where b, = u(u — 1)/2 is the number of blocks of a kite-GDD of
type 2%. We show that for any positive integer u > 4, J(u) = I(u) and J(3) = {0, 3}.
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1. Introduction

Let H be a simple graph and G a subgraph of H. A G-design of H ((H, G)-design in short)
is a pair (X, B) where X is the vertex set of H and B is an edge-disjoint decomposition of H
into isomorphic copies (called blocks) of the graph G. If H is the complete graph K,, we refer
to such a G-design as one of order v. If G is the complete graph Kj, a Ky-design of order v is
called a Steiner system S(2, k, v).

The intersection problem for (H, G)-designs is the determination of all pairs (v, s) such that
there exists a pair of (H,G)-designs (X, B;) and (X, By) with |X| = v and |By N By| = s. The
intersection problem for S(2, k,v)’s was first introduced by Kramer and Mesner [1]. A complete
solution to the intersection problem for S(2,3,v)’s was made by Lindner and Rosa [2]. The
intersection problem for S(2,4,v)’s was dealt with by Colbourn et al. [3], apart from three
undecided values for v = 25, 28 and 37. Billington and Kreher [4] completed the intersection
problem for all connected simple graphs G where the minimum of the number of vertices and
the number of edges of G is not bigger than 4. Chang et al. has completely solved the triangle
intersection problem for S(2,4,v) designs and a pair of disjoint S(2,4,v)s (see [5,6]). Chang et
al. has completely solved the fine triangle intersection problems for kite systems [7] and (K, —e)-
designs [8,9]. The intersection problem is also considered for many other types of combinatorial

structures. The interested reader may refer to [10-16].
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Let K be a set of positive integers. A group divisible design K-GDD is a triple (X, G,.A)
satisfying the following properties: (1) G is a partition of a finite set X into subsets (called
groups); (2) A is a set of subsets of X (called blocks), each of cardinality from K, such that
every 2-subset of X is either contained in exactly one block or in exactly one group, but not in
both. If G contains u; groups of size g; for 1 < i <, then we call g)"g5* - - - g“~ the group type
(or type) of the GDD. If K = {k}, we write a {k}-GDD as a k-GDD.

Two k-GDDs (X, G, A;) and (X, G, As) are said to intersect in s blocks if |A; N As| = s.
The intersection problem for group divisible designs is to determine all pairs (T, s) such that
there exists a pair of group divisible designs (X,G, A1) and (X, G, As) of type T satisfying
|A; N Az| = s. Butler and Hoffman [17] completely solved the intersection problem for 3-GDDs
of type g“. Zhang, Chang and Feng solved the intersection problem for 4-GDDs of type 3"
(see [18]) and the intersection problem for 4-GDDs of type 4* (see [19]).

Let H = {H;y, Ha,...,H,} be a partition of a finite set X into subsets (called holes), where
|H;| = n; for 1 <i < m. Let Ky, p,....,
i-th part on H;, and G be a subgraph of Ky, n,,..n,. A holey G-design is a triple (X, #, B)
such that (X,B) is a (K, ny,....n., G)-design. The hole type (or type) of the holey G-design

is {n1,n2,...,nm}. We use an “exponential” notation to describe hole types: the hole type

n,, be the complete multipartite graph on X with the

911952 < - - g¥ denotes u; occurrences of g; for 1 < i < r. Obviously, if G is the complete graph
K, a holey Kj-design is just a k-GDD. If G is the graph with vertices a,b,c,d and edges
ab, ac, be, ed (such a graph is called a kite), then a holey G-design is said to be a kite-GDD.

A pair of holey G-designs (X, H,B;1) and (X, H, Bs) of the same type is said to intersect in
s blocks if |By N By| = s. In this paper we focus on the intersection problem for kite-GDDs of
type 2%. Let J(u) = {s: 3 a pair of kite-GDDs of type 2" intersecting in s blocks}. Throughout
this paper we always assume that v = 2u with v > 4, I(u) = {0,1,...,b, — 2,b,}, where
by, = u(u — 1)/2 is the number of blocks of a kite-GDD of type 2%. In the following, we always
denote the copy of the kite with vertices a, b, ¢, d and edges ab, ac, be, cd by [a,b, ¢ — d].

As the main result of the present paper, we are to prove the following theorem.

) and J(3) = {0, 3}.
J(u).

Theorem 1.1 For any positive integer u > 4, J(u) = I(u
Obviously, J(u) C I(u). We need to show that I(u) C

2. Basic design constructions

We introduce the following two important construction.

Construction 2.1 ([7]) (Weighting Construction) Suppose that (X, G, A) is a K-GDD, and let
w: X — ZT U{0} be a weight function. For every block A € A, suppose that there is a pair
of holey G-designs of type {w(x) : x € A}, which intersect in by blocks. Then there exists a pair
of holey G-designs of type {}_ .y w(x): H € G}, which intersect in ) 4. 4 ba blocks.

The following construction is simple but very useful, which is a variation in [7, Construction
2.2).
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Construction 2.2 (Filling Construction) Let m be a nonnegative integer and g;, a = 0 (mod m)
for 1 <i <'s. Suppose that there exists a pair of holey G-designs of type {¢1,92,.-.,9gs}, which
intersect in b blocks. If there is a pair of holey G-designs of type m9%/™a!, which intersect in b;

+a)/m which intersect

blocks for 1 < i < s — 1 and there is a pair of holey G-designs of type m(9s
in by blocks, then there exists a pair of holey G-designs of type m(Xi=19:+a)/™ intersecting in

b+ >.7_, b; blocks.

Proof Let (X,G,A) and (X,G,B) be two holey G-designs of type {g1,92,...,9s} satisfying
[ANB| =b. Let G = {G1,Ga,...,Gs} with |G| = g;,1 <i < s and Y be any given set of length
a such that XNY = (. For 1 <4 < s—1, construct a pair of holey G-designs (G;UY, G;U{Y'},C;)
and (G;UY, G;U{Y'}, D;) of type m9:/™a’ satisfying |C;ND;| = b; and construct a pair of holey G-
designs (G,UY, G, U{Y'},C,) and (G, UY, G U{Y}, D,) of type m9s+@)/™ satistying |C,ND,| = bs.
Then (XUY, (Ui, G) U{Y}, AU (Ui, Co)) and (X UY, (Ui, G) ULV}, BUUL, D)) are two
holey G-designs of type m(2i=19:te)/™  Qbviously, the two holey G-designs have b + Sl b
common blocks. O

We quote the following result for later use.

Lemma 2.3 ([20]) The necessary and sufficient conditions for the existence of 3-GDD and
4-GDD are as follows:

e A 3-GDD of type g“ exists if and only if u > 3, (u—1)g = 0 (mod 2), and u(u — 1)g>
0 (mod 6).

e A 4-GDD of type g* exists if and only if u > 4, (u—1)g = 0 (mod 3), and u(u — 1)g>
0 (mod 12), with the exception of (g,u) € {(2,4),(6,4)}.

e A 4-GDD of type 3“m! exists if and only if either u = 0 (mod4) and m = 0 (mod 3),
0<m < (Bu—6)/2; oru=1 (mod4) and m =0 (mod6), 0 <m < (3u—3)/2; or u =3 (mod 4)
and m =3 (mod6), 0 <m < (3u — 3)/2.

In Section 3, we examine J(u) for small positive integer u € {3,4,5,6,7,8,9,10,11, 18,19, 20}.
In Section 4, we will examine J(u) for positive integer u > 12. In Section 5, We will prove the
Theorem 1.1.

3. Ingredients

Let (X, G, B) be a kite-GDD of type T. Then (X, G, w:B) is also a kite-GDD of the same type
T, where the g is a permutation of X and keep group type T the same. For example, in the
following, let B = {[0,1,5 — 4],[0,2,4 — 3],[1,2,3 — 5]} and G = {{0,3},{1,4},{2,5}}. Taking
7o : X — X and w9 = (2 5), we have that mo88 = (2 5)B = {[0,1,2 — 4],[0,5,4 — 3], [1,5,3 — 2|}
and moG = (2 5)G = {{0,3},{1,4},{5,2}} = G. Then (X,G,B) and (X,G,n,B) are a pair of
kite-GDD of type 23. We have that |moB N B| = 0 and 710G = G.

Lemma 3.1 For integer u =3, J(3) = {0, 3}.

Proof Take the vertex set X = {0,1,2,3,4,5}. Let B ={[0,1,5 —4],[0,2,4 — 3],[1,2,3 — 5]}.
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Then (X, G, B) is a kite-GDD of type 23, where G = {{0, 3}, {1,4}, {2,5}}. Consider the following
permutations on X. mp = (2 5), w3 = (1). We have that for each s € {0,3}, 78N B| = s and
7ng - g O

Lemma 3.2 For integer v =4, J(4) = I(4).

Proof Take the vertex set X ={0,1,2,3,4,5,6,7}. Let By = {[1,7,0—5],[1,3,2—5],[3,5,4 —
6],[5,7,6—1],[3,6,0—2],[2,7,4—1]}, Bo = (B1\{[3,5,4—6],[5,7,6—1],[2,7,4—1]}) U{[3,5,4—
2],[5,6,7—2],[1,6,4 — 7]} and By = (By \ {[3,5,4—6],[2,7,4—1]}) U{[3,5,4 — 1],[2,7,4 — 6]}.
Then (X, G, B;) is a kite-GDD of type 2* for i = 1,2,3, where G = {{0,4},{1,5},{2,6},{3,7}}.
Consider the following permutations on X.

T = (26)(37), ™ = (15), T = (26), T3 = Ty = Tg — (1)

We have that for each s € I(4) \ {4,6}, |msB82 N By1| = s and 7;G = G. For each s € {4,6},
|7T4B3 081‘ =4, ‘77681 ﬂBl| =6and 7,G =G. O

Lemma 3.3 For integer u =5, J(5) = I(5).

Proof Take the vertexset X = {0,1,...,9}. Let B; = [1,9,3—4],[2,8,4-0],[3,7,8—0],[6,4,1—

50,19,5,2 — 6],[4,9,7 — 5],[6,9,8 — 5],[0,1,2 — 3],[0,3,5 — 6],[0,6,7 — 1], B> = (B, \ {[3,7,8 —
0], [6 9 8~ 51)U{[3,7,8 —5],6,9,8 — 0]}. By = (B, \ {[0,1,2 — 3],[0,3,5 — 6],[0,6,7 — 1]}) U
00,71 — 2),0,2,3 — 5],[0,5,6 — 7]}, By = (By \ {[3,7,8 — 0],[6,9,8 — 5],[4,9,7 — 5], [0,6,7 —
11Hu{[3,7,8—5],[6,9,8 —0],[4,9,7 —1],[0,6,7 — 5]}, Bs = (B3 \ {[3,7,8 —0],[6,9,8 — 5]}) U
{[3,7,8 = 5],[6,9,8 — 0]}. Then (X,G,B;) is a kite-GDD of type 2° for i = 1,2,...,5, where
G ={{0,9},{1,8},{2,7},{3,6},{4,5}}. Consider the following permutations on X.

T = (2 7)(3 6)7 ™ = (1 8)(2 7)7 Ty = (3 6),

w3 = (4 5), = (27), 5 = T = M7 = Mg = T10 = (1).

We have that for each s € {0,1,...,4,10}, |rsB1NB1| = s and 7,G = G. For each s € {5,6,7,8},
|msBio—s N B1| = s and 7,G = G. O

Lemma 3.4 For integer u =6, J(6) = I(6).

Proof Take the vertex set X = {0,1,...,11}. Let By = {[0,1,8 — 11],[1,2,9 — 11],[2,3,7 —
0,[3,4,8—6],[4,0,5—3],[6,10,5—2], [6,11, 7—4], [8,10,7—5], [8,9, 5— 1], [10,0,9— 7], [10, 11,3 —
0], [0 11,2 — 10}, [1,3,6 — 2], [11,4,1 — 10],[6,9,4 — 2]}, By = (B1 \ {[1, 2,9 — 11],[10,0,9 — 7]}) U
{[1, —7],[10,0,9 — 11]}, B3 = (B1 \ {[2,3,7 — 0],[6,11,7 — 4],[8,10,7 — 5]}) U {[2,3,7 —
5], [6,11 7—0],[8,10,7 — 4]}, Bs = (Bo\ {[4,0,5 — 3],[6,10,5 — 2]}) U {[4,0,5 — 2],[6,10,5 —
3]}, Bs = (B3 \ {[4,0,5 — 3],[6,10,5 — 2]}) U {[4,0,5 — 2],[6,10,5 — 3]}, Bs = (B3 \ {[4,0,5 —
3], [6,10,5 — 2],[8,9,5 — 1]}) U {[4,0,5 — 1],16,10,5 — 3],[8,9,5 — 2]}, By = (Bs \ {[1,2,9 —
11],]10,0,9-"7]})U{[1,2,9—-7],[10,0,9—11]}, Bs = (Bs \ {[1,2,9—11],[10,0,9—-7]}) U{[1,2,9—
7],[10,0,9 — 11]}. Then (X,G,B;) is a kite-GDD of type 26 for i = 1,2,...,6, where G =



The intersection problem for kite-GDDs of type 2" 555
{{0,6},{1,7},{2,8},{3,9},{4,10},{5,11}}. Consider the following permutations on X.

0= (28)(39)(5 11), m = (06)(28)(39), m = (28)(39), m3 = (06), 7 = (0 6),

Ty = (5 11), T = (1 7), Ty = Tg = Mg = M1 = MW11 = M1 = M3 = NM15 = (].)
We have that for each s € 1(6)\{3,7,8,...,13}, |[7sB1NB1| = s and 7,G = G. For s = 3, we have
|m3B2 N Bi| = 3 and m3G = G. For each s € {7,8,...,13}, |7sB15_s N B1| = s and 7, = G. O
Lemma 3.5 For integer u="7, J(7) = I(7).

Proof Take the vertex set X = {0,1,...,13}. Let By = {[0,1,9 — 7],[10,13,9 — 5], [6,11,9 —
3),12,3,8—6],[7,13,8-0], 9, 4,8—12], [5, 11,8—10], [1, 2, 7—4], [6, 12, 7—11], [3, 5, 7— 10}, [4, 6, 10—
12],[1,5,10 — 0],[10,11,2 — 5],[4,0,2 — 6],[5,6,0 — 12],[13,11,0 — 3],[1,6,3 — 11],[4,12,3 —
13],[5,13,4 — 1], [11,12, 1 — 13], [2, 13,12 — 9]}

i A; Ci

2 [0,1,9-7],[10,13,9-5] [0,1,9-5],[10,13,9-7)

3 [0,1,9-7),[10,13,9-5],[6,11,9-3] [0,1,9-3],[10,13,9-7,[6,11,9-5]

4 [0,1,9-7],[10,13,9-5],2,3,8-6], [7,13,8-0] [0,1,9-5,[10,13,9-7],[2,3,8-01,[7,13,8-6]

5 [0,1,9-7],[10,13,9-5],[6,11,9-3],[2,3,8-6],[7,13,8-0] [0,1,9-3],[10,13,9-7],[6,11,9-5],[2,3,8-0],[7,13,8-6]

6 [0,1,9-7),[10,13,9-5],[6,11,9-3], [0,1,9-3],[10,13,9-7],[6,11,9-5),

[2,3,8-6],[7,13,8-0],[0,4,8-12] [2,3,8-12],[7,13,8-6],[9,4,8-0]
7 [0,1,9-7],[10,13,9-5],[6,11,9-3],[2,3,8-6], [0,1,0-3],[10,13,9-7],[6,11,9-5,[2,3,8-0],
[7,13,8-0,9,4,8-12],[5,11,8-10] [7,13,8-6],9,4,8-10],[5,11,8-12]

8 [0,1,9-7],[10,13,9-5],6,11,9-3],2,3,8-6], [0,1,9-3],[10,13,9-7],[6,11,9-5],[2,3,8-12],

[7,13,8-01,[9,4,8-12],[1,2,7-4],[6,12,7-11] [7,13,8-6],[9,4,8-0],[1,2,7-11],[6,12,7-4]

Table 1 The blocks of kite-GDD of type 2”

Then (X,G,B;) is a kite-GDD of type 27 for i = 1,2,...,8, where B; = (B; \ A;) UC;, i =
2,...,8 and G = {{0,7},{1,8},{2,9},{3,10}, {4, 11}, {5,12},{6,13}}. Consider the following

permutations on X.

o = (2 9)(3 10)(5 12)(6 13), 11 = (0 7)(1 8)(6 13), s = (0 7)(2 9)(3 10),

w3 = (2 9)(5 12), m = (310)(4 11), s = (2 9)(3 10),

w6 = (0 7)(1 8), = (6 13), s = (5 12),

o = (3 10), 10 = (3 10), 1= (18),

T2 =(29), M3 =mTa =75 =716 = (1), Ty = mig = M9 = 21 = (1).

We have that for each s € I(7)\ {9,13,14...,19}, |78 N By| = s and 7,G = G. For s = 9,
we have |mgBs N B1| = 9 and m9G = G. For each s € {13,14,...,19}, |msB21-s N B1| = s and
TG =G. 0

For counting J(u) for 8 < u < 11, we need to search for a large number of instances of
kite-GDDs of type 2% as we have done in Lemma 3.5. To reduce the computation, when u # 11,

we shall first try to determine the intersection numbers of a pair of kite-GDDs of type 2“_h‘7uhu1
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8, ifu=S§,
=4 8, ifu=9,
10, if u = 10.

When u = 11, we shall try to determine the intersection numbers of a pair of kite-GDDs of type

826! with the same vertex set. These results will be listed in Lemmas 3.6-3.8.

Lemma 3.6 Let Mg = {0,1,...,

2481 with the same group set, which intersect in s blocks.

15,22} and s € Mg. Then there is a pair of kite-GDDs of type

Proof Take the vertex set X ={0,1,...,15}. Let

Bi: [10,5,8—2], [6,13,8—11], [9,1,8—4], [7,14,8—3], [10,4,15—5], [12,2,15— 3],
(0,9,15—1], [15,6,14—2], [13,5,14—4], [12,4,13—0], [10,3,11—7], [10,2,9— 5],
(15,7,13—1], [14,3,12—5], [13,2,11—6], [12,1,10—6], [9,4,11—5], [7,9,12 — 6],
(0,14,10 — 7], [14,1,11 —15], [12,8,0—11], [13,3,9 — 6];

B,: [10,5,8—11], [6,13,8—2], [9,1,8—3], [7,14,8 —4], [10,4,15—1], [12,2,15— 5],
(0,9,15—3], [15,6,14—2], [13,5,14—4], [12,4,13—0], [10,3,11—7], [10,2,9— 5],
(15,7,13 —1], [14,3,12—5], [13,2,11—6], [12,1,10—6], [9,4,11—5], [7,9,12 — 6],
[0,14,10 — 7], [14,1,11 —15], [12,8,0—11], [13,3,9 — 6).

Then (X,G,B;) is a kite-GDD of type 248! for each 1 < i < 2, where the group set is G =

{{8,15},19, 14}, {10, 13}, {11,12},{0,1,...,7}}. Counsider the following permutations on X.

= (04)(2673)(815)(9 14)(10 13), m = (04235 6)(1 7)(8 15)(10 13),
=(142573), =(072)(34),
Ty =(12)(345), =(037)(14),
6 = (4 5)(8 15), 7r7—(1254)
s = (0 3 5), — (26 5),
710 = (2 3 5), m1=(071),
w12 = (0 6), m13 = (2 6),
w4 = (37), w15 = oo = (1).

We have that for each s € Mg \ {15}, |7sB81 N Bi| = s and 7,G = G. For s = 15, we have
|7T15BQ ﬂ81| =15 and 77155 = g O

Lemma 3.7 Let My = {0,1,...,22,28,30} and s € My. Then there is a pair of kite-GDDs of

type 2°8! with the same group set, which intersect in s blocks.

Proof Take the vertex set X = {0,1,...,17}. Let By :
0,17,9—15], [16,7,17 — 1], [15,6,16 —4], [14,15,5—17], [14,4,13—17], [12,3,11 — 16],
[11,2,10 — 4], [9,1,10—6], [9,8,2—17],  [8,15,7—14], [16,8,0—14], [15,4,17 — 12],
[14,2,16 — 3], [15,3,13—0], [14,6,12—16], [11,5,13—2], [0,10,12—7], [9,4,11 — 1],
8,3,10-7], [9,7,13—10], [6,13,8—4],  [14,10,17 — 3], [16,13,1— 15|, [15,2,12 — 4],
9,5,12—1], [10,16,5—8], [6,17,11—7], [14,3,9—6],  [15,0,11—8], [1,14,8 — 12].
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By = (Bi\{[11,2,10—4], 9, 1,10—6]})U{[11,2,10—6], [9, 1, 10—4]}. Then (X, G, B;) is a kite-GDD
of type 2°8! for each 1 < i < 2, where the group set is G = {{8,17}, {9, 16}, {10, 15}, {11, 14}, {12,

13},{0,1,...,7}}. Consider the following permutations on X.

mTo=(06273)(154), m =(0376451), m=(06712)(45), m3=(053)(467),

m=(1647)(35), m5=(04)(2673), :(1 HERTG6), m=(04671),
=(167)(24), Ty = (25)(3 6 4), 10 = (0 1)(4 5), m1 =(2576),

m2 = (0 7)(2 5), m3 = (03 25), ma = (012), m15 = (35 6),

m16 = (15 6), m7 = (25 4), ms = (1 3), m19 = (3 6),

o0 = (5 7), w1 = (1 5), Ty = (2 5), mag = T30 = (1).

We have that for each s € My \ {28}, |7sB1 N By = s and 7,G = G.
|7T2882 N 81| = 28 and ngg = g O

For s = 28, we have

Lemma 3.8 Let My = {0,1,...,27,32,35} and s € Myo. Then there is a pair of kite-GDDs

of type 2°10' with the same group set, which intersect in s blocks.

Proof Take the vertex set X = {0,1,...,19}. Let By :
0,18,12 — 5], [11,3,12—19], [10,7,12—6], [17,18,8—13], [15,6,16—4], [14,5,13 — 3],
[12,4,13 —17], [11,10,2—19], [10,9,17—3], [0,19,11—4], [18,9,19—1], [19,6,17 —1],
(16,5,18 —1], [17,15,4 —19], [16,14,3—19], [15,2,13 — 18], [1,12,14—8], [11,6,13 —0],
[11,16,9 — 13], [8,15,10 — 13], [19,16,8 — 11], [15,7,18—4], [17,0,14—9], [17,7,16 —1],
(16,2,12—8], [15,11,1—10], [4,10,14—19], [19,5,15—0], [0,16,10—3], [18,14,2 — 17],
[11,7,14—6], [19,7,13—1], [10,6,18 —3], [17,11,5—10], [12,9,15 — 3].

By = (B \ {[0,18,12— 5], [11,3,12 — 19],[10,7, 12— 6]}) U{[0, 18,12 — 6], [11,3,12 — 5], [10,7, 12 —
19]}, Then (X, G, B;) is a kite-GDD of type 2510! for each 1 < i < 2, where the group set is
G = {{10,19}, {11,18}, {12,17}, {13, 16}, {14, 15}, {0, 1,...,

tations on X.

9}}. Consider the following permu-

770—(071)( 4)(35968), m =(04132)(6987), m =(096172)(458),
=(084)(29673), ms = (059)(13)(278), =(074261)(58),
=(27)(3458), 7 =(01673)(25), ms = (09716)(34),
=(043159), 0 = (13)(268), m1 =(07)(1935),

7T12:(01763), m3 = (075)(14), m14 = (08529),

w5 = (05647), m6 = (0926), m7 = (0524),

ms = (0567), w9 =(019), 7T20—(587)

w1 = (054), g = (467), = (16),

moa = (15), w25 = (89), o6 = (05),
mor = (28), w32 =mss = (1).

We have that for each s € Mo\ {32}, |7:B1NB1| = s and 7,G = G. For s = 32, |m32B2NB1| = 32
and 132G = G. O



558 Yonghong AN and Guizhi ZHANG

Lemma 3.9 Let My; = {0,1,...,29,40} and s € My;. Then there is a pair of kite-GDDs of

type 826! with the same group set, which intersect in s blocks.

Proof Take the vertex set X ={0,1,...,21}. Let B:

(0,16,8 — 6], [1,17,8 —=7], [3,18,8—2],  [1,16,9—3],  [4,20,9 — 6],

[5,19,9—7], [6,19,10—0], [21,4,10—5], [2,16,11—6], [3,19,11—7],
[4,18,11 —5], [18,6,15—2], [7,20,15—4], [19,0,15—3], [17,5,15 — 1],
(0,11,20— 2], [13,5,20— 6], [1,12,20—8],  [3,10,20 — 14], [14,2,21 — 6],
2,19,12—6], [4,17,12—0], [21,7,12—5], [3,17,13—1], [4,16,13 — 6],
[7,18,13—2], [5,16,14 —4], [6,17,14—3], [0,18,14—7], [7,10,16 — 15],
3,12,16 — 6], [0,9,17—7], [2,10,17—11], [1,10,18 —5], [2,9,18 — 12],
[4,8,19 —13], [14,1,19—7], [0,13,21—3], [1,11,21—9], [5,8,21 — 15].

)

Then (X, G, B) is a kite-GDD of type 8261, where the group set is G = {{0,1,...,7},{8,9,...,15},
{16,17,...,21}}. Consider the following permutations on X.

To=(06273)(154), m =(06712)(45), m=(0256374), m5=(1647)(35),

= (167)(24), ms=(04)(2673), 716=(02437), 7= (25)(3 6 4),
s = (04 3)(17), o= (0625 4), o= (07)25),  m1=(3574),
o = (26 4 3), M = (0 1)(4 5), ma=(0457), s = (036 2),
me = (01 2), m7 = (25 4), ms = (0 4 6), 71'19—(062)
ma0 = (1 45), 7T21—( 6), T2 = (3 6), Tz = (57
7T24*( 7), =(15), ma6 = (4 5), 7r27—(172())

= (89), a9 = (9 11), a0 = (1).

We have that for each s € My;, 78BN B|=s and 7, = G. O
Lemma 3.10 For integer 8 < u < 10, J(u) = I(u).

Proof Obviously, J(u) C I(u). We need to show that I(u) C J(u). For 8 < u < 10, take the
corresponding M,, from Lemmas 3.6 — 3.8. Let a,, € M,,u = 8,9,10. Let

8, ifu=S8,
hoe=1 8, ifu=09,
10, if u = 10.

By Lemmas 3.6-3.8, there is a pair of kite-GDDs of type 24~ % h, ' (X,B 2u)) and (X, B 2u))
which intersect in o, blocks. Here the subgraph K, is constructed on Y C X. Let 8, € I(hy).
By Lemmas 3.2 and 3.3, there is a pair of kite-GDDs of type 2%"7 (Y, B’l(h“)) and (Y, B;(h“)) with
B common blocks. Then (X, B?U) u B’l(h“)) and (X, Bfu) u B;(h“)) are both kite-GDDs of type

2% with «y, + 8, common blocks. Thus we have

J(u) 2 {(ay + Bu: ay € My, B € I(hy)}.

It is readily checked that for any integer s € I(u), we have s € J(u). O
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Lemma 3.11 For integer u = 11, J(11) = I(11).

Proof Take the same set M;p; as in Lemma 3.9. Let a € My;. Then there is a pair of kite-
GDDs of type 826! with the same group set, which intersect in a blocks. Let v; and v, € I(4).
By Lemma 3.2, there is a pair of kite-GDDs of type 2% intersecting in y; common blocks for
each i = 1,2. Let 73 € I(3). By Lemma 3.1, there is a pair of kite-GDDs of type 2 with 73
common blocks. Now applying Construction 2.2, we obtain a pair of kite-GDDs of type 2!! with
o+ 2?21 ~; common blocks. Thus we have

3
JA1) 2 {a+ > vita€ M,y € I(4), €I(3)} =I(11). O
i=1
Lemma 3.12 Let J(3) = {s : 3 a pair of kite-GDDs of type 43 intersecting in s blocks},
J(3) =1{0,1,...,10,12}.

Proof Take the vertex set X = {0,1,...,11}. Let By = {[9,3,10 — 7],[8,2,10 — 6], [2,4,6 —
3,16,5,1—10], [11,7,1—8],[0,6,11 8], [4,8,3 — 11],[5,8,0— 10], [1,4,9 — 5], [7,4,0— 9], [3,7,5 —
20,19,11,2 — 7]}. By = (B \ {[9,3,10 — 7],[8,2,10 — 6]}) U {[9,3,10 — 6],[8,2,10 — 7]}, Bs =
By \ {[9,3,10 — 7], [8,2,10 — 6], 2,4,6 — 3]}) U {[9,10,3 — 6],[8,2,10 — 7],[2,4,6 — 10]}, By =
B2\ {[6,5,1—10],[11,7,1—8]})U{[6,5,1—8],[11,7,1—10]}, Bs = (B3 \ {[6,5,1— 10],[11,7,1 —
81} u{[6,5,1 —8],[11,7,1 — 10]}. Then (X,G,B;) is a kite-GDD of type 43 for i = 1,2,3,4,5,
where G = {{0,1, 2,3}, {4,5,10,11},{6,7,8,9}}. Consider the following permutations on X.

m0=(23)(4115)(6897), m =(0123)(411)(67)(89), w2 = (03)(12)(45)(697)(10 11),
73 = (6 8)(10 11), ma = (0 2)(1 3)(4 5)(6 8)(10 11), 75 = (4 5),
76 = (5 10), w7 =mg = Mg =m0 = M2 = (1).

We have that for each s € {0,1,...,6,12}, |7, B1NB1| = s and .G = G. For each s € {7,8,9,10},
|TsBia—s N B1| = s and 7,G = G. O

Lemma 3.13 For integer u = 18,19, J(u) = I(u).

Proof Start from a 3-GDD of type 32 from Lemma 2.3. Give each point of the GDD weight 4. By
Lemma 3.12, there is a pair of kite-GDDs of type 4® with o common blocks, a € {0,1,...,10,12}.
Then apply Construction 2.1 to obtain a pair of kite-GDDs of type 123 with Z?:l ; common
blocks, where 9 is the number of blocks of the 3-GDD of type 3% and «; € {0,1,...,10,12} for
1 <i<9. Now for each 1 < j < 3, fill in the j-th group of the resulting kite-GDDs of type 123
with a pair of kite-GDDs of type 26 with 3; common blocks, 8; € I(6), which exist by Lemma
3.4. By Construction 2.2 we have a pair of kite-GDDs of type 2'® with Z?zl a; + Z;’:l B

common blocks, which implies
9 3
J(18) D {ZaiJrZﬂj ca; €{0,1,...,10,12},8; € I(6),1 < i < 9,1 §j§3}
i=1 j=1

=9x{0,1,...,10,12} + 3% {0,1,...,13,15} = I(18).

Now for each 1 < j < 3, fill in the j-th group of the resulting kite-GDDs of type 123 with
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a pair of kite-GDDs of type 27 with 3; common blocks, 8; € I(7), which exist by Lemma 3.5.
By Construction 2.2 we have a pair of kite-GDDs of type 2'° with Z?:l a; + Z?zl B; common

blocks, which implies

9 3
J(19) 2 {Zai—FZBj:ai6{0,1,...,10712},@-EI(?),1§i§9,1§j§3}
i=1 j=1

=94{0,1,...,10,12} + 3% {0,1,...,19,21} = I(19). O
Lemma 3.14 For integer u = 20, J(u) = I(u).

Proof Start from a 4-GDD of type 5% from Lemma 2.3. Give each point of the GDD weight
2. By Lemma 3.2, there is a pair of kite-GDDs of type 2* with a common blocks, o € I(4).
Then apply Construction 2.1 to obtain a pair of kite-GDDs of type 10* with 21221 a; common
blocks, where 25 is the number of blocks of the 4-GDD of type 5* and «; € I(4) for 1 < i < 25.
Now for each 1 < j < 4, fill in the j-th group of the resulting kite-GDDs of type 10* with a
pair of kite-GDDs of type 2° with 8; common blocks, 3; € I(5), which exist by Lemma 3.3.
By Construction 2.2 we have a pair of kite-GDDs of type 22° with 22221 a; + Z?zl B3; common

blocks, which implies

25 4
J(20) 2 {ZaﬁZ@ Coy € I(4),8; € I(5),1 << 25,1 §j§4}
i=1 j=1

=25%{0,1,...,4,6} +4%{0,1,...,8,10} = I(20). O

Lemma 3.15 Let Ajg ={0,1,2,3,4,9} and s € Ayp. Then there is a pair of kite-GDDs of type

2341 with the same group set, which intersect in s blocks.

Proof Take the vertex set X = {0,1,...,9}. Let B={[6,1,0—7],[1,2,7-5],[2,3,8—1],[4,9,3—
71,15,0,4 — 8],[9,5,1 — 3], 9,2,0 — 8],[6,3,5 — 8], [2,6,4 — 7]}. Then (X, G, B) is a kite-GDD of
type 2341, where the group set is G = {{0,3},{1,4},{2,5}, {6,7,8,9}}. Consider the following

permutations on X.

T = (25)(697), m = (03)(689), m = (03),
7T3:(89), 71'4:(67), 7T9:(].).

We have that for each s € Ay, [7sBNB|=sand 7,6 =G. O

4. Working lemmas

First we need the following definition. Let s; and sy be two non-negative integers. If X and
Y are two sets of non-negative integers, then X + Y denotes the set {s; + s2: 51 € X, 59 € Y}
If X is a set of non-negative integers and h is some positive integer, then h * X denotes the
set of all non-negative integers which can be obtained by adding any h elements of X together

(repetitions of elements of X allowed).

Lemma 4.1 For any integer u = 0 (mod 3), u > 12 and u # 18, J(u) = I(u).
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Proof Let u = 3t with t =0,1 (mod4) and ¢ > 4. Start from a 4-GDD of type 3! from Lemma
2.3. Give each point of the GDD weight 2. By Lemma 3.2, there is a pair of kite-GDDs of type
2% with o common blocks, a € I(4). Then apply Construction 2.1 to obtain a pair of kite-GDDs
of type 6 with 25:1 a; common blocks, where b = 3t(t — 1)/4 is the number of blocks of the
4-GDD of type 3! and «; € I1(4) for 1 <i < b. Now for each 1 < j < ¢, fill in the j-th group of
the resulting kite-GDDs of type 6! with a pair of kite-GDDs of type 2 with B; common blocks,
B € I(3), which exist by Lemma 3.1. By Construction 2.2 we have a pair of kite-GDDs of type
23t with Z?:l a; + Z;:1 B; common blocks, which implies

b t
J(u) = J(3t) 2 {ZaﬁZﬁ;:m €1(4),5€1(3),1<i<b1 gjgt}
i=1 j=1

— 0% {0,1,...,4,6} +%{0,3} = {0,1,...,6b— 2,60} + {0,3,6,...,3t}
=1(3t) = I(u).

For any t = 2,3 (mod4) and t > 7, start from a 4-GDD of type 3'~26!, which exists from
Lemma 2.3, and give each point of the GDD weight 2. By Lemma 3.2, there is a pair of kite-GDDs
of type 2 with a common blocks, o € I(4). Then apply Construction 2.1 to obtain a pair of kite-
GDDs of type 6/7212! with Z?Zl a; common blocks, where b = 3(¢t — 2)(¢t + 1)/4 is the number
of blocks of the 4-GDD of type 3726 and o; € I(4), 1 <i < b. Now for each 1 < j <t — 2, fill
in the j-th group of the resulting kite-GDDs of type 67212 with a pair of kite-GDDs of type
23 with ; common blocks, 3; € I(3), which exist by Lemma 3.1; fill in the last group with a
pair of kite-GDDs of type 2¢ with v common blocks, v € I(6), which exist by Lemma 3.4. By
Construction 2.2 we have a pair of kite-GDDs of type 23! with Zi’:l a; + 22;21 Bj + v common

blocks, which implies

b t—2
Jw)=J6) 2 { Y e+ B +viai € 1(4).8; € 13),y € 1(6), 1 <i<b1<j<t—2}
i=1 j=1
=b*{0,1,...,4,6} + (t —2) x{0,3} +{0,1,...,13,15} = I(3t) = I(u).

This completes the proof. O
Lemma 4.2 For any integer u = 1 (mod 3), u > 13 and u # 19, J(u) = I(u).

Proof Let w = 3t + 1 with ¢t = 0,1 (mod4) and ¢ > 4. Start from a 4-GDD of type 3! from
Lemma 2.3. Give each point of the GDD weight 2. By Lemma 3.2, there is a pair of kite-GDDs
of type 2% with o common blocks, a € I(4). Then apply Construction 2.1 to obtain a pair of
kite-GDDs of type 6° with Zle a; common blocks, where b = 3¢(t —1)/4 is the number of blocks
of the 4-GDD of type 3! and a; € I(4) for 1 < i < b. Now for each 1 < j < ¢, fill in the j-th
group of the resulting kite-GDDs of type 6! with a pair of kite-GDDs of type 2* with 8; common
blocks, ; € I(4), which exist by Lemma 3.2. By Construction 2.2 we have a pair of kite-GDDs
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of type 23**! with Zi’:l o + Zt':l B; common blocks, which implies

J(u) = 3t+1{2a1+26j a; € I(4 ﬁ]eI()1gigb71gg’gt}

:b*{0,1,...,4,6}+t*{0,1,...,4,6}:I(3t):I(u).

For any t = 2,3 (mod4) and t > 7, start from a 4-GDD of type 3'~26!, which exists from
Lemma 2.3, and give each point of the GDD weight 2. By Lemma 3.2, there is a pair of kite-GDDs
of type 2 with a common blocks, o € I(4). Then apply Construction 2.1 to obtain a pair of kite-
GDDs of type 6/7212! with Zle a; common blocks, where b = 3(¢ — 2)(¢t + 1)/4 is the number
of blocks of the 4-GDD of type 3726 and «o; € I(4), 1 <i < b. Now for each 1 < j <t — 2, fill
in the j-th group of the resulting kite-GDDs of type 67212 with a pair of kite-GDDs of type

4 with $8; common blocks, 3; € I(4), which exist by Lemma 3.2; fill in the last group with a
pair of kite-GDDs of type 27 with o common blocks, v € I(7), which exist by Lemma 3.5. By
Construction 2.2 we have a pair of kite-GDDs of type 23+! with Zle ; +Z§;21 Bj +~ common
blocks, which implies

J(u) = J(3t + 1) {Za,+2ﬁj+7 aieI(4 ),Bj6[(4),76](7),1§i§b,1§j§t—2}

=b{0,1,...,4,6} + t—2)*{0,1,...,4,6}+{0,1,...,19,21}:I(3t+1) = I(u).
This completes the proof. O
Lemma 4.3 For any integer u = 2 (mod 3), v > 14 and u # 20, J(u) = I(u).

Proof Let u = 3t+ 2 with ¢t = 0,1 (mod4) and ¢ > 4. Start from a 4-GDD of type 3! from
Lemma 2.3. Give each point of the GDD weight 2. By Lemma 3.2, there is a pair of kite-GDDs
of type 2* with o common blocks, a € I(4). Then apply Construction 2.1 to obtain a pair of
kite-GDDs of type 6" with Zi.’:l a; common blocks, where b = 3t(t — 1)/4 is the number of
blocks of the 4-GDD of type 3% and «; € I(4) for 1 < i < b. Now for each 1 < j <t — 1, fill
in the j-th group of the resulting kite-GDDs of type 6 with a pair of kite-GDDs of type 234!
with 8; common blocks, 8; € A(10), which exist by Lemma 3.15; fill in the last group with a
pair of kite-GDDs of type 2° with v common blocks, v € I(5), which exist by Lemma 3.3. By
Construction 2.2 we have a pair of kite-GDDs of type 23!*2 with Z?:l a; —|—Z§;11 B+~ common
blocks, which implies

J(u) = J(3t +2) {Zal—&—Zﬁjﬁ-v a; € I(4), BjeA(lO),veI(5),1gigb,lgjgt—l}

:b*{O,l,...,4,6}+(tf1)*{0,1,2,3,4,9}+{0,1,...,8,10}:I(3t+2):I(u).

For any t = 2,3 (mod4) and t > 7, start from a 4-GDD of type 3'~26!, which exists from
Lemma 2.3, and give each point of the GDD weight 2. By Lemma 3.2, there is a pair of kite-
GDDs of type 2* with a common blocks, a € I(4). Then apply Construction 2.1 to obtain a
pair of kite-GDDs of type 6/7212! with Z?Zl a; common blocks, where b = 3(t — 2)(t + 1)/4
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is the number of blocks of the 4-GDD of type 3'726' and a; € I(4), 1 < i < b. Now for each
1 < j <t—2, fill in the j-th group of the resulting kite-GDDs of type 6!7212! with a pair of
kite-GDDs of type 234! with ; common blocks, 3; € A(10), which exist by Lemma 3.15; fill
in the last group with a pair of kite-GDDs of type 2% with v common blocks, v € I(8), which
exist by Lemma 3.10. By Construction 2.2 we have a pair of kite-GDDs of type 23+2 with
Z?Zl o; + Z;;? B; +~ common blocks, which implies

b t—2
J(u) = J(3t +2) D {Zai—&-Zﬂj—i—’y:ai e 1(4), 5 eA(lO),PyeI(8),1gigb,lgjgt—2}
i=1 j=1

=b%{0,1,...,4,6} + (t —2)%{0,1,2,3,4,9} + {0,1,...,26,28}
=I(3t+2) = I(u).

This completes the proof. O

5. Conclusion
We prove Theorem 1.1.

Proof of Theorem 1.1 When u € {3,4,5,6,7,8,9,10,11, 18,19, 20}, the conclusion follows
from Lemmas 3.1-3.5, 3.10, 3.11, 3.13 and 3.14. When u > 12, combining the results of Lemmas
4.1-4.3, we complete the proof. O
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