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Abstract In this paper we introduce and investigate a new generalized class of bi-univalent

functions defined by using (s, t)-derivative operator and quasi-subordination. We obtain the

estimates of the first two coefficients |a2|, |a3| and general coefficient |an| (n ≥ 4) by using

Faber polynomial expansion for the new class and some of its subclasses. And then we solve

Fekete-Szegö probelm for the newly defined classes.
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Fekete-Szegö problem; Faber polynomial expansion

MR(2020) Subject Classification 30C45; 30C50

1. Introduction

Let A denote the class of functions of the form

f(z) = z +

∞∑
k=2

akz
k, (1.1)

which are analytic in the open unit disk D = {z ∈ C : |z| < 1}. Also let S denote the subclass

of functions in A that are univalent in D.
For two analytic functions f and g, the function f is subordinate to g in D, written as follows

f(z) ≺ g(z), z ∈ D,

if there exists a Schwarz function ω with ω(0) = 0 and |ω(z)| < 1, z ∈ D such that

f(z) = g(ω(z)).

Furthermore, if the function g is univalent in D, then f(z) ≺ g(z) is equivalent to f(0) = g(0)

and f(D) ⊂ g(D).
In 1970, Robertson [1] introduced the concept of quasi-subordination. For two analytic

functions f and g, the function f is quasi-subordinate to g in D, written as follows

f(z) ≺q g(z), z ∈ D,
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if there exists an analytic function h with |h(z)| ≤ 1 such that f(z)
h(z) is analytic in D and

f(z)

h(z)
≺ g(z), z ∈ D

that is, there exists a Schwarz function ω with ω(0) = 0 and |ω(z)| < 1, z ∈ D such that

f(z) = h(z)g(ω(z)).

Observe that when h(z) = 1, then f(z) = g(ω(z)), so that f(z) ≺ g(z) in D. Also notice that if

ω(z) = z, then f(z) = h(z)g(z) and f is said to be majorized by g, written as f(z) ≪ g(z) in

D. Hence it is obvious that quasi-subordination is a generalization of subordination as well as

majorization. See [2–6] for works related to quasi-subordination.

A function f ∈ A is said to be bi-univalent in D if both f and f−1 are univalent in D. It is

a well known fact that every function f ∈ S has an inverse functions f−1, defined by

f−1(f(z)) = z, z ∈ D

and

f(f−1(ω)) = ω, |ω| < r0(f), r0(f) ≥
1

4
.

In fact, according to the Kobe One-Quarter Theorem [7], the inverse function f−1is given by

g(ω) = f−1(ω) = ω − a2ω
2 + (2a22 − a3)ω

3 − (5a32 − 5a2a3 + a4)ω
4 + · · · = ω +

∞∑
n=2

bnω
n. (1.2)

Let Σ denote the class of all bi-univalent functions in D given by the Taylor-Maclaurin series

expansion in (1.1). Coefficient estimate problem of bi-univalent function was widely researched

in the literature. In 1967, Lewin [8] first introduced the class Σ and studied the estimate for

the coefficient |a2| of functions in Σ, and obtained that |a2| ≤ 1.51. Subsequently, Branan and

Clunie [9] improved Lewin’s result to |a2| ≤
√
2 and later Netanyahu [10] proved that |a2| ≤ 4/3.

Kedzierawski [11] proved the Brannan-Clunie conjecture for bi-starlike functions. In 1984, Tan

[12] obtained that |a2| < 1.485, which is the best known estimate for bi-univalent functions in Σ.

Brannan and Taha [13] also investigated certain subclasses of bi-univalent functions and found

the non-sharp estimates on the initial coefficients |a2| and |a3|. In recent years, many researchers

have been devoted to various subclasses of the bi-univalent functions and obtained the estimates

on the initial coefficients |a2| and |a3|. The interest on estimates for the initial coefficients

|a2|, |a3| of the bi-univalent functions keeps on by some researchers (see, for example, Srivastava

et al. [14], Frasin and Aouf [15], Hayami and Owa [16], Xu et al. [17], and others [18–24]).

Quite recently, only few works also determined the Fekete-Szegö problem (i.e., estimate for the

upper bound of |a3 −µa22|) for some subclasses of bi-univalent functions, for example [25–30]. In

the meantime, the estimate on the general coefficients |an| (n ≥ 4) of bi-univalent functions has

attracted the attention of some researchers. By using the Faber polynomial coefficient expansions

Jahangiri and Hamidi [31] obtained bounds for the coefficient |an| of bi-univalent functions in

certain subclass of Σ with a given gap series condition. Since then, some of authors considered

and studied the bound of general coefficient |an| for bi-univalent functions in certain subclasses
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of Σ, for example [32–36]. The estimate on the general coefficients |an| (n ≥ 4) of bi-univalent

functions is still an open problem.

Although many subclasses of bi-univalent functions have already been introduced and some

coefficient estimates have been studied, our focus is not only to further extend the bi-univalent

functions class, but also to study the above coefficient estimate problems and Fekete-Szegö

problem of the new classes of bi-univalent functions.

We begin by recalling the definition details of the following (s, t)-derivative operator (defined

by Chakrabarti and Jagannathan [37], see also [38]), which will be used in this paper.

Definition 1.1 Let the function f ∈ A be given by (1.1) and 0 < t < s ≤ 1. The (s, t)-derivative

of the function f is defined as

(Ds,tf)(z) =

{
f(sz)−f(tz)

(s−t)z , z ̸= 0,

f ′(0), z = 0.

According to the above definition, we have

(Ds,tf)(z) = 1 +
∞∑

n=2

[n]s,tanz
n−1

where the symbol [n]s,t denotes the (s, t)-number or twin-basic number [n]s,t =
sn−tn

s−t .

Note that by putting s = 1, the (s, t)-derivative reduces to the Jackson t-derivative given

by [39]

(Dtf)(z) =

{
f(z)−f(tz)

(1−t)z , z ̸= 0,

f ′(0), z = 0.

And, for f ∈ A given by (1.1), we have

(Dtf)(z) = 1 +
∞∑

n=2

[n]tanz
n−1

where [n]t =
1−tn

1−t .

Also, by taking t→ 1−, we have [n]t → n. So (Dtf)(z) reduces to f
′(z) for f ∈ A.

Now by using (s, t)-derivative operator and quasi-subordination we introduce a generalization

class of analytic and bi-univalent functions.

Definition 1.2 Let 0 ≤ λ < 1, γ ∈ C\{0}. A function f(z) ∈
∑

given by (1.1) is said to be in

the class Qq∑(γ, λ, s, t, φ) if the following conditions are satisfied

1

γ
(

z(Ds,tf)(z)

(1− λ)f(z) + λz(Ds,tf)(z)
− 1) ≺q φ(z)− 1, z ∈ D (1.4)

and

1

γ
(

ω(Ds,tg)(ω)

(1− λ)g(ω) + λω(Ds,tg)(ω)
− 1) ≺q φ(ω)− 1, ω ∈ D (1.5)

where g(ω) = f−1(ω) is defined by (1.2).
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Remark 1.3 There are some suitable choices of λ, s, t, γ which would provide the following

subclasses of the class Qq∑(γ, λ, s, t, φ).

(1) By taking λ = 0 in Definition 1.2, the class Qq∑(γ, λ, s, t, φ) reduces to the class

Qq∑(γ, s, t, φ) which satisfies

1

γ
(
z(Ds,tf)(z)

f(z)
− 1) ≺q φ(z)− 1, z ∈ D

and
1

γ
(
ω(Ds,tg)(ω)

g(ω)
− 1) ≺q φ(ω)− 1, ω ∈ D.

(2) By taking s = 1 in Definition 1.2, the class Qq∑(γ, λ, s, t, φ) reduces to the class

Qq∑(γ, λ, t, φ) which satisfies

1

γ
(

z(Dtf)(z)

(1− λ)f(z) + λz(Dtf)(z)
− 1) ≺q φ(z)− 1, z ∈ D

and
1

γ
(

ω(Dtg)(ω)

(1− λ)g(ω) + λω(Dtg)(ω)
− 1) ≺q φ(ω)− 1, ω ∈ D.

(3) By taking λ = 0 and s = 1 in Definition 1.2, the class Qq∑(γ, λ, s, t, φ) reduces to the

class Qq∑(γ, t, φ) which satisfies

1

γ
(
z(Dtf)(z)

f(z)
− 1) ≺q φ(z)− 1, z ∈ D

and
1

γ
(
ω(Dtg)(ω)

g(ω)
− 1) ≺q φ(ω)− 1, ω ∈ D.

(4) By taking s = 1 and t → 1− in Definition 1.2, the class Qq∑(γ, λ, s, t, φ) reduces to the

class Qq∑(γ, λ, φ) which satisfies

1

γ
(

zf ′(z)

(1− λ)f(z) + λzf ′(z)
− 1) ≺q φ(z)− 1, z ∈ D

and
1

γ
(

ωg′(ω)

(1− λ)g(ω) + λωg′(ω)
− 1) ≺q φ(ω)− 1, ω ∈ D.

Specially, for γ = 1, if quasi-subordination is reduced to subordination, the class Qq∑(γ, λ, φ)

reduces to the class Mλ∑(φ) introduced by Altinkaya et al. [40].

(5) By taking λ = 0, s = 1 and t → 1− in Definition 1.2, the class Qq∑(γ, λ, s, t, φ) reduces

to the class Sq∑(γ, φ) which satisfies

1

γ
(
zf ′(z)

f(z)
− 1) ≺q φ(z)− 1, z ∈ D

and
1

γ
(
ωg′(ω)

g(ω)
− 1) ≺q φ(ω)− 1, ω ∈ D.

Specially, for γ = 1, the class Sq∑(γ, φ) reduces to the class Sq∑(φ) introduced by Vyas and

Kant [41].
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The object of this paper is to study two kinds of coefficient estimate problems and Fekete-

Szegö problem for the class Qq∑(γ, λ, s, t, φ) and some of its subclasses. Our results are new in

this direction and they give birth to many corollaries.

In order to derive our main results, we have to recall here the following lemma.

Lemma 1.4 ([42]) If p ∈ P, then |cn| ≤ 2 for each n, where P is the family of all function p

analytic in D for which Re p(z) > 0, p(z) = 1 + c1z + c2z
2 + · · · for z ∈ D.

2. Main Results

In the sequel, it is assumed that φ(z) is an analytic function with positive real part in D, φ(D)
is symmetric with respect to the real axis and starlike with respect to φ(0) = 1 and φ′(0) > 0.

Then function φ(z) has the Taylor series expansion of the form

φ(z) = 1 + ξ1z + ξ2z
2 + · · · , ξ1 > 0. (2.1)

Suppose that ψ and ϕ are analytic in the unit disk D with |ψ(z)| < 1, |ϕ(ω)| < 1, and suppose

that

ψ(z) = h0 + h1z + h2z
2 + · · · , ϕ(ω) = l0 + l1ω + l2ω

2 + · · · . (2.2)

2.1. Coefficient estimates problem

In this section, we obtain the coefficient estimates for the function class Qq∑(γ, λ, s, t, φ).

For this purpose, we need to use the Faber polynomial expansions of inverse functions. For

the function f ∈ A of the form (1.1), the coefficients of its inverse map g = f−1 may be expressed

by [43,44]

g(ω) = f−1(ω) = ω +

∞∑
n=2

1

n
K−n

n−1(a2, a3, . . . , an)ω
n, (2.3)

where

K−n
n−1 =K−n

n−1(a2, a3, . . . , an) =
(−n)!

(−2n+ 1)!(n− 1)!
an−1
2 +

(−n)!
(−2n+ 2)!(n− 3)!

an−3
2 a3+

(−n)!
(−2n+ 3)!(n− 4)!

an−4
2 a4 +

(−n)!
(−2n+ 4)!(n− 5)!

an−5
2 [a5 + (n− 2)a23]+

(−n)!
(−2n+ 5)!(n− 6)!

an−5
2 [a6 + (−2n+ 5)a3a4] +

∑
j≥7

an−j
2 Vj ,

such that Vj (7 ≤ j ≤ n) is a homogeneous polynomial in the variables a2, a3, . . . , an (see [45]).

In particular, the first three terms of K−n
n−1 are

K−2
1 = −2a2,K

−3
2 = 3(2a2 − a3),K

−4
3 = −4(5a32 − 5a2a3 + a4).

In general, for n ≥ 1 and α ∈ Z := {0,±1,±2, . . .}, an expansion of Kα
n−1 is given by [43]

Kα
n−1 = αan +

α(α− 1)

2
E2

n−1 +
α!

(α− 3)!3!
E3

n−1 + · · ·+ α!

(α− n+ 1)!(n− 1)!
En−1

n−1 ,



584 En AO, Shuhai LI and Huo TANG

where Eα
n−1 = Eα

n−1(a2, a3, . . . , an) are homogeneous polynomial explicated in [46]

Eα
n−1(a2, a3, . . . , an) =

∞∑
n=2

α!

j1 · · · jn−1
aj12 · · · ajn−1

n for α ≤ n− 1,

and the sum is taken over all nonnegative integers j1, . . . , jn−1 satisfying{
j1 + j2 + · · ·+ jn−1 = α,

j1 + 2j2 + · · ·+ (n− 1)jn−1 = n− 1.

It is clear that En−1
n−1(a2, a3, . . . , an) = an−1

2 .

Consequently, for function f ∈ Qq∑(γ, λ, s, t, φ) of the form (1.1), we can obtain

1

γ
(

z(Ds,tf)(z)

(1− λ)f(z) + λz(Ds,tf)(z)
− 1) =

∞∑
n=2

Fn−1(A2, A3, . . . , An)

γ
zn−1, (2.4)

1

γ
(

ω(Ds,tg)(ω)

(1− λ)g(ω) + λω(Ds,tg)(ω)
− 1) =

∞∑
n=2

Gn−1(B2, B3, . . . , Bn)

γ
ωn−1, (2.5)

where

Fn−1(A2, A3, . . . , An) = ([n]s,tan −An) +
n−2∑
j=1

K−1
j (A2, A3, . . . , Aj+1)([n− j]s,tan−j −An−j),

Gn−1(B2, B3, . . . , Bn) = ([n]s,tbn −Bn) +
n−2∑
j=1

K−1
j (B2, B3, . . . , Bj+1)([n− j]s,tbn−j −Bn−j)

with An = [1 + ([n]s,t − 1)λ]an, Bn = [1 + ([n]s,t − 1)λ]bn.

In addition, for analytic functions u(z) = c1z + c2z
2 + · · · , v(ω) = d1ω + d2ω

2 + · · · and

analytic function φ ∈ A of the form (2.1), we can get

φ(u(z))− 1 =
∞∑

n=1

n∑
k=1

ξkE
k
n(c1, c2, . . . , cn)z

n, φ(v(ω))− 1 =
∞∑

n=1

n∑
k=1

ξkE
k
n(d1, d2, . . . , dn)ω

n.

Now by using Faber polynomial expansions, we prove our first main result which provides an

estimate for the general coefficients |an| of functions in Qq∑(γ, λ, s, t, φ) subject to a given gap

series condition.

Theorem 2.1 Let the function f(z) ∈ Qq∑(γ, λ, s, t, φ) be given by (1.1). If ai = 0 (2 ≤ i ≤
n− 1), then

|an| ≤
2|γ|

([n]s,t − 1)(1− λ)
min

{ n−1∑
i=0

|hi|
( n−i−1∑

k=1

|Ek
n−i−1(c1, c2, . . . , cn−i−1)|

)
,

n−1∑
i=0

|li|
( n−i−1∑

k=1

|Ek
n−i−1(d1, d2, . . . , dn−i−1)|

)}
. (2.6)

Proof Since f ∈ Qq∑(γ, λ, s, t, φ), then there exist two Schwarz functions u(z) = c1z+c2z
2+· · · ,

v(ω) = d1ω + d2ω
2 + · · · and analytic functions ψ,φ defined by (2.2) such that

1

γ
(

z(Ds,tf)(z)

(1− λ)f(z) + λz(Ds,tf)(z)
− 1) = ψ(z)[φ(u(z))− 1]
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and
1

γ
(

ω(Ds,tg)(ω)

(1− λ)g(ω) + λω(Ds,tg)(ω)
− 1) = ϕ(ω)[φ(v(ω))− 1],

where

ψ(z)[φ(u(z))− 1] =
∞∑

n=1

[ n∑
i=0

hi

( n−i∑
k=1

ξkE
k
n−i(c1, c2, . . . , cn−i)

)]
zn, (2.7)

ϕ(ω)[φ(v(ω))− 1] =

∞∑
n=1

[ n∑
i=0

li

( n−i∑
k=1

ξkE
k
n−i(d1, d2, . . . , dn−i)

)]
ωn. (2.8)

Comparing the corresponding coefficients of (2.4) and (2.7), for any n ≥ 2 we have

([n]s,tan −An) +
n−2∑
j=1

K−1
j (A2, A3, . . . , Aj+1)([n− j]s,tan−j −An−j)

= γ

n−1∑
i=0

hi

( n−i−1∑
k=1

ξkE
k
n−i−1(c1, c2, . . . , cn−i−1)

)
(2.9)

and similarly, from (2.5) and (2.8) we have

([n]s,tbn −Bn) +
n−2∑
j=1

K−1
j (B2, B3, . . . , Bj+1)([n− j]s,tbn−j −Bn−j)

= γ

n−1∑
i=0

li

( n−i−1∑
k=1

ξkE
k
n−i−1(d1, d2, . . . , dn−i−1)

)
. (2.10)

For ai = 0 (2 ≤ i ≤ n− 1), we get Ai = 0, bi = Bi = 0 (2 ≤ i ≤ n− 1) and bn = −an. Hence

([n]s,t − 1)(1− λ)an = γ
n−1∑
i=0

hi

( n−i−1∑
k=1

ξkE
k
n−i−1(c1, c2, . . . , cn−i−1)

)
(2.11)

and

−([n]s,t − 1)(1− λ)an = γ
n−1∑
i=0

li

( n−i−1∑
k=1

ξkE
k
n−i−1(d1, d2, . . . , dn−i−1)

)
. (2.12)

Finally, by taking the moduli in both sides of (2.11) and (2.12) and using Lemma 1.4, we get

the desired estimate on |an| as asserted in (2.6). This evidently completes the proof of Theorem

2.1. 2
Example 2.2 Let the function f(z) ∈ Sq∑(φ) be given by (1.1). If ai = 0 (2 ≤ i ≤ n− 1), then

|an| ≤
2

n− 1
min

{ n−1∑
i=0

|hi|
( n−i−1∑

k=1

|Ek
n−i−1(c1, c2, . . . , cn−i−1)|

)
,

n−1∑
i=0

|li|
( n−i−1∑

k=1

|Ek
n−i−1(d1, d2, . . . , dn−i−1)|

)}
.

Proof Let function f be given by (1.1). We have

zf ′(z)

f(z)
− 1 =a2z + (2a3 − a22)z

2 + · · ·+ [(n− 1)an+
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n−2∑
j=1

K−1
j (a2, a3, . . . , aj+1)(n− j − 1)an−j ]z

n + · · · .

And for its inverse map g = f−1 given by (1.2), we have

ωg′(ω)

g(ω)
− 1 =b2ω + (2b3 − b22)ω

2 + · · ·+ [(n− 1)bn+

n−2∑
j=1

K−1
j (b2, b3, . . . , bj+1)(n− j − 1)bn−j ]ω

n + · · · .

Since f ∈ Sq∑(φ), there exist two Schwarz functions u(z) =
∑∞

n=1 cnz
n, v(ω) =

∑∞
n=1 dnω

n

and analytic functions ψ,φ defined by (2.2) such that

zf ′(z)

f(z)
− 1 = ψ(z)[φ(u(z))− 1]

and
ωg′(ω)

g(ω)
− 1 = ϕ(ω)[φ(v(ω))− 1]

where ψ(z)[φ(u(z))− 1], ϕ(ω)[φ(v(ω))− 1] are defined by (2.7) and (2.8).

Using arguments similar to those in the proof of Theorem 2.1, we can obtain the estimate

result of |an|. This completes the proof of Example 2.2. 2
By taking special values of parameters λ, s, t in Theorem 2.1, we easily obtain the following

results.

Corollary 2.3 Let the function f(z) ∈ Qq∑(γ, s, t, φ) be given by (1.1). If ai = 0 (2 ≤ i ≤ n−1),

then

|an| ≤
2|γ|

[n]s,t − 1
min

{ n−1∑
i=0

|hi|
( n−i−1∑

k=1

|Ek
n−i−1(c1, c2, . . . , cn−i−1)|

)
,

n−1∑
i=0

|li|
( n−i−1∑

k=1

|Ek
n−i−1(d1, d2, . . . , dn−i−1)|

)}
.

Corollary 2.4 Let the function f(z) ∈ Qq∑(γ, λ, t, φ) be given by (1.1). If ai = 0 (2 ≤ i ≤ n−1),

then

|an| ≤
2|γ|

([n]t − 1)(1− λ)
min

{ n−1∑
i=0

|hi|
( n−i−1∑

k=1

|Ek
n−i−1(c1, c2, . . . , cn−i−1)|

)
,

n−1∑
i=0

|li|
( n−i−1∑

k=1

|Ek
n−i−1(d1, d2, . . . , dn−i−1)|

)}
.

Corollary 2.5 Let the function f(z) ∈ Qq∑(γ, λ, φ) be given by (1.1). If ai = 0 (2 ≤ i ≤ n− 1),

then

|an| ≤
2|γ|

(n− 1)(1− λ)
min

{ n−1∑
i=0

|hi|
( n−i−1∑

k=1

|Ek
n−i−1(c1, c2, . . . , cn−i−1)|

)
,

n−1∑
i=0

|li|
( n−i−1∑

k=1

|Ek
n−i−1(d1, d2, . . . , dn−i−1)|

)}
.
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Our next main result provides estimates for the initial coefficients |a2| and |a3| of functions
in Qq∑(γ, λ, s, t, φ) with no gap series restrictions imposed.

Theorem 2.6 Let the function f(z) ∈ Qq∑(γ, λ, s, t, φ) be given by (1.1). Then

|a2| ≤ min{ |γ|
√

2(h20 + l20)

|[2]s,t − 1|(1− λ)
,

√
|γ|[2(|h0|+ |l0|) + (|h1|+ |l1|)]

|[3]s,t − [2]s,t − ([2]s,t − 1)2λ|(1− λ)
}, (2.13)

|a3| ≤
|γ|

1− λ
min{ 2|γ|(h20 + l20)

([2]s,t − 1)2(1− λ)
+

2(|h0|+ |l0|) + (|h1|+ |l1|)
|[3]s,t − 1|

,

|C(λ, s, t)|(2|h0|+ |h1|) + |D(λ, s, t)|(2|l0|+ |l1|)
|([3]s,t − 1)([3]s,t − [2]s,t − ([2]s,t − 1)2λ)|

} (2.14)

where C(λ, s, t) = 2[3]s,t − [2]s,t − 1− ([2]s,t − 1)2λ,D(λ, s, t) = ([2]s,t − 1)[1 + ([2]s,t − 1)λ].

Proof Putting n = 2 and n = 3 in (2.9) and (2.10), respectively, we obtain

([2]s,t − 1)(1− λ)a2 = γh0ξ1c1 (2.15)

([3]s,t − 1)(1− λ)a3 − ([2]s,t − 1)(1− λ)[1 + ([2]s,t − 1)λ]a22

= γ[(h0c2 + h1c1)ξ1 + h0c
2
1ξ2] (2.16)

and

−([2]s,t − 1)(1− λ)a2 = γl0ξ1d1 (2.17)

([3]s,t − 1)(1− λ)(2a22 − a3)− ([2]s,t − 1)(1− λ)[1 + ([2]s,t − 1)λ]a22

= γ[(l0d2 + l1d1)ξ1 + l0d
2
1ξ2]. (2.18)

From (2.15) and (2.17), we obtain

a22 =
γ2ξ21(h

2
0c

2
1 + l20d

2
1)

2([2]s,t − 1)2(1− λ)2
. (2.19)

Also, from (2.16) and (2.18), we find

a22 =
γ[ξ1(h0c2 + h1c1 + l0d2 + l1d1) + ξ2(h0c

2
1 + l0d

2
1)]

2(1− λ)([3]s,t − [2]s,t − ([2]s,t − 1)2λ)
. (2.20)

For the coefficients of the Schwarz functions u(z) and v(ω) we have |cn| ≤ 1 and |dn| ≤ 1 (see [7]).

Taking the moduli in both sides of (2.19) and (2.20), and applying Lemma 1.4, we get

|a2| ≤
|γ|

√
2(h20 + l20)

|[2]s,t − 1|(1− λ)

and

|a2| ≤

√
|γ|[2(|h0|+ |l0|) + (|h1|+ |l1|)]

|[3]s,t − [2]s,t − ([2]s,t − 1)2λ|(1− λ)

which gives us the desired estimate on |a2| as asserted in (2.13).
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Next, in order to find the bound on |a3|, by subtracting (2.18) from (2.16), we obtain

a3 = a22 +
γ[ξ1(h0c2 + h1c1 − l0d2 − l1d1) + ξ2(h0c

2
1 − l0d

2
1)]

2([3]s,t − 1)(1− λ)
. (2.21)

Thus, upon substituting the value of a22 from (2.19) into (2.21), it follows that

a3 =
γ2ξ21(h

2
0c

2
1 + l20d

2
1)

2([2]s,t − 1)2(1− λ)2
+
γ[ξ1(h0c2 + h1c1 − l0d2 − l1d1) + ξ2(h0c

2
1 − l0d

2
1)]

2([3]s,t − 1)(1− λ)

which yields

|a3| ≤
2γ2(h20 + l20)

([2]s,t − 1)2(1− λ)2
+

|γ|[2(|h0|+ |l0|) + (|h1|+ |l1|)]
|[3]s,t − 1|(1− λ)

. (2.22)

On the other hand, upon substituting the value of a22 from (2.20) into (2.21), we obtain

a3 =
γ[ξ1(h0c2 + h1c1 + l0d2 + l1d1) + ξ2(h0c

2
1 + l0d

2
1)]

2([3]s,t − [2]s,t − ([2]s,t − 1)2λ)(1− λ)
+

γ[ξ1(h0c2 + h1c1 − l0d2 − l1d1) + ξ2(h0c
2
1 − l0d

2
1)]

2([3]s,t − 1)(1− λ)
.

It follows that

|a3| ≤
|γ|

|([3]s,t − 1)([3]s,t − [2]s,t − ([2]s,t − 1)2λ)|(1− λ)

[|2([3]s,t − 1)− ([2]s,t − 1)[1 + ([2]s,t − 1)λ]|(2|h0|+ |h1|)+

|([2]s,t − 1)[1 + ([2]s,t − 1)λ]|(2|l0|+ |l1|)]. (2.23)

Combining (2.22) and (2.23), we get the desired estimate on the coefficient |a3| as asserted in

(2.14). This evidently completes the proof of Theorem 2.6. 2
By taking special values of parameters λ, s, t in Theorem 2.6, we easily obtain the following

results.

Corollary 2.7 Let the function f(z) ∈ Qq∑(γ, s, t, φ) be given by (1.1). Then

|a2| ≤ min{ |γ|
√

2(h20 + l20)

|[2]s,t − 1|
,

√
|γ|[2(|h0|+ |l0|) + (|h1|+ |l1|)]

|[3]s,t − [2]s,t|
}

|a3| ≤min{2γ
2(h20 + l20)

([2]s,t − 1)2
+

|γ|[2(|h0|+ |l0|) + (|h1|+ |l1|)]
|[3]s,t − 1|

,

|γ|[|2[3]s,t − [2]s,t − 1|(2|h0|+ |h1|) + |[2]s,t − 1|(2|l0|+ |l1|)]
|([3]s,t − 1)([3]s,t − [2]s,t)|

}.

Corollary 2.8 Let the function f(z) ∈ Qq∑(γ, λ, t, φ) be given by (1.1). Then

|a2| ≤ min{ |γ|
√
2(h20 + l20)

|[2]t − 1|(1− λ)
,

√
|γ|[2(|h0|+ |l0|) + (|h1|+ |l1|)]
|[3]t − [2]t − ([2]t − 1)2λ|(1− λ)

}

|a3| ≤
|γ|

1− λ
min{ 2|γ|(h20 + l20)

([2]t − 1)2(1− λ)
+

2(|h0|+ |l0|) + (|h1|+ |l1|)
[3]t − 1

,

|2[3]t − [2]t − 1− ([2]t − 1)2λ]|(2|h0|+ |h1|) + ([2]t − 1)[1 + ([2]t − 1)λ](2|l0|+ |l1|)
([3]t − 1)|[3]t − [2]t − ([2]t − 1)2λ|

.
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Corollary 2.9 Let the function f(z) ∈ Qq∑(γ, λ, φ) be given by (1.1). Then

|a2| ≤
1

1− λ
min{|γ|

√
2(h20 + l20),

√
|γ|[2(|h0|+ |l0|) + (|h1|+ |l1|)]}

|a3| ≤
|γ|

1− λ
min{2|γ|(h

2
0 + l20)

1− λ
+

2(|h0|+ |l0|) + (|h1|+ |l1|)
2

,

(3− λ)(2|h0|+ |h1|) + (1 + λ)(2|l0|+ |l1|)
2(1− λ)

}.

Remark 2.10 For λ = 0, s = 1, γ = 1 and t → 1− in Theorem 2.6, we obtain the bounds on

|a2| and |a3| which are the improved results [41, Corollary 2.6] obtained by Vyas et al.

2.2. Fekete-Szegö problem

In this section, we obtain Fekete-Szegö problem for the function class Qq∑(γ, λ, s, t, φ).

Theorem 2.11 Let the function f(z) ∈ Qq∑(γ, λ, s, t, φ) be given by (1.1). Then for any number

µ ∈ C and [3]s,t > 1

|a3 − µa22| ≤

{
2|γ|ξ1(|h0|+|h1|)+|ξ2−ξ1|(|h0|+|l0|)

2([3]s,t−1)(1−λ) , 0 ≤ |M(µ)| ≤ 1
2([3]s,t−1)(1−λ) ,

[2|γ|ξ1(|l0|+ |l1|) + |ξ2 − ξ1|(|h0|+ |l0|)]|M(µ)|, |M(µ)| ≥ 1
2([3]s,t−1)(1−λ) .

(2.24)

For any number µ ∈ C and [3]s,t < 1

|a3 − µa22| ≤

{
[2|γ|ξ1(|l0|+ |l1|) + |ξ2 − ξ1|(|h0|+ |l0|)]|M(µ)|, 0 ≤ |M(µ)| ≤ 1

2(1−[3]s,t)(1−λ) ,
2|γ|ξ1(|h0|+|h1|)+|ξ2−ξ1|(|h0|+|l0|)

2(1−[3]s,t)(1−λ) , |M(µ)| ≥ 1
2(1−[3]s,t)(1−λ) ,

(2.25)

where

M(µ) =
γh0l0ξ

2
1(1− µ)

(1− λ)[2γh0l0([3]s,t − [2]s,t − ([2]s,t − 1)2λ)ξ21 − ([2]s,t − 1)2(1− λ)(l0 + h0)(ξ2 − ξ1)]
.

Proof Since f(z) ∈ Qq∑(γ, λ, s, t, φ), then there exist analytic functions u, v : D → D, with
u(0) = 0 = v(0), |u(z)| < 1, |v(ω)| < 1 and analytic functions ψ, ϕ defined by (2.2) such that

1

γ
(

z(Ds,tf)(z)

(1− λ)f(z) + λz(Ds,tf)(z)
− 1) = ψ(z)[φ(u(z))− 1] (2.26)

and

1

γ
(

ω(Ds,tg)(ω)

(1− λ)g(ω) + λω(Ds,tg)(ω)
− 1) = ϕ(ω)[φ(v(ω))− 1]. (2.27)

Define the functions p1 and p2 in P given by

p1(z) =
1 + u(z)

1− u(z)
= 1 + p1z + p2z

2 + · · ·

and

p2(ω) =
1 + v(ω)

1− v(ω)
= 1 + q1ω + q2ω

2 + · · · .

It follows

u(z) =
p1(z)− 1

p1(z) + 1
=

1

2
p1z +

1

2
(p2 −

p21
2
)z2 + · · · , (2.28)
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v(ω) =
p2(ω)− 1

p2(ω) + 1
=

1

2
q1ω +

1

2
(q2 −

q21
2
)ω2 + · · · . (2.29)

Using (2.1), (2.2), (2.28) and (2.29), it is evident that

ψ(z)[φ(u(z))− 1] =
1

2
h0ξ1p1z + [

1

2
h1ξ1p1 +

1

2
h0ξ1p2 +

1

4
h0(ξ2 − ξ1)p

2
1]z

2 + · · · , (2.30)

ϕ(ω)[φ(v(ω))− 1] =
1

2
l0ξ1q1ω + [

1

2
l1ξ1q1 +

1

2
l0ξ1q2 +

1

4
l0(ξ2 − ξ1)q

2
1 ]ω

2 + · · · . (2.31)

Using (2.4) and (2.30) in (2.26) and comparing the coefficient of z and z2, we get

([2]s,t − 1)(1− λ)a2 =
1

2
h0ξ1p1, (2.32)

([3]s,t − 1)(1− λ)a3 − ([2]s,t − 1)(1− λ)[1 + ([2]s,t − 1)λ]a22

=
1

2
h1ξ1p1 +

1

2
h0ξ1p2 +

1

4
h0(ξ2 − ξ1)p

2
1. (2.33)

Similarly using (2.5) and (2.31) in (2.27) and comparing the coefficient of ω and ω2, we get

−([2]s,t − 1)(1− λ)a2 =
1

2
l0ξ1q1, (2.34)

([3]s,t − 1)(1− λ)(2a22 − a3)− ([2]s,t − 1)(1− λ)[1 + ([2]s,t − 1)λ]a22

=
1

2
l1ξ1q1 +

1

2
l0ξ1q2 +

1

4
l0(ξ2 − ξ1)q

2
1 . (2.35)

From (2.33) and (2.35), we get

a3 = a22 +
γ[ 12 (h1p1 − l1q1)ξ1 +

1
2 (h0p2 − l0q2)ξ1 +

1
4 (ξ2 − ξ1)(h0p

2
1 − l0q

2
1)]

2([3]s,t − 1)(1− λ)
, (2.36)

a22 =
γ[ 12 (h1p1 + l1q1)ξ1 +

1
2 (h0p2 + l0q2)ξ1 +

1
4 (ξ2 − ξ1)(h0p

2
1 + l0q

2
1)]

2{([3]s,t − 1)(1− λ)− ([2]s,t − 1)(1− λ)[1 + ([2]s,t − 1)λ]}
. (2.37)

Using (2.32) and (2.34), we obtain

h0p
2
1 + l0q

2
1 =

4([2]s,t − 1)2(1− λ)2(l0 + h0)

γ2h0l0ξ2
a22. (2.38)

From (2.35)–(2.37), we get

a3 − µa22 =
γξ1
2

[(M(µ) +
1

2([3]s,t − 1)(1− λ)
)(h1p1 + h0p2)+

(M(µ)− 1

2([3]s,t − 1)(1− λ)
)(l1q1 + l0q2)] +

(ξ2 − ξ1)(h0p
2
1 − l0q

2
1)

8([3]s,t − 1)(1− λ)
(2.39)

where

M(µ) =
γh0l0ξ

2
1(1− µ)

(1− λ)[2γh0l0([3]s,t − [2]s,t − ([2]s,t − 1)2λ)ξ21 − ([2]s,t − 1)2(1− λ)(l0 + h0)(ξ2 − ξ1)]
.

By taking the moduli on both sides of (2.39) and applying Lemma 1.4, we finally obtain (2.24)

and (2.25). This evidently completes the proof of Theorem 2.11. 2
By taking special values of parameters λ, s, t in Theorem 2.11, we easily obtain the following

results.
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Corollary 2.12 Let the function f(z) ∈ Qq∑(γ, s, t, φ) be given by (1.1). Then for any number

µ ∈ C and [3]s,t > 1

|a3 − µa22| ≤

{
2|γ|ξ1(|h0|+|h1|)+|ξ2−ξ1|(|h0|+|l0|)

2([3]s,t−1) , 0 ≤ |M(µ)| ≤ 1
2([3]s,t−1) ,

[2|γ|ξ1(|l0|+ |l1|) + |ξ2 − ξ1|(|h0|+ |l0|)]|M(µ)|, |M(µ)| ≥ 1
2([3]s,t−1)

For any number µ ∈ C and [3]s,t < 1

|a3 − µa22| ≤

{
[2|γ|ξ1(|l0|+ |l1|) + |ξ2 − ξ1|(|h0|+ |l0|)]|M(µ)|, 0 ≤ |M(µ)| ≤ 1

2(1−[3]s,t)
,

2|γ|ξ1(|h0|+|h1|)+|ξ2−ξ1|(|h0|+|l0|)
2(1−[3]s,t)

, |M(µ)| ≥ 1
2(1−[3]s,t)

where

M(µ) =
γh0l0ξ

2
1(1− µ)

2γh0l0([3]s,t − [2]s,t − ([2]s,t − 1)2)ξ21 − ([2]s,t − 1)2(l0 + h0)(ξ2 − ξ1)
.

Corollary 2.13 Let the function f(z) ∈ Qq∑(γ, λ, t, φ) be given by (1.1). Then for any number

µ ∈ C

|a3 − µa22| ≤

{
2|γ|ξ1(|h0|+|h1|)+|ξ2−ξ1|(|h0|+|l0|)

2([3]t−1)(1−λ) , 0 ≤ |M(µ)| ≤ 1
2([3]t−1)(1−λ) ,

[2|γ|ξ1(|l0|+ |l1|) + |ξ2 − ξ1|(|h0|+ |l0|)]|M(µ)|, |M(µ)| ≥ 1
2([3]t−1)(1−λ)

where

M(µ) =
γh0l0ξ

2
1(1− µ)

(1− λ)[2γh0l0([3]t − [2]t − ([2]t − 1)2λ)ξ21 − ([2]t − 1)2(1− λ)(l0 + h0)(ξ2 − ξ1)]
.

Corollary 2.14 Let the function f(z) ∈ Qq∑(γ, λ, φ) be given by (1.1). Then for any number

µ ∈ C

|a3 − µa22| ≤

{
2|γ|ξ1(|h0|+|h1|)+|ξ2−ξ1|(|h0|+|l0|)

4(1−λ) , 0 ≤ |M(µ)| ≤ 1
4(1−λ) ,

[2|γ|ξ1(|l0|+ |l1|) + |ξ2 − ξ1|(|h0|+ |l0|)]|M(µ)|, |M(µ)| ≥ 1
4(1−λ)

where

M(µ) =
γh0l0ξ

2
1(1− µ)

(1− λ)2[2γh0l0ξ21 − (l0 + h0)(ξ2 − ξ1)]
.
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