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Abstract This paper investigates the optimal Lagrange interpolation of a class F∞ of infinitely

differentiable functions on [−1, 1] in L∞[−1, 1] and weighted spaces Lp,ω[−1, 1], 1 ≤ p < ∞ with

ω a continuous integrable weight function in (−1, 1). We proved that the Lagrange interpolation

polynomials based on the zeros of polynomials with the leading coefficient 1 of the least devi-

ation from zero in Lp,ω[−1, 1] are optimal for 1 ≤ p < ∞. We also give the optimal Lagrange

interpolation nodes when the endpoints are included in the nodes.
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1. Introduction and main results

Let F be a Banach space of functions defined on a compact set D that can be continuously

embedded in C(D), BF be the unit ball of F , and G (k F ) be a normed linear space with norm

∥·∥G. We want to approximate functions f from F by using a finite number of arbitrary function

values f(t) (standard information) for some t ∈ D. We consider only nonadaptive information.

For x = (ξ1, ξ2, . . . , ξn) ∈ Dn, we use Ix to denote the nonadaptive information operator, i.e.,

Ix(f) := (f(ξ1), f(ξ2), . . . , f(ξn)) ∈ Rn, f ∈ F.

We say that An = φ ◦ Ix is an algorithm based on the information operator Ix, where φ is an

arbitrary mapping from Rn to G. The worst case error of the algorithm An for BF in G is

defined by

e(BF,An, G) := sup
f∈BF

∥f −An(f)∥G. (1.1)

For the construction of algorithms for approximating multivariate functions using function

values, the univariate Lagrange interpolation polynomial algorithms play a key role [1–7]. Next

we introduce the Lagrange interpolation polynomial algorithms on [−1, 1].

Let ξ1, ξ2, . . . , ξn be n distinct points in [−1, 1]. Denote x = (ξ1, ξ2, . . . , ξn). Then, the

Lagrange interpolation polynomial Lxf of a function f : [−1, 1] → R based on knots x =
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(ξ1, ξ2, . . . , ξn) is defined by

Lxf ∈ Pn−1 and Lxf(ξk) = f(ξk), k = 1, 2, . . . , n, (1.2)

where and in the following Pn represents the space of all algebraic polynomials of degree at most

n. The classical Lagrange interpolation formula gives Lxf(x) =
∑n

k=1 f(ξk)ℓk(x), where

ℓk(x) =
Wx(x)

(x− ξk)W ′
x(ξk)

, Wx(x) =
n∏

k=1

(x− ξk).

Choosing nodes is important for Lagrange interpolation polynomial algorithms. Given a

sufficiently smooth function, if nodes are not suitably chosen, then the Lagrange interpolation

polynomials do not converge to the function as the number of the nodes tends to infinity. A well-

known example is the Runge’s phenomenon. Hence the study of optimal Lagrange interpolation

nodes becomes a hot research topic, see [8–10] and the references therein. In general, if nodes

c = (c1, c2, . . . , cn) ∈ [−1, 1]n satisfy

e(BF,Lc, G) = e(n,BF,G) := inf
x=(ξ1,ξ2,...,ξn)∈[−1,1]n

e(BF,Lx, G), (1.3)

then we call c = (c1, c2, . . . , cn) the nth optimal Lagrange interpolation nodes and Lc the nth

optimal Lagrange interpolation algorithm for BF in G. The value e(BF,Lc, G) is called the nth

optimal Lagrange interpolation error for BF in G and we denote it as e(n,BF,G), see (1.3).

Let L∞ ≡ L∞[−1, 1] be the space of measurable functions defined on [−1, 1], for which

the norm ∥f∥∞ := ess supx∈[−1,1]|f(x)| is finite. Meanwhile, for 1 ≤ p < ∞ and continuous

integrable ω(x) > 0 on (−1, 1), let Lp,ω ≡ Lp,ω[−1, 1] be the space of measurable functions

defined on [−1, 1], for which the norm ∥f∥p,ω := (
∫ 1

−1
|f(x)|pω(x)dx)1/p is finite.

Using Cr ≡ Cr[−1, 1], r = 0, 1, 2, . . . to denote the spaces of functions with rth order con-

tinuous derivative on [−1, 1], respectively. The most important optimal Lagrange interpolation

problem is for BC0 in L∞ (see [11]). For n = 3 and n = 4, the results can be found in [12, 13],

respectively. For n ≥ 5, it is still an open problem. For r ≥ 1, it is well known that the rth

optimal Lagrange interpolation nodes are all zeros of the rth Chebyshev polynomial of the first

kind (Tr(x) = cos(r arccosx)) for BCr in L∞. Noticed that the approximation of infinitely differ-

entiable multivariate functions has been investigated in [5,7,14–19], [20] considered the sampling

numbers of the space F∞ which is defined by

F∞ = {f ∈ C∞[−1, 1]|∥f∥F∞ = sup
n∈N0

∥f (n)∥∞ < ∞}.

By [20, Theorem 1.3] we know that the nth optimal Lagrange interpolation nodes are all zeros

of the nth Chebyshev polynomial of the first kind for BF∞ in L∞. We will give the optimal

Lagrange interpolation nodes for BF∞ in Lp,ω, 1 ≤ p < ∞. First, we set

En,p,ω := inf
g∈Pn−1

∥xn − g(x)∥p,ω, 1 ≤ p < ∞, (1.4)

where Pn represents the space of all algebraic polynomials of degree at most n. Furthermore, let

Wn,p,ω ∈ Pn satisfy

Wn,p,ω(x) = xn + c1x
n−1 + · · ·+ cn and ∥Wn,p,ω∥p,ω = En,p,ω. (1.5)
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Wn,p,ω is unique and has exactly n zeros [21, Lemma 2.2]

−1 < ξ1,p,ω < ξ2,p,ω < · · · < ξn,p,ω < 1. (1.6)

Let Ln,p,ωf be the Lagrange interpolation polynomial of a function f : [−1, 1] → R based on

the nodes given by (1.6). Then Ln,p,ωf has the explicit expression

Ln,p,ωf(x) =

n∑
k=1

f(ξk,p,ω)ℓk,p,ω(x), (1.7)

where

ℓk,p,ω(x) =
Wn,p,ω(x)

(x− ξk,p,ω)W ′
n,p,ω(ξk,p,ω)

, k = 1, . . . , n,

and

Wn,p,ω(x) =
n∏

k=1

(x− ξk,p,ω). (1.8)

First, we obtained the following result.

Theorem 1.1 Let 1 ≤ p < ∞ and assume that ω(x) > 0 is continuous integrable on (−1, 1).

Then we have

e(n,BF∞, Lp,ω) = e(BF∞, Ln,p,ω, Lp,ω) =
En,p,ω

n!
, (1.9)

where Ln,p,ω and En,p,ω are given by (1.7) and (1.4), respectively.

In practice one often wants to have boundary points as interpolation nodes, i.e.,

x = {−1, ξ2, . . . , ξn−1, 1}. (1.10)

Then the following question arises: for which set of points −1 < c2 < c3 < · · · < cn−1 < 1, we

have

e(BF,Lc, G) = e(n,BF,G) = inf
x=(−1,ξ2,...,ξn−1,1)

e(BF,Lx, G). (1.11)

Hoang [10] obtained the rth optimal Lagrange interpolation nodes of this problem for BCr

in L∞. We will consider this problem for BF∞ in L∞ and Lp,ω, 1 ≤ p < ∞. We obtain the

following results.

Theorem 1.2 (1) Let p = ∞. Then we have

e(n,BF∞, L∞) = e(BF∞, Lc, L∞) =
1

(cos π
2n )

n2n−1n!
, (1.12)

where

c = (−1, cos
(2n− 3)π

2n

/
cos

π

2n
, . . . , cos

3π

2n

/
cos

π

2n
, 1). (1.13)

(2) Let 1 ≤ p < ∞ and assume that ω(x) > 0 is continuous integrable on (−1, 1). Then we

have

e(n,BF∞, Lp,ω) = e(BF∞, Lc, Lp,ω) =
En−2,p,ω

n!
, (1.14)

where

ω(x) = (1− x2)pω(x), c = (−1, ξ1,p,ω, ξ2,p,ω, . . . , ξn−2,p,ω, 1), (1.15)
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and ξ1,p,ω, ξ2,p,ω, . . . , ξn−2,p,ω are given by (1.6) with n replaced by n− 2.

The remainder of this paper is organized as follows. In Section 2, we give proof of Theorems

1.1 and 1.2. In Section 3, we give seven examples to show our results.

2. Proof of Theorems 1.1 and 1.2

To prove Theorem 1.1, we first give a lemma.

Lemma 2.1 ( [22]) Let f ∈ Cn. Then, the remainder Rxf(x) := f(x)−Lxf(x) for the Lagrange

interpolation polynomial based on x = (x1, x2, . . . , xn) ∈ [−1, 1]n can be represented in the form

Rxf(x) = f(x)− Lxf(x) =
f (n)(ξ)

n!
Wx(x), x ∈ [−1, 1], (2.1)

for some ξ ∈ [−1, 1] depending on x and the knots x1, . . . , xn.

Proof of Theorem 1.1 We consider the upper estimate first. Let {ξi,p,ω}ni=1 and Wn,p,ω be

given by (1.6) and (1.5), respectively. Then for f ∈ BF∞, we have ∥f (n)∥∞ ≤ 1. Combining this

fact with (2.1), we obtain

|f(x)− Ln,p,ωf(x)| ≤
|Wn,p,ω(x)|

n!
, x ∈ [−1, 1].

It follows that

∥f − Ln,p,ωf∥p,ω ≤ ∥Wn,p,ω∥p,ω
n!

=
En,p,ω

n!
. (2.2)

From (1.1) and (2.2) we obtain

e(BF∞, Ln,p,ω, Lp,ω) ≤
En,p,ω

n!
. (2.3)

From (1.3) and (2.3) we obtain the upper estimate.

Now we consider the lower estimate. Assume that ξ1, ξ2, . . . , ξn are n arbitrary distinct points

in [−1, 1] and x = (ξ1, ξ2, . . . , ξn). Let g0(x) =
xn

n! . Then g0 ∈ BF∞. From g
(n)
0 (x) = 1 and (2.1)

it follows that

g0(x)− Lxg0(x) =
1

n!

n∏
k=1

(x− ξk) =
g(x)

n!
, x ∈ [−1, 1], (2.4)

where

g(x) =

n∏
k=1

(x− ξk) = xn + c1x
n−1 + c2x

n−2 + · · ·+ cn. (2.5)

Then, it follows from (1.5) that

∥g∥p,ω ≥ En,p,ω. (2.6)

Hence for any x = (ξ1, ξ2, . . . , ξn) ∈ [−1, 1]n, from (2.4) and (2.6) it follows that

e(BF∞, Lx, Lp,ω) ≥ ∥g0 − Lxg0∥p,ω =
∥g∥p,ω
n!

≥ En,p,ω

n!
. (2.7)

By (1.3) and (2.7) we obtain the lower estimate. This completes the proof of Theorem 1.1. 2
To prove Theorem 1.2, we first introduce a lemma [10, Theorem 2.1].
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Lemma 2.2 Let c = (c1, c2, . . . , cn) be given by (1.13). Then∥∥∥ n∏
i=1

(x− ci)
∥∥∥
∞

= inf
x=(−1,ξ2,...,ξn−1,1)

∥∥∥ n∏
i=1

(x− ξi)
∥∥∥
∞
. (2.8)

Proof of Theorem 1.2 We consider (1) first. For f ∈ BF∞, from (2.1) it follows that

|f(x)− Lcf(x)| ≤
1

n!

∣∣∣ n∏
i=1

(x− cos
(2i− 1)π

2n
/ cos

π

2n
)
∣∣∣, x ∈ [−1, 1]. (2.9)

Let t = x cos π
2n . Then we have

n∏
i=1

(x− cos
(2i− 1)π

2n
/ cos

π

2n
) =

Tn(t)

(cos π
2n )

n2n−1
, t ∈ [− cos

π

2n
, cos

π

2n
]. (2.10)

From (2.9) and (2.10) it follows that

e(BF∞, Lc, L∞) ≤ 1

(cos π
2n )

n2n−1n!
sup

t∈[− cos π
2n ,cos π

2n ]

|Tn(t)| =
1

(cos π
2n )

n2n−1n!
. (2.11)

On the other hand, let x = (−1, ξ2, . . . , ξn−1, 1) ∈ [−1, 1]n and g0(x) = xn

n! ∈ BF∞. Then

(2.4) holds. It follows from (2.4), (2.8) and (2.10) that

e(BF∞, Lx, L∞) ≥ ∥g0 − Lxg0∥∞ =
1

n!

∥∥∥ n∏
k=1

(x− ξk)
∥∥∥
∞

≥ 1

n!

∥∥∥ n∏
k=1

(x− cos
(2k − 1)π

2n
/ cos

π

2n
)
∥∥∥
∞

=
1

(cos π
2n )

n2n−1n!
sup

t∈[− cos π
2n ,cos π

2n ]

|Tn(t)| =
1

(cos π
2n )

n2n−1n!
. (2.12)

From (2.11) and (2.12) we obtain the result of (1).

Next we consider (2). Let ω and c be given by (1.15). Then for any f ∈ BF∞, from (2.1) it

follows that

|f(x)− Lcf(x)| ≤
(1− x2)|Wn−2,p,ω(x)|

n!
, x ∈ [−1, 1]. (2.13)

From (2.13) it follows that

∥f − Lcf∥p,ω ≤ ∥Wn−2,p,ω∥p,ω
n!

=
En−2,p,ω

n!
. (2.14)

From (1.1) and (2.14) we conclude

e(BF∞, Lc, Lp,ω) ≤
En−2,p,ω

n!
. (2.15)

On the other hand, let x = (−1, ξ2, . . . , ξn−1, 1) ∈ [−1, 1]n and g0(x) = xn

n! ∈ BF∞. Then

(2.4) holds. From (2.4), (1.5) and (1.6) it follows that

e(BF∞, Lx, Lp,ω) ≥ ∥g0 − Lxg0∥p,ω =
1

n!

∥∥∥ n∏
k=1

(x− ξk)
∥∥∥
p,ω

=
1

n!

∥∥∥ n−1∏
k=2

(x− ξk)
∥∥∥
p,ω

≥ 1

n!

∥∥∥ n−2∏
k=1

(x− ξk,p,ω)
∥∥∥
p,ω

=
En−2,p,ω

n!
. (2.16)
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From (2.15) and (2.16) we obtain the result of (2). Theorem 1.2 is proved. 2
Remark 2.3 From [20, Theorem 1.3] it follows that

e(n,BF∞, L∞) =
1

2n−1n!
. (2.17)

Combining (2.17) with (1.12) and (3.12) gives

lim
n→∞

e(n,BF∞, Lp)

e(n,BF∞, Lp)
= 1, p = 2,∞.

This shows that including the boundary points to interpolation nodes does not essentially

affect the optimal Lagrange interpolation errors for BF∞ in L2 and L∞.

3. Illustration examples

We will give two examples in the usual Lp spaces and five examples in the weighted L2 spaces

to show our results.

3.1. Two examples

Let ω(x) = 1. Then for 1 ≤ p < ∞, we obtain the usual Lp ≡ Lp[−1, 1] spaces.

Example 3.1 For p = 1, it follows from [23, pp. 87-88] that

En,1,1 =
1

2n−1
, Wn,1,1(x) =

Un(x)

2n
, ξk,1,1 = cos

kπ

n+ 1
, k = 1, . . . , n,

where Un is the nth Chebyshev polynomial of the second kind, i.e., Un(x) =
sin(n+1)θ

sin θ , x = cos θ.

The nth optimal Lagrange interpolation polynomial Ln,1,1 for BF∞ in L1 is given by

Ln,1,1f(x) =
n∑

k=1

f(ξk,1,1)ℓk,1,1(x),

where

ℓk,1,1(x) =
(−1)k+1(1− ξ2k,1,1)Un(x)

(n+ 1)(x− ξk,1,1)
, k = 1, . . . , n.

Furthermore, from Theorem 1.1 it follows that

e(n,BF∞, L1) = e(BF∞, Ln,1,1, L1) =
En,1,1

n!
=

1

2n−1n!
.

Example 3.2 For p = 2, we have [22, p. 205]

Wn,2,1(x) =
2n(n!)2

(2n)!
Pn(x) =

n∏
k=1

(x− ξk,2,1), (3.1)

where Pn is the nth Legendre polynomial, i.e., Pn(x) = 1
2nn!

dn

dxn (x
2 − 1)n. The nth optimal

Lagrange interpolation polynomial Ln,2,1 for BF∞ in L2 is given by

Ln,2,1f(x) =
n∑

k=1

f(ξk,2,1)ℓk,2,1(x),

where

ℓk,2,1(x) =
Pn(x)

(x− ξk,2,1)P ′
n(ξk,2,1)

, k = 1, . . . , n.
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From [24, p. 57, (4.6.6)] it follows that

∥Pn∥2 =
21/2√
2n+ 1

. (3.2)

By Theorem 1.1, (3.1) and (3.2), we conclude that

e(n,BF∞, L2) = e(BF∞, Ln,2,1, L2) =
En,2,1

n!
=

2n+1/2n!

(2n)!
√
2n+ 1

. (3.3)

3.2. Five examples

Let p = 2. In this case, for any continuous integrable weight function ω(x) > 0 on (−1, 1),

there is a unique orthogonal system {pk,ω}k∈Z+ in L2,ω which is complete and satisfies the

following conditions:

(1) pk,ω ∈ Pk for all k ∈ Z+.

(2) ∫ 1

−1

pk,ω(x)pj,ω(x)ω(x)dx =

{
0, k ̸= j;

1, k = j.
(3.4)

(3) The coefficient Ck,ω of the leading term xk of pk,ω is positive.

Next we give the relation between Wk,2,ω and pk,ω. For any polynomial

p(x) = xk + a1x
k−1 + · · ·+ ak,

we have

p(x) =
k∑

j=0

cjpj,ω(x). (3.5)

Comparing the coefficients of the leading term xk in both sides of (3.5), we obtain ck = 1/Ck,ω.

Furthermore, from (3.5) and (3.4) it follows that

∥p∥22,ω = c20 + c21 + · · ·+ c2k−1 + 1/C2
k,ω. (3.6)

From (3.6) it follows that

∥Wk,2,ω∥22,ω = min
p with form (3.5)

∥p∥22,ω = min
c0,c1,...,ck−1∈R

(c20 + c21 + · · ·+ c2k−1 + 1/C2
k,ω)

holds if and only if c0 = c1 = · · · = ck−1 = 0, and Wk,2,ω =
pk,ω

Ck,ω
. This means

Ek,2,ω = ∥Wk,2,ω∥2,ω = 1/Ck,ω. (3.7)

Now we let ω(α,β) be the Jacobi weights, i.e., ω(α,β)(x) = (1 − x)α(1 + x)β with α, β > −1

and we denote the corresponding orthogonal system as {p(α,β)k }k∈Z+ . It is known that the Jacobi

polynomials are given by [24, p. 143]

P
(α,β)
k (x) =

Γ(α+ k + 1)

k!Γ(α+ β + k + 1)

k∑
j=0

Cj
k

Γ(α+ β + k + j + 1)

Γ(α+ j + 1)
(
x− 1

2
)j . (3.8)

From [24, p. 141] it follows that

h
(α,β)
k =

∫ 1

−1

(P
(α,β)
k (x))2ω(α,β)(x)dx =

2α+β+1

α+ β + 2k + 1

Γ(α+ k + 1)Γ(β + k + 1)

k!Γ(α+ β + k + 1)
. (3.9)
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From (3.8) and Γ(s + 1) = sΓ(s), s > 0 we conclude that the coefficient of the leading term xk

of P
(α,β)
k (x) is Γ(α+β+2k+1)

2kk!Γ(α+β+k+1)
. Combining this fact with (3.9), we obtain that the coefficient of

the leading term xk of p
(α,β)
k (x) = P

(α,β)
k (x)/

√
h
(α,β)
k is

Ck,ω(α,β) =

√
α+ β + 2k + 1Γ(α+ β + 2k + 1)

2k+(α+β+1)/2
√

k!Γ(α+ β + k + 1)Γ(α+ k + 1)Γ(β + k + 1)
. (3.10)

From Theorem 1.1, (3.7) and (3.10), it follows that

e(n,BF∞, L2,ω(α,β)) = e(BF∞, Ln,2,ω(α,β) , L2,ω(α,β)) =
1

n!Cn,ω(α,β)

=
2n+(α+β+1)/2

√
Γ(α+ β + n+ 1)Γ(α+ n+ 1)Γ(β + n+ 1)√

n!(α+ β + 2n+ 1)Γ(α+ β + 2n+ 1)
. (3.11)

From Theorem 1.2, (3.7), (3.10) and (3.11), it follows that for n > 2

e(n,BF∞, L2,ω(α,β)) = e(BF∞, Lc, L2,ω(α,β)) =
En−2,2,ω(α+2,β+2)

n!
=

1

n!Cn−2,ω(α+2,β+2)

=
2n+(α+β+1)/2

√
Γ(α+ β + n+ 3)Γ(α+ n+ 1)Γ(β + n+ 1)

n(n− 1)
√
(n− 2)!(α+ β + 2n+ 1)Γ(α+ β + 2n+ 1)

=

√
(α+ β + n+ 2)(α+ β + n+ 1)

n(n− 1)
e(n,BF∞, L2,ω(α,β)), (3.12)

where

c = (−1, ξ1,2,ω(α+2,β+2) , ξ2,2,ω(α+2,β+2) , . . . , ξn−2,2,ω(α+2,β+2) , 1),

and ξ1,2,ω(α+2,β+2) , ξ2,2,ω(α+2,β+2) , . . . , ξn−2,2,ω(α+2,β+2) are given by (1.6) with n replaced by n−2.

Next we list five examples.

Example 3.3 For α = β = −1/2, i.e., ω(−1/2,−1/2)(x) = 1√
1−x2

, we know Wn,2,ω(−1/2,−1/2)(x) =
Tn(x)
2n−1 . By a direct computation we obtain

En,2,ω(−1/2,−1/2) = ∥Wn,2,ω(−1/2,−1/2)∥2,ω(−1/2,−1/2) =

√
2π

2n
.

Hence from Theorem 1.1 we conclude that

e(n,BF∞, L2,ω(−1/2,−1/2)) = e(BF∞, Lxn,∞ , L2,ω(−1/2,−1/2)) =
En,2,ω(−1/2,−1/2)

n!
=

√
2π

2nn!
, (3.13)

where xn,∞ = (cos (2n−1)π
2n , cos (2n−3)π

2n , . . . , cos π
2n ).

From (3.12) and (3.13) it follows that for n > 2

e(n,BF∞, L2,ω(−1/2,−1/2)) =

√
2π(n+ 1)(n− 1)

2n(n− 1)n!
.

Example 3.4 For α = β = 1/2, i.e., ω(1/2,1/2)(x) =
√
1− x2, we knowWn,2,ω(1/2,1/2)(x) =

Un(x)
2n .

By a direct computation we obtain En,2,ω(1/2,1/2) = ∥Wn,2,ω(1/2,1/2)∥2,ω(1/2,1/2) =
√
π

2n+1/2 . Hence

from Theorem 1.1 we conclude that

e(n,BF∞, L2,ω(1/2,1/2)) = e(BF∞, Ln,1,1, L2,ω(1/2,1/2)) =
En,2,ω(1/2,1/2)

n!
=

√
π

2n+1/2n!
. (3.14)
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From (3.12) and (3.14) it follows that for n > 2

e(n,BF∞, L2,ω(1/2,1/2)) =

√
π(n+ 3)(n+ 2)n(n− 1)

2n+1/2n!n(n− 1)
.

Example 3.5 For α = −1/2, β = 1/2, i.e., ω(−1/2,1/2)(x) =
√

1+x
1−x , we knowWn,2,ω(−1/2,1/2)(x) =

Vn(x)
2n , where Vn is the nth Chebyshev polynomial of the third kind, i.e.,

Vn(x) =
cos(n+ 1/2)θ

cos(θ/2)
, x = cos θ.

In this case, ξk,2,ω(−1/2,1/2) = cos (2k−1)π
2n+1 , k = 1, . . . , n. By a direct computation we obtain

En,2,ω(−1/2,1/2) = ∥Wn,2,ω(−1/2,1/2)∥2,ω(−1/2,1/2) =

√
π

2n
.

Hence from Theorem 1.1 we conclude that

e(n,BF∞, L2,ω(−1/2,1/2)) = e(BF∞, Ln,2,ω(−1/2,1/2) , L2,ω(−1/2,1/2))

=
En,2,ω(−1/2,1/2)

n!
=

√
π

2nn!
. (3.15)

From (3.12) and (3.15) it follows that for n > 2

e(n,BF∞, L2,ω(−1/2,1/2)) =

√
π(n+ 2)(n+ 1)n(n− 1)

2nn!n(n− 1)
.

Example 3.6 For α = 1/2, β = −1/2, i.e., ω(1/2,−1/2)(x) =
√

1−x
1+x , we knowWn,2,ω(1/2,−1/2)(x) =

Wn(x)
2n , where Wn is the nth Chebyshev polynomial of the fourth kind, i.e.,

Wn(x) =
sin(n+ 1/2)θ

sin(θ/2)
, x = cos θ.

In this case, ξk,2,ω(1/2,−1/2) = cos 2kπ
2n+1 , k = 1, . . . , n. By a direct computation we obtain

En,2,ω(1/2,−1/2) = ∥Wn,2,ω(1/2,−1/2)∥2,ω(1/2,−1/2) =

√
π

2n
.

Hence from Theorem 1.1 we conclude that

e(n,BF∞, L2,ω(1/2,−1/2)) =e(BF∞, Ln,2,ω(1/2,−1/2) , L2,ω(1/2,−1/2))

=
En,2,ω(1/2,−1/2)

n!
=

√
π

2nn!
. (3.16)

From (3.12) and (3.16) it follows that for n > 2

e(n,BF∞, L2,ω(1/2,−1/2)) =

√
π(n+ 2)(n+ 1)n(n− 1)

2nn!n(n− 1)
.

Example 3.7 For α = β = 0, i.e., ω(0,0)(x) = 1, it is known that Wn,2,1 is given by (3.1). In

this case, from (3.12) and (3.3) it follows that for n > 2

e(n,BF∞, L2) =
2n+1/2(n+ 2)!

(2n)!
√
(n− 1)n(n+ 1)(n+ 2)(2n+ 1)

. (3.17)
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[16] P. KRITZER, F. PILLICHSHAMMER, H. WOŹNIAKOWSKI. L∞-approximation in Korobov spaces with

exponential weights. J. Complexity, 2015, 31: 380–404.
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