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Large Deviations for a Test of Symmetry Based on Kernel
Density Estimator of Directional Data
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Abstract Assume that f, is the nonparametric kernel density estimator of directional data
based on a kernel function K and a sequence of independent and identically distributed random
variables taking values in d-dimensional unit sphere S%~. We established that the large devia-
tion principle for {sup,cgi-1 |fn(x) — fu(—x)|,n > 1} holds if the kernel function is a function
with bounded variation, and the density function f of the random variables is continuous and
symmetric.
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1. Introduction

Suppose that {X;,i > 1} is a sequence of independent and identically distributed (i.i.d.)
random vectors taking values on a d-dimensional unit sphere S¥~! := {z € R?, |z| = 1}, d > 2
with density function f such that

f(2)dO(z) =1,
gd—1
where © is the Lebesgue measure on S9! ie., {X;} is a set of directional data. Such data
occurs in many fields, such as geology and medicine [1].

Bai et al. [2] obtained uniform strong consistency and L-consistency of the following kernel

estimator B
fn(2) := (nr?=Y(n))"2C(r(n)) ZK(I%CE/X%), ze S (1.1)
—~ = r’(n)

where {r(n),n > 1} is a bandsequence, which is a sequence of positive numbers fulfilling
r(n) — 0,nr9" 1 (n) = +o0,as n — oc. (1.2)
Let K be a non-negative function defined on R such that Vo < 0, K(z) = 0, and

0< / K(v)o'3/2dy < oo, (1.3)
0
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and C(r(n)) is a positive number satisfying

o™ = s [ K EDe() (1.4
Notice that [3,4]
/ / _ 2gld=D/2 ' 21(d—3)/2
s g(a’'2)O(dx) = T(d=1/2) /_1 g(lalv)(1 —v*) do, (1.5)

where g is a nonnegative measurable function and a € R%\{0}. C(r(n)) is independent of z, and

M(K) := lim (C(r(n)))"! = (em) R /Oo K(v)o'4=3/2dy (1.6)
n—00 I((d=1)/2) Jo ’ '
Zhao and Wu [5] proved a central limit theorem for integrated square error of f,, under some
mild conditions. Gao and Li [4] obtained large deviations and moderate deviations for kernel
density estimators of directional data. Li and Gao [6] studied rates of strong uniform consistency
for kernel density estimators of directional data. He and Gao [7] proved moderate deviations and
large deviations for a test of symmetry based on kernel density estimator. Xu and Zhou [8,9]
extended the results of He and Gao [7] to the multidimensional case. Li [10] established moderate
deviations for a test of symmetry based on kernel density estimator of directional data. Inspired
by the above-mentioned results, in this paper, we try to establish uniform large deviations for a
test of symmetry based on kernel density estimator of directional data by the empirical process
approach [11-13], which is motivated by Xu and Zhou [8,9], Xu et al. [14], He and Gao [7],
Gao [15], and Gao and Li [4]. Our results complement that in Xu and Zhou [8,9], Xu et al. [14],
He and Gao [7], Gao [15], Gao and Li [4], Li [10], Xu et al. [14].
We suppose that f and K fulfill the following conditions:
(Al) f is continuous and symmetric.
(A2) K is a bounded variations function satisfying (1.3), and 3y > 9% such that
lim 27K(z) < 0. (1.7)

z—+o00
We denote by ||g|| = sup,, |g(x)| the supremum norm.

As in [4, Remark 1.1], if K is bounded, then by (1.3), V¢ € R,
p(t) == / 217372 exp(tK (2) — 1)dz < 0.
0
The following theorem is the main result in this paper.

Theorem 1.1 Let {r(n),n > 1} satisfy
log(r(n))~*

d—1
r(n) = 0,nr*" " (n) — +oo0, =T () — 0,as n — +o0. (1.8)
Suppose that (A1) and (A2) hold. Then VA > 0,
. 1
lim —Z—=—log P{[|fn(:) = fu(=)Il > A} = =J(A), (1.9)

n—oo nrd—1 (n)
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where
JO) =it {_inf sup{ix — F@)(0(0) + 6(-1)}._inf sup{~A ~ f@)(0(®) + (1))
= inf sup{th— f@)(0(0) + (1)}, (1.10)
and
_emER K@) e
P(t) == F((d—l)/Z)/o ( p{M(K)} 1) dv, teR. (1.11)

2. Large deviations

Similar to that of Gao and Li [4], in this section we present a pointwise large deviations
(Proposition 2.3) and establish Theorem 1.1. We conclude Theorem 1.1 by the pointwise large
deviation and a comparison lemma (Lemma 2.5).

We first cite Lemma 2.1 of Gao and Li [4].

Lemma 2.1 Suppose that {r(n),n > 1} satisfies (1.2). Assume that K is a bounded function
satisfying (1.3) and f is continuous. Then

. 1 1— x/Xl o
Especially, . X -
Jm sup B KA gy ) — F@MU] =0 22
€S
and
Jim sup | [ elCrm)E (it - D) - fun] =0 (3)
resd—1 1 Jgd—1 r={n

Lemma 2.2 Let {r(n),n > 1} satisfy (1.2). Suppose that (A1) and (A2) hold. Write

Wi (1) == E{exp{tnr®™" (n)(fa(x) = fu(—2))}}. (2.4)
Then
dim sup |y s UV (0) — f(@) (b + v(=)] = 0. (2:5)
Proof From the fact that {X;,i > 1} are i.i.d., we could deduce that
w0 = B exp {100 () S (ST - kLT
— (Blexp{tC(rm)( (" ‘fj) - Kby

_ ox o l—a'y. 1+a'y n
= ([ et - K rwe)

First, we suppose that K has a bounded support. Because r(n) — 0, as n — oo, the support of

K (%) and K( f{(xni’) have an empty intersection for n large sufficiently. Therefore,

= loow(™
m“dfl(n) og x (t>
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1—a'y
log (1 + Sdil(exp{tC(r(n))K( )
exp{—1C(r(n) K (S5} = D (0)0().

) o

and so from (2.3), we conclude (2.5). Now, we drop the assumption of bounded support,

w0 = [14 [ el K (D) - Dol +

[ ept-ctmrE ) - D6 + i na]”
=1+ [, fewtectmr S 20} + epf-cm)r( S I} - Drwe)+
rdil(n)a} n,

where

1—a 1 !
a=[ [ ettctrmr; )~ K D )0 -
1 )
1= [ epltCOmKC A0} - Do) -
§d—1 T (TL)
1+ 2y _
[, ({0 m) R () - D iwe()] /- m)
By the assumptions of the theorem, for any £ > 0, for n large sufficiently, |a| < Me(2exp{tCKp}+
4), where M = || f||, Ko = sup, K(z), Cis some constant. Hence a = o(1) as n — 00, it is uniform

with respect to x and t. Therefore, we have
. 1 n
Vo (t) o= lim —— s log WY (1) = f(2) (4(1) + ¢(—1)). D

As W, (t) is differentiable with respect to ¢t € R, therefore, by Gértner-Ellis theorem, we

obtian the following pointwise large deviation.

Proposition 2.3 Suppose {r(n),n > 1} satisfies (1.2). Let (Al) and (A2) hold. Then Vz €
S4=1, for every closed set F C R,

. _ _ < — i .
hgl_ilip 1 (n) log P{(fu(z) = fu(=2)) € F} < — inf Jo(}), (2.6)
and for every open set G C R,
o e o .
hﬂﬁp 1) log P{(fu(x) = fu(=2)) € G} = — inf Jo(A), (2.7)

where

Ju(A) = sup{tA — f(x)((t) + »(=1))}-

teR

Suppose that (9, ¢) is a measurable space and % is a uniformly bounded collection of mea-
surable functions on it. We call .%Z a bounded measurable VC (Vapnik-Cervonenkis) class of

functions if .# is separable and if 34 > 0, v > 0 such that, for any probability p on (S, ) and
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any 0 <7 <1,
A

N(ﬁ, H ) ||L2(#)’THF”L2(#)) < (;)Ua
where F' = sup{|g|,g € #} and we denote the 7T-covering number of the metric space (%,
Il - loewy) by N(Z, || - [ £o(u)» 7), which is the smallest number of balls of radius not larger than
7 and centers in .# needed to cover .#. We call (4, v) the characteristic of the class .#. Let K
be a bounded variation function. Then by [16, Lemma 22],

1+ 2y
2

1—2'y
2

F={y— K( ) — K( yixeSTlre Ry}

r r
is a bounded measurable VC class of functions.

The following deviation inequality of the VC class plays a crucial role in the proof of Theorem
1.1. As in [4], we give and establish a comparison lemma between the pointwise large deviations

and the uniform large deviations by the deviation inequality.

Theorem 2.4 ([13]) Suppose % is a uniformly bounded measurable VC class of functions, and
o? and U are any numbers satisfying 0® > sup,c z E((9(X1) — Eg(X1))?), U > sup,c # |lg|| and
0 < o <U/2. Then 3C, L depending only on the characteristic (A, v) of the class #, such that
the inequality

P(| 00 - Eaxa)|, > )

t tUu
S Lexp{—ﬁ log(l +
L(y/no + Uy /log £)2

U [ U
t > C(Ulog — + v/noy/log =),
o o

where for any map ® from Z to R, denote |®|| & = sup{|®(9)|;9 € F}.
We below cite Lemmas 2.3 and 2.5 in [4].

is valid for all

Lemma 2.5 Write
Sy(x) ={y eS" iz —yl <}, zeST y>0.
Then for any n > 1, 31, < B(§)r*Y=D(n), zy,...,x;, € S, such that
ST = Uln Ssra(ny (@),
where B(0) is a constant independent of n.

Lemma 2.6 Suppose (A2) holds. Then

lim sup |K(z)7K(z+x)|22%dz:O.
=0 Jo  |z|<s

Lemma 2.7 Suppose that {r(n),n > 1} satisfies (1.8) and (A1) and (A2) hold, for all0 < § < 1,
let Bk, k = 1,...,1,, bel, balls with |x — y| < 0r*(n), z,y € Bn, such that {By, j,k =
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1,...,1,} is a covering of S*~! and I,, < B(5)T2(1_d)(n). Take 2z, € B, k=1,...,0,,n> 1.
Then Ve > 0,

lim lim su log P{ su su nk(®) — fanr(—x)| > e} = —o0, 2.8
i limsup o tog P{ sup sup [fua(e) = ()| 2 <) (23

where fmk(m) = fn($> - fn(zn,k)7 fn,k(_$> = fn(_x) - fn(_zn,k)-

Proof Since # = {y — K(l_rﬁ/y);x € Sl r € R;} is a bounded measurable VC class of

functions,

1—2a' 1—2 . 1+ 142,
2 )—K(T’)—(K( 2 ) — K( ’

zeSTlreRy}, k=1,...,0; n>1

Fn e ={K( )

r2

are measurable VC classes of functions. Moreover, there is a common VC characteristic (4, v)

that does not depend on k and n. Because for any = € B, 1,

1—2a'y L=z, 4y 1+a'y L4200
Sd—l(K( 7’2(71) ) - K(W) - K( T2(TL) ) + K( TQ(n) )) f(y)@<dy)
1—2'y 1—2'y  (Zok—2) Y.\
S 2||f|| Sd—l( ( 7'2(71) ) - K( T,Z(n) - 7.2(”) )) +
1+2'y 1+2'y (2o — )y

(K( T2(TL) )_K( T2(n) + 7"2(7’L) ))Zdy

or(d—1)/2 0o s
§2f7rd_1n/ sup 2|K(z) — K(z +9y)|?z 2 dz,
Iy ), s 2K G) - K o)

by Lemma 2.6, for any 7 € (0, ¢), there exists §p > 0 satisfying for any 6 < §p and any x € B,, &,

1 —a'y =2,y 14ty L4219,
[ ) = Kt = Ko + K5 )P el

< Al (n).

Take U = 4||K|| and 02 = 4| f||nr?~1(n). By (A1) and (1.5), we see that E(f,, x(z)— fux(—2)) =
0. Then by Lemma 2.5, we deduce that for any n large sufficiently,
P{ sup  sup [fui(z)— for(—2)] =€}
1<k<l, E€Bn,}
ri ! (n)C(r(n))~'e
AL| K|

Cr(n) MK
AL\ flln

< Ll, exp{—n og(1l+ )}

Hence, by (1.8)

. 1
limsup ————<log P{ sup sup |[fnx(®)— for(—2) > e}

n—ooo nré=i(n) 1<k<l, £E€By i
=1\ MK M(K)||K
< _nr (TL) ( )5 log(l 4 w),
ALK AL flln

which concludes (2.8) by letting n — 0. O
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Lemma 2.8 Suppose (A1) and (A2) hold. Then VA € R,

sup inf {tA—U,(¢)} = inf sup{tA — U, (¢)}. (2.9)
teR z€S4—1 €841 1R

Proof Denote M = || f|| and write

g(t,y) = th —y(¥(t) +P(=1)).

Then, for t fixed, g(t,y) is convex as a function of y, and for y fixed, g(¢,y) is concave as a

function of t. By the minimax theorem [17] we see that

inf supg(t,y) =sup inf t,
yG[OM]fGRg( v teRyG[OM]g( )

which concludes (2.9). O

Lemma 2.9 Suppose (A1) and (A2) hold. Write

B 27r (d=1)/2 tK(v) —tK(v) i3
"D == / M i)t P g v T
Then V) € R,
J(A) = o igﬂg{w\ f(@)(@(t) +v(=1))}
g (2m)-n/z e h™ (A/M)K (v)
—\h 1()\/M)MF((d_1)/2)/ (=31 )+
exp{ 5\2{]\1{4))[((”)} - 2) 2 do,

where M = ||f|| and h™! denotes the inverse of h. Particularly, J is continuous on [0, 00).

Proof Obiviouly, h is strictly increasing on (—oo, 00) and lim;_, o h(t) = —o0, lims—, o0 h(t) =
0o, thereforeb h~! exists, and it is strictly increasing and continuous on (—oc, c0). Write
(2m)(d=1/2 - oo tK(v) —tK(v) a=s
G(t,y) =tA —ym————~ [ (exp{——=} + exp{ }=2)v 7 do,
I'((d-1)/2) Jo M(K) M(K)
teR, yelo0,M].

Then % =\ — yh(t), and so

sup Glt.y) {G(hlwy),y), if y 0,

teR ~+o00, ify=0.
Because
G(h™ (My),y) = sup G(t.y)
(2m)(d=1/2 oo tK(v) —tK(v)
e vega=nym f, oG o -2 )

is decreasing with respect to y € [0, M], we obtain

J\) = inf supG(t,y) = G(h~*(\/M), M).
ye[0.M] ter
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Particularly, J is continuous on [0, c0). O

Proof of Theorem 1.1 For any 2 € S?"!, by Proposition 2.3, we deduce that

liminf - log P{|[fu(-) ~ fu(—)]| > A)

n—oo nrd=1(n)
> lhnigfﬁlogp{‘fn( z) = fo(=)] > A}

—inf{J; (), Jo(=A)}-

Hence

i inf s BoB PIu() = £u(=)] > 4} = —I().

To obtain the reverse inequality, we note
[fn() = fa(=)ll = sup |fu(x) = fu(=2)],
reSd-1

and

sup |fn(x)_fn( )‘ < max { Sup |fnl~c( ) fn,k(_x)|+|fn(zn,k)_fn(_zn,k)|}'

zESd—1 1<k<l, zeB ok

By Lemma 2.7, we deduce that for any 0 < £ < A/2,

log P{[[ fn(:) = fu(=)Il > A}

lim sup
n—oo nrd=l(n)

— lim sup tog P{ sup [£u(x) ~ ful(~2)| > A}
n—oo nr?1(n) reSd-
1
< - —z)| >
sy i sup Cry B (P (B e 1ns(@) = far(—e)] 2 )
P(max |fa(zni) = fa(—2np)l 2 A =€)
= lim lim sup log P( max |fn(zn k) — fa(=znk)| > A —¢).

620 nooo mrd=l(n) 1<k<

On the other hand, by Chebyshev inequality, for any s > 0, ¢t > 0,

P(lg}ﬁé |fn(zn k) fn(_zn,k)‘ 2/\_5)

<ln 1g}caén{eXp{—m“d’l(n)(A —etyvL (1), exp{-—nr'" (n)(A — £)s} UL (=s)}.

Therefore,
lim sup — log P{[[fn() = ful(=)I > A}
- mf{sup{()\ —e)t — sup U.(t)},sup{(A —¢)s— sup VU (—s)}}.
t>0 r€Sd—1 >0 zeSd—1
Then, by Lemma 2.8,
limsup oy log P{[|fn(-) = fu(=) > A} < =J(A = ).
n—oo

Finally, by Lemma 2.9, the rate function J is continuous, therefore

limsup ———log P{|fu() — ful(=)[| > A} £ ~J(N). O

n—»o0 1(n)
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