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Abstract Assume that fn is the nonparametric kernel density estimator of directional data

based on a kernel function K and a sequence of independent and identically distributed random

variables taking values in d-dimensional unit sphere Sd−1. We established that the large devia-

tion principle for {supx∈Sd−1 |fn(x) − fn(−x)|, n ≥ 1} holds if the kernel function is a function

with bounded variation, and the density function f of the random variables is continuous and

symmetric.
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1. Introduction

Suppose that {Xi, i ≥ 1} is a sequence of independent and identically distributed (i.i.d.)

random vectors taking values on a d-dimensional unit sphere Sd−1 := {x ∈ Rd, |x| = 1}, d ≥ 2

with density function f such that ∫
Sd−1

f(x)dΘ(x) = 1,

where Θ is the Lebesgue measure on Sd−1, i.e., {Xi} is a set of directional data. Such data

occurs in many fields, such as geology and medicine [1].

Bai et al. [2] obtained uniform strong consistency and L1-consistency of the following kernel

estimator

fn(x) := (nrd−1(n))−1C(r(n))

n∑
i=1

K(
1− x′Xi

r2(n)
), x ∈ Sd−1, (1.1)

where {r(n), n ≥ 1} is a bandsequence, which is a sequence of positive numbers fulfilling

r(n) → 0, nrd−1(n) → +∞, as n→ ∞. (1.2)

Let K be a non-negative function defined on R such that ∀x < 0, K(x) = 0, and

0 <

∫ ∞

0

K(v)v(d−3)/2dv <∞, (1.3)
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and C(r(n)) is a positive number satisfying

(C(r(n)))−1 =
1

rd−1(n)

∫
Sd−1

K(
1− x′y

r2(n)
)Θ(dy). (1.4)

Notice that [3, 4]∫
Sd−1

g(a′x)Θ(dx) =
2π(d−1)/2

Γ((d− 1)/2)

∫ 1

−1

g(|a|v)(1− v2)(d−3)/2dv, (1.5)

where g is a nonnegative measurable function and a ∈ Rd\{0}. C(r(n)) is independent of x, and

M(K) := lim
n→∞

(C(r(n)))−1 =
(2π)(d−1)/2

Γ((d− 1)/2)

∫ ∞

0

K(v)v(d−3)/2dv, (1.6)

Zhao and Wu [5] proved a central limit theorem for integrated square error of fn under some

mild conditions. Gao and Li [4] obtained large deviations and moderate deviations for kernel

density estimators of directional data. Li and Gao [6] studied rates of strong uniform consistency

for kernel density estimators of directional data. He and Gao [7] proved moderate deviations and

large deviations for a test of symmetry based on kernel density estimator. Xu and Zhou [8, 9]

extended the results of He and Gao [7] to the multidimensional case. Li [10] established moderate

deviations for a test of symmetry based on kernel density estimator of directional data. Inspired

by the above-mentioned results, in this paper, we try to establish uniform large deviations for a

test of symmetry based on kernel density estimator of directional data by the empirical process

approach [11–13], which is motivated by Xu and Zhou [8, 9], Xu et al. [14], He and Gao [7],

Gao [15], and Gao and Li [4]. Our results complement that in Xu and Zhou [8,9], Xu et al. [14],

He and Gao [7], Gao [15], Gao and Li [4], Li [10], Xu et al. [14].

We suppose that f and K fulfill the following conditions:

(A1) f is continuous and symmetric.

(A2) K is a bounded variations function satisfying (1.3), and ∃ γ > d−1
4 such that

lim
z→+∞

zγK(z) <∞. (1.7)

We denote by ∥g∥ = supx |g(x)| the supremum norm.

As in [4, Remark 1.1], if K is bounded, then by (1.3), ∀ t ∈ R,

φ(t) :=

∫ ∞

0

z(d−3)/2 exp(tK(z)− 1)dz <∞.

The following theorem is the main result in this paper.

Theorem 1.1 Let {r(n), n ≥ 1} satisfy

r(n) → 0, nrd−1(n) → +∞,
log(r(n))−1

nrd−1(n)
→ 0, as n→ +∞. (1.8)

Suppose that (A1) and (A2) hold. Then ∀λ > 0,

lim
n→∞

1

nrd−1(n)
logP{∥fn(·)− fn(−·)∥ > λ} = −J(λ), (1.9)
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where

J(λ) = inf
{

inf
x∈Sd−1

sup
t∈R

{tλ− f(x)(ψ(t) + ψ(−t))}, inf
x∈Sd−1

sup
t∈R

{−tλ− f(x)(ψ(t) + ψ(−t))}
}

= inf
x∈Sd−1

sup
t∈R

{tλ− f(x)(ψ(t) + ψ(−t))}, (1.10)

and

ψ(t) :=
(2π)(d−1)/2

Γ((d− 1)/2)

∫ ∞

0

(exp{ tK(v)

M(K)
} − 1)v

d−3
2 dv, t ∈ R. (1.11)

2. Large deviations

Similar to that of Gao and Li [4], in this section we present a pointwise large deviations

(Proposition 2.3) and establish Theorem 1.1. We conclude Theorem 1.1 by the pointwise large

deviation and a comparison lemma (Lemma 2.5).

We first cite Lemma 2.1 of Gao and Li [4].

Lemma 2.1 Suppose that {r(n), n ≥ 1} satisfies (1.2). Assume that K is a bounded function

satisfying (1.3) and f is continuous. Then

lim
n→∞

sup
x∈Sd−1

∣∣E(
1

rd−1(n)
K(

1− x′X1

r2(n)
))− f(x)M(K)

∣∣ = 0. (2.1)

Especially,

lim
n→∞

sup
x∈Sd−1

∣∣E(
1

rd−1(n)
K2(

1− x′X1

r2(n)
))− f(x)M(K2)

∣∣ = 0, (2.2)

and

lim
n→∞

sup
x∈Sd−1

∣∣∣ ∫
Sd−1

(exp{tC(r(n))K(
1− x′X1

r2(n)
)} − 1)f(y)Θ(dy)− f(x)ψ(t)

∣∣∣ = 0. (2.3)

Lemma 2.2 Let {r(n), n ≥ 1} satisfy (1.2). Suppose that (A1) and (A2) hold. Write

Ψ(n)
x (t) := E{exp{tnrd−1(n)(fn(x)− fn(−x))}}. (2.4)

Then

lim
n→∞

sup
x∈Sd−1

| 1

nrd−1(n)
logΨ(n)

x (t)− f(x)(ψ(t) + ψ(−t))| = 0. (2.5)

Proof From the fact that {Xi, i ≥ 1} are i.i.d., we could deduce that

Ψ(n)
x (t) = E

(
exp

{
tC(r(n))

n∑
i=1

(K(
1− x′Xi

r2(n)
)−K(

1 + x′Xi

r2(n)
))
})

= (E(exp{tC(r(n))(K(
1− x′X1

r2(n)
)−K(

1 + x′X1

r2(n)
))}))n

=
(∫

Sd−1

exp{tC(r(n))(K(
1− x′y

r2(n)
)−K(

1 + x′y

r2(n)
))}f(y)Θ(dy)

)n

.

First, we suppose that K has a bounded support. Because r(n) → 0, as n→ ∞, the support of

K( 1−x′y
r2(n) ) and K( 1+x′y

r2(n) ) have an empty intersection for n large sufficiently. Therefore,

1

nrd−1(n)
logΨ(n)

x (t)
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=
1

rd−1(n)
log

(
1 +

∫
Sd−1

(exp{tC(r(n))K(
1− x′y

r2(n)
)} − 1+

exp{−tC(r(n))K(
1 + x′y

r2(n)
)} − 1)f(y)Θ(dy)

)
,

and so from (2.3), we conclude (2.5). Now, we drop the assumption of bounded support,

Ψ(n)
x (t) =

[
1 +

∫
Sd−1

(exp{tC(r(n))K(
1− x′y

r2(n)
)} − 1)f(y)Θ(dy)+∫

Sd−1

(exp{−tC(r(n))K(
1 + x′y

r2(n)
)} − 1)f(y)Θ(dy) + rd−1(n)α

]n
=

[
1 +

∫
Sd−1

(exp{tC(r(n))K(
1− x′y

r2(n)
)}+ exp{−tC(r(n))K(

1− x′y

r2(n)
)} − 2)f(y)Θ(dy)+

rd−1(n)α
]n
,

where

α =
[ ∫

Sd−1

exp{tC(r(n))(K(
1− x′y

r2(n)
)−K(

1 + x′y

r2(n)
))}f(y)Θ(dy)−

1−
∫
Sd−1

(exp{tC(r(n))K(
1− x′y

r2(n)
)} − 1)f(y)Θ(dy)−∫

Sd−1

(exp{−tC(r(n))K(
1 + x′y

r2(n)
)} − 1)f(y)Θ(dy)

]/
rd−1(n).

By the assumptions of the theorem, for any ε > 0, for n large sufficiently, |α| ≤Mε(2 exp{tCK0}+
4), whereM = ∥f∥, K0 = supzK(z), C is some constant. Hence α = o(1) as n→ ∞, it is uniform

with respect to x and t. Therefore, we have

Ψx(t) := lim
n→∞

1

nrd−1(n)
logΨ(n)

x (t) = f(x)(ψ(t) + ψ(−t)). 2
As Ψx(t) is differentiable with respect to t ∈ R, therefore, by Gärtner-Ellis theorem, we

obtian the following pointwise large deviation.

Proposition 2.3 Suppose {r(n), n ≥ 1} satisfies (1.2). Let (A1) and (A2) hold. Then ∀x ∈
Sd−1, for every closed set F ⊂ R,

lim sup
n→∞

1

nrd−1(n)
logP{(fn(x)− fn(−x)) ∈ F} ≤ − inf

λ∈F
Jx(λ), (2.6)

and for every open set G ⊂ R,

lim sup
n→∞

1

nrd−1(n)
logP{(fn(x)− fn(−x)) ∈ G} ≥ − inf

λ∈G
Jx(λ), (2.7)

where

Jx(λ) = sup
t∈R

{tλ− f(x)(ψ(t) + ψ(−t))}.

Suppose that (S, φ) is a measurable space and F is a uniformly bounded collection of mea-

surable functions on it. We call F a bounded measurable VC (Vapnik-C̆ervonenkis) class of

functions if F is separable and if ∃A > 0, v > 0 such that, for any probability µ on (S, φ) and
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any 0 < τ < 1,

N(F , ∥ · ∥L2(µ), τ∥F∥L2(µ)) ≤ (
A

τ
)v,

where F = sup{|g|, g ∈ F} and we denote the τ -covering number of the metric space (F ,

∥ · ∥L2(µ)) by N(F , ∥ · ∥L2(µ), τ), which is the smallest number of balls of radius not larger than

τ and centers in F needed to cover F . We call (A, v) the characteristic of the class F . Let K

be a bounded variation function. Then by [16, Lemma 22],

F = {y 7→ K(
1− x′y

r2
)−K(

1 + x′y

r2
);x ∈ Sd−1, r ∈ R+}

is a bounded measurable VC class of functions.

The following deviation inequality of the VC class plays a crucial role in the proof of Theorem

1.1. As in [4], we give and establish a comparison lemma between the pointwise large deviations

and the uniform large deviations by the deviation inequality.

Theorem 2.4 ([13]) Suppose F is a uniformly bounded measurable VC class of functions, and

σ2 and U are any numbers satisfying σ2 ≥ supg∈F E((g(X1)−Eg(X1))
2), U ≥ supg∈F ∥g∥ and

0 < σ ≤ U/2. Then ∃C, L depending only on the characteristic (A, v) of the class F , such that

the inequality

P
(∥∥∥ n∑

i=1

(g(Xi)− Eg(Xi))
∥∥∥

F
> t

)
≤ L exp{− t

LU
log(1 +

tU

L(
√
nσ + U

√
log U

σ )
2
)}

is valid for all

t ≥ C(U log
U

σ
+
√
nσ

√
log

U

σ
),

where for any map Φ from F to R, denote ∥Φ∥F = sup{|Φ(g)|; g ∈ F}.
We below cite Lemmas 2.3 and 2.5 in [4].

Lemma 2.5 Write

Sγ(x) = {y ∈ Sd−1; |x− y| ≤ γ}, x ∈ Sd−1, γ > 0.

Then for any n ≥ 1, ∃ln ≤ B(δ)r2(1−d)(n), x1, . . . , xln ∈ Sd−1, such that

Sd−1 = ∪ln
i=1Sδr2(n)(xi),

where B(δ) is a constant independent of n.

Lemma 2.6 Suppose (A2) holds. Then

lim
δ→0

∫ ∞

0

sup
|x|<δ

|K(z)−K(z + x)|2z
d−3
2 dz = 0.

Lemma 2.7 Suppose that {r(n), n ≥ 1} satisfies (1.8) and (A1) and (A2) hold, for all 0 < δ < 1,

let Bn,k, k = 1, . . . , ln, be ln balls with |x − y| ≤ δr2(n), x, y ∈ Bn,k, such that {Bn,k, k =
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1, . . . , ln} is a covering of Sd−1 and ln ≤ B(δ)r2(1−d)(n). Take zn,k ∈ Bn,k, k = 1, . . . , ln, n ≥ 1.

Then ∀ε > 0,

lim
δ→0

lim sup
n→∞

1

nrd−1(n)
logP{ sup

1≤k≤ln

sup
x∈Bn,k

|fn,k(x)− fn,k(−x)| ≥ ε} = −∞, (2.8)

where fn,k(x) = fn(x)− fn(zn,k), fn,k(−x) = fn(−x)− fn(−zn,k).

Proof Since F = {y 7→ K( 1−x′y
r2 );x ∈ Sd−1, r ∈ R+} is a bounded measurable VC class of

functions,

Fn,k ={K(
1− x′·
r2

)−K(
1− z′n,k·

r2
)− (K(

1 + x′·
r2

)−K(
1 + z′n,k·

r2
));

x ∈ Sd−1, r ∈ R+}, k = 1, . . . , ln; n ≥ 1

are measurable VC classes of functions. Moreover, there is a common VC characteristic (A, v)

that does not depend on k and n. Because for any x ∈ Bn,k,∫
Sd−1

(K(
1− x′y

r2(n)
)−K(

1− z′n,ky

r2(n)
)−K(

1 + x′y

r2(n)
) +K(

1 + z′n,ky

r2(n)
))2f(y)Θ(dy)

≤ 2∥f∥
∫
Sd−1

(K(
1− x′y

r2(n)
)−K(

1− x′y

r2(n)
− (zn,k − x)′y

r2(n)
))2+

(K(
1 + x′y

r2(n)
)−K(

1 + x′y

r2(n)
+

(zn,k − x)′y

r2(n)
))2dy

≤ 2∥f∥ 2π(d−1)/2

Γ((d− 1)/2)
rd−1(n)

∫ ∞

0

sup
|y|<δ

2|K(z)−K(z + y)|2z
d−3
2 dz,

by Lemma 2.6, for any η ∈ (0, ε), there exists δ0 > 0 satisfying for any δ ≤ δ0 and any x ∈ Bn,k,∫
Sd−1

(K(
1− x′y

r2(n)
)−K(

1− z′n,ky

r2(n)
)−K(

1 + x′y

r2(n)
) +K(

1 + z′n,ky

r2(n)
))2f(y)Θ(dy)

≤ 4∥f∥ηrd−1(n).

Take U = 4∥K∥ and σ2 = 4∥f∥ηrd−1(n). By (A1) and (1.5), we see that E(fn,k(x)−fn,k(−x)) =
0. Then by Lemma 2.5, we deduce that for any n large sufficiently,

P{ sup
1≤k≤ln

sup
x∈Bn,k

|fn,k(x)− fn,k(−x)| ≥ ε}

≤ Lln exp{−
nrd−1(n)C(r(n))−1ε

4L∥K∥
log(1 +

C(r(n))−1∥K∥ε
4L∥f∥η

)}.

Hence, by (1.8)

lim sup
n→∞

1

nrd−1(n)
logP{ sup

1≤k≤ln

sup
x∈Bn,k

|fn,k(x)− fn,k(−x)| ≥ ε}

≤ −nr
d−1(n)M(K)ε

4L∥K∥
log(1 +

M(K)∥K∥ε
4L∥f∥η

),

which concludes (2.8) by letting η → 0. 2
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Lemma 2.8 Suppose (A1) and (A2) hold. Then ∀λ ∈ R,

sup
t∈R

inf
x∈Sd−1

{tλ−Ψx(t)} = inf
x∈Sd−1

sup
t∈R

{tλ−Ψx(t)}. (2.9)

Proof Denote M = ∥f∥ and write

g(t, y) = tλ− y(ψ(t) + ψ(−t)).

Then, for t fixed, g(t, y) is convex as a function of y, and for y fixed, g(t, y) is concave as a

function of t. By the minimax theorem [17] we see that

inf
y∈[0,M ]

sup
t∈R

g(t, y) = sup
t∈R

inf
y∈[0,M ]

g(t, y),

which concludes (2.9). 2
Lemma 2.9 Suppose (A1) and (A2) hold. Write

h(t) =
(2π)(d−1)/2

Γ((d− 1)/2)

∫ ∞

0

K(v)

M(K)
(exp{ tK(v)

M(K)
} − exp{−tK(v)

M(K)
})v

d−3
2 dv

Then ∀λ ∈ R,

J̃(λ) := inf
x∈Sd−1

sup
t∈R

{tλ− f(x)(ψ(t) + ψ(−t))}

=λh−1(λ/M)−M
(2π)(d−1)/2

Γ((d− 1)/2)

∫ ∞

0

(exp{h
−1(λ/M)K(v)

M(K)
}+

exp{−h
−1(λ/M)K(v)

M(K)
} − 2)v

d−3
2 dv,

where M = ∥f∥ and h−1 denotes the inverse of h. Particularly, J is continuous on [0,∞).

Proof Obiviouly, h is strictly increasing on (−∞,∞) and limt→−∞ h(t) = −∞, limt→∞ h(t) =

∞, thereforeb h−1 exists, and it is strictly increasing and continuous on (−∞,∞). Write

G(t, y) =tλ− y
(2π)(d−1)/2

Γ((d− 1)/2)

∫ ∞

0

(exp{ tK(v)

M(K)
}+ exp{−tK(v)

M(K)
} − 2)v

d−3
2 dv,

t ∈ R, y ∈ [0,M ].

Then ∂G(t,y)
∂t = λ− yh(t), and so

sup
t∈R

G(t, y) =

{
G(h−1(λ/y), y), if y ̸= 0,

+∞, if y = 0.

Because

G(h−1(λ/y), y) = sup
t∈R

G(t, y)

= sup
t∈R

{
tλ− y

(2π)(d−1)/2

Γ((d− 1)/2)

∫ ∞

0

(exp{ tK(v)

M(K)
}+ exp{−tK(v)

M(K)
} − 2)v

d−3
2 dv

}
is decreasing with respect to y ∈ [0,M ], we obtain

J(λ) = inf
y∈[0,M ]

sup
t∈R

G(t, y) = G(h−1(λ/M),M).
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Particularly, J is continuous on [0,∞). 2
Proof of Theorem 1.1 For any x ∈ Sd−1, by Proposition 2.3, we deduce that

lim inf
n→∞

1

nrd−1(n)
logP{∥fn(·)− fn(−·)∥ > λ}

≥ lim inf
n→∞

1

nrd−1(n)
logP{|fn(x)− fn(−x)| > λ}

≥ − inf{Jx(λ), Jx(−λ)}.

Hence

lim inf
n→∞

1

nrd−1(n)
logP{∥fn(·)− fn(−·)∥ > λ} ≥ −J(λ).

To obtain the reverse inequality, we note

∥fn(·)− fn(−·)∥ = sup
x∈Sd−1

|fn(x)− fn(−x)|,

and

sup
x∈Sd−1

|fn(x)− fn(−x)| ≤ max
1≤k≤ln

{ sup
x∈Bn,k

|fn,k(x)− fn,k(−x)|+ |fn(zn,k)− fn(−zn,k)|}.

By Lemma 2.7, we deduce that for any 0 < ε < λ/2,

lim sup
n→∞

1

nrd−1(n)
logP{∥fn(·)− fn(−·)∥ > λ}

= lim sup
n→∞

1

nrd−1(n)
logP{ sup

x∈Sd−1

|fn(x)− fn(−x)| > λ}

≤ lim
δ→0

lim sup
n→∞

1

nrd−1(n)
log(P ( max

1≤k≤ln
sup

x∈Bn,k

|fn,k(x)− fn,k(−x)| ≥ ε)+

P ( max
1≤k≤ln

|fn(zn,k)− fn(−zn,k)| ≥ λ− ε))

= lim
δ→0

lim sup
n→∞

1

nrd−1(n)
logP ( max

1≤k≤ln
|fn(zn,k)− fn(−zn,k)| ≥ λ− ε).

On the other hand, by Chebyshev inequality, for any s ≥ 0, t ≥ 0,

P ( max
1≤k≤ln

|fn(zn,k)− fn(−zn,k)| ≥ λ− ε)

≤ ln max
1≤k≤ln

{exp{−nrd−1(n)(λ− ε)t}Ψn
zn,k

(t), exp{−nrd−1(n)(λ− ε)s}Ψn
zn,k

(−s)}.

Therefore,

lim sup
n→∞

1

nrd−1(n)
logP{∥fn(·)− fn(−·)∥ > λ}

≤ − inf{sup
t≥0

{(λ− ε)t− sup
x∈Sd−1

Ψx(t)}, sup
s≥0

{(λ− ε)s− sup
x∈Sd−1

Ψx(−s)}}.

Then, by Lemma 2.8,

lim sup
n→∞

1

nrd−1(n)
logP{∥fn(·)− fn(−·)∥ > λ} ≤ −J(λ− ε).

Finally, by Lemma 2.9, the rate function J is continuous, therefore

lim sup
n→∞

1

nrd−1(n)
logP{∥fn(·)− fn(−·)∥ > λ} ≤ −J(λ). 2
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