Journal of Mathematical Research with Applications Nov., 2021, Vol. 41, No. 6, pp. 639–647 DOI:10.3770/j.issn:2095-2651.2021.06.008 Http://jmre.dlut.edu.cn

Large Deviations for a Test of Symmetry Based on Kernel Density Estimator of Directional Data

Mingzhou XU*, Kun CHENG

School of Information Engineering, Jingdezhen Ceramic University, Jiangxi 333403, P. R. China

Abstract Assume that f_n is the nonparametric kernel density estimator of directional data based on a kernel function K and a sequence of independent and identically distributed random variables taking values in *d*-dimensional unit sphere \mathbb{S}^{d-1} . We established that the large deviation principle for $\{\sup_{x\in\mathbb{S}^{d-1}} |f_n(x) - f_n(-x)|, n \ge 1\}$ holds if the kernel function is a function with bounded variation, and the density function f of the random variables is continuous and symmetric.

Keywords symmetry test; kernel density estimator; directional data; large deviations

MR(2020) Subject Classification 60F10; 62G07

1. Introduction

Suppose that $\{X_i, i \ge 1\}$ is a sequence of independent and identically distributed (i.i.d.) random vectors taking values on a *d*-dimensional unit sphere $\mathbb{S}^{d-1} := \{x \in \mathbb{R}^d, |x| = 1\}, d \ge 2$ with density function f such that

$$\int_{\mathbb{S}^{d-1}} f(x) \mathrm{d} \Theta(x) = 1$$

where Θ is the Lebesgue measure on \mathbb{S}^{d-1} , i.e., $\{X_i\}$ is a set of directional data. Such data occurs in many fields, such as geology and medicine [1].

Bai et al. [2] obtained uniform strong consistency and L_1 -consistency of the following kernel estimator

$$f_n(x) := (nr^{d-1}(n))^{-1}C(r(n))\sum_{i=1}^n K(\frac{1-x'X_i}{r^2(n)}), \quad x \in \mathbb{S}^{d-1},$$
(1.1)

where $\{r(n), n \ge 1\}$ is a bandsequence, which is a sequence of positive numbers fulfilling

$$r(n) \to 0, nr^{d-1}(n) \to +\infty, \text{as } n \to \infty.$$
 (1.2)

Let K be a non-negative function defined on \mathbb{R} such that $\forall x < 0, K(x) = 0$, and

$$0 < \int_0^\infty K(v) v^{(d-3)/2} \mathrm{d}v < \infty, \tag{1.3}$$

Received October 19, 2020; Accepted May 20, 2021

Supported by the Doctoral Scientific Research Starting Foundation of Jingdezhen Ceramic University (Grant No. 102/01003002031), Program of Department of Education of Jiangxi Province of China (Grant Nos. GJJ190732; GJJ180737) and the Natural Science Foundation Program of Jiangxi Province (Grant No. 20202BABL211005). * Corresponding author

E-mail address: mingzhouxu@whu.edu.cn (Mingzhou XU); chengkun0010@126.com (Kun CHENG)

Mingzhou XU and Kun CHENG

and C(r(n)) is a positive number satisfying

$$(C(r(n)))^{-1} = \frac{1}{r^{d-1}(n)} \int_{\mathbb{S}^{d-1}} K(\frac{1-x'y}{r^2(n)}) \Theta(\mathrm{d}y).$$
(1.4)

Notice that [3, 4]

$$\int_{\mathbb{S}^{d-1}} g(a'x)\Theta(\mathrm{d}x) = \frac{2\pi^{(d-1)/2}}{\Gamma((d-1)/2)} \int_{-1}^{1} g(|a|v)(1-v^2)^{(d-3)/2} \mathrm{d}v, \tag{1.5}$$

where g is a nonnegative measurable function and $a \in \mathbb{R}^d \setminus \{0\}$. C(r(n)) is independent of x, and

$$M(K) := \lim_{n \to \infty} (C(r(n)))^{-1} = \frac{(2\pi)^{(d-1)/2}}{\Gamma((d-1)/2)} \int_0^\infty K(v) v^{(d-3)/2} \mathrm{d}v,$$
(1.6)

Zhao and Wu [5] proved a central limit theorem for integrated square error of f_n under some mild conditions. Gao and Li [4] obtained large deviations and moderate deviations for kernel density estimators of directional data. Li and Gao [6] studied rates of strong uniform consistency for kernel density estimators of directional data. He and Gao [7] proved moderate deviations and large deviations for a test of symmetry based on kernel density estimator. Xu and Zhou [8,9] extended the results of He and Gao [7] to the multidimensional case. Li [10] established moderate deviations for a test of symmetry based on kernel density estimator of directional data. Inspired by the above-mentioned results, in this paper, we try to establish uniform large deviations for a test of symmetry based on kernel density estimator of directional data. Inspired by the above-mentioned results, in this paper, we try to establish uniform large deviations for a test of symmetry based on kernel density estimator of directional data by the empirical process approach [11–13], which is motivated by Xu and Zhou [8,9], Xu et al. [14], He and Gao [7], Gao [15], and Gao and Li [4]. Our results complement that in Xu and Zhou [8,9], Xu et al. [14], He and Gao [7], Gao [15], Gao and Li [4], Li [10], Xu et al. [14].

We suppose that f and K fulfill the following conditions:

- (A1) f is continuous and symmetric.
- (A2) K is a bounded variations function satisfying (1.3), and $\exists \gamma > \frac{d-1}{4}$ such that

$$\lim_{z \to +\infty} z^{\gamma} K(z) < \infty.$$
(1.7)

We denote by $||g|| = \sup_{x} |g(x)|$ the supremum norm.

As in [4, Remark 1.1], if K is bounded, then by (1.3), $\forall t \in \mathbb{R}$,

$$\varphi(t) := \int_0^\infty z^{(d-3)/2} \exp(tK(z) - 1) \mathrm{d}z < \infty.$$

The following theorem is the main result in this paper.

Theorem 1.1 Let $\{r(n), n \ge 1\}$ satisfy

$$r(n) \to 0, nr^{d-1}(n) \to +\infty, \frac{\log(r(n))^{-1}}{nr^{d-1}(n)} \to 0, \text{ as } n \to +\infty.$$
 (1.8)

Suppose that (A1) and (A2) hold. Then $\forall \lambda > 0$,

$$\lim_{n \to \infty} \frac{1}{n r^{d-1}(n)} \log P\{\|f_n(\cdot) - f_n(-\cdot)\| > \lambda\} = -J(\lambda),$$
(1.9)

where

$$J(\lambda) = \inf \left\{ \inf_{x \in \mathbb{S}^{d-1}} \sup_{t \in \mathbb{R}} \{ t\lambda - f(x)(\psi(t) + \psi(-t)) \}, \inf_{x \in \mathbb{S}^{d-1}} \sup_{t \in \mathbb{R}} \{ -t\lambda - f(x)(\psi(t) + \psi(-t)) \} \right\}$$
$$= \inf_{x \in \mathbb{S}^{d-1}} \sup_{t \in \mathbb{R}} \{ t\lambda - f(x)(\psi(t) + \psi(-t)) \},$$
(1.10)

and

$$\psi(t) := \frac{(2\pi)^{(d-1)/2}}{\Gamma((d-1)/2)} \int_0^\infty (\exp\{\frac{tK(v)}{M(K)}\} - 1)v^{\frac{d-3}{2}} \mathrm{d}v, \quad t \in \mathbb{R}.$$
(1.11)

2. Large deviations

Similar to that of Gao and Li [4], in this section we present a pointwise large deviations (Proposition 2.3) and establish Theorem 1.1. We conclude Theorem 1.1 by the pointwise large deviation and a comparison lemma (Lemma 2.5).

We first cite Lemma 2.1 of Gao and Li [4].

Lemma 2.1 Suppose that $\{r(n), n \ge 1\}$ satisfies (1.2). Assume that K is a bounded function satisfying (1.3) and f is continuous. Then

$$\lim_{n \to \infty} \sup_{x \in \mathbb{S}^{d-1}} \left| E(\frac{1}{r^{d-1}(n)} K(\frac{1-x'X_1}{r^2(n)})) - f(x)M(K) \right| = 0.$$
(2.1)

Especially,

$$\lim_{n \to \infty} \sup_{x \in \mathbb{S}^{d-1}} \left| E(\frac{1}{r^{d-1}(n)} K^2(\frac{1 - x'X_1}{r^2(n)})) - f(x)M(K^2) \right| = 0,$$
(2.2)

and

$$\lim_{n \to \infty} \sup_{x \in \mathbb{S}^{d-1}} \left| \int_{\mathbb{S}^{d-1}} (\exp\{tC(r(n))K(\frac{1-x'X_1}{r^2(n)})\} - 1)f(y)\Theta(\mathrm{d}y) - f(x)\psi(t) \right| = 0.$$
(2.3)

Lemma 2.2 Let $\{r(n), n \ge 1\}$ satisfy (1.2). Suppose that (A1) and (A2) hold. Write

$$\Psi_x^{(n)}(t) := E\{\exp\{tnr^{d-1}(n)(f_n(x) - f_n(-x))\}\}.$$
(2.4)

Then

$$\lim_{n \to \infty} \sup_{x \in \mathbb{S}^{d-1}} \left| \frac{1}{n r^{d-1}(n)} \log \Psi_x^{(n)}(t) - f(x)(\psi(t) + \psi(-t)) \right| = 0.$$
(2.5)

Proof From the fact that $\{X_i, i \ge 1\}$ are i.i.d., we could deduce that

$$\begin{split} \Psi_x^{(n)}(t) &= E\Big(\exp\Big\{tC(r(n))\sum_{i=1}^n (K(\frac{1-x'X_i}{r^2(n)}) - K(\frac{1+x'X_i}{r^2(n)}))\Big\}\Big)\\ &= (E(\exp\{tC(r(n))(K(\frac{1-x'X_1}{r^2(n)}) - K(\frac{1+x'X_1}{r^2(n)}))\}))^n\\ &= \Big(\int_{\mathbb{S}^{d-1}}\exp\{tC(r(n))(K(\frac{1-x'y}{r^2(n)}) - K(\frac{1+x'y}{r^2(n)}))\}f(y)\Theta(\mathrm{d} y)\Big)^n. \end{split}$$

First, we suppose that K has a bounded support. Because $r(n) \to 0$, as $n \to \infty$, the support of $K(\frac{1-x'y}{r^2(n)})$ and $K(\frac{1+x'y}{r^2(n)})$ have an empty intersection for n large sufficiently. Therefore,

$$\frac{1}{nr^{d-1}(n)}\log\Psi_x^{(n)}(t)$$

Mingzhou XU and Kun CHENG

$$= \frac{1}{r^{d-1}(n)} \log \left(1 + \int_{\mathbb{S}^{d-1}} (\exp\{tC(r(n))K(\frac{1-x'y}{r^2(n)})\} - 1 + \exp\{-tC(r(n))K(\frac{1+x'y}{r^2(n)})\} - 1)f(y)\Theta(\mathrm{d}y) \right),$$

and so from (2.3), we conclude (2.5). Now, we drop the assumption of bounded support,

$$\begin{split} \Psi_x^{(n)}(t) &= \left[1 + \int_{\mathbb{S}^{d-1}} (\exp\{tC(r(n))K(\frac{1-x'y}{r^2(n)})\} - 1)f(y)\Theta(\mathrm{d}y) + \\ &\int_{\mathbb{S}^{d-1}} (\exp\{-tC(r(n))K(\frac{1+x'y}{r^2(n)})\} - 1)f(y)\Theta(\mathrm{d}y) + r^{d-1}(n)\alpha\right]^n \\ &= \left[1 + \int_{\mathbb{S}^{d-1}} (\exp\{tC(r(n))K(\frac{1-x'y}{r^2(n)})\} + \exp\{-tC(r(n))K(\frac{1-x'y}{r^2(n)})\} - 2)f(y)\Theta(\mathrm{d}y) + \\ &r^{d-1}(n)\alpha\right]^n, \end{split}$$

where

$$\begin{split} \alpha = & \Big[\int_{\mathbb{S}^{d-1}} \exp\{tC(r(n))(K(\frac{1-x'y}{r^2(n)}) - K(\frac{1+x'y}{r^2(n)}))\}f(y)\Theta(\mathrm{d}y) - \\ & 1 - \int_{\mathbb{S}^{d-1}} (\exp\{tC(r(n))K(\frac{1-x'y}{r^2(n)})\} - 1)f(y)\Theta(\mathrm{d}y) - \\ & \int_{\mathbb{S}^{d-1}} (\exp\{-tC(r(n))K(\frac{1+x'y}{r^2(n)})\} - 1)f(y)\Theta(\mathrm{d}y)\Big] \Big/ r^{d-1}(n). \end{split}$$

By the assumptions of the theorem, for any $\varepsilon > 0$, for n large sufficiently, $|\alpha| \le M\varepsilon(2\exp\{tCK_0\}+4)$, where $M = ||f||, K_0 = \sup_z K(z)$, C is some constant. Hence $\alpha = o(1)$ as $n \to \infty$, it is uniform with respect to x and t. Therefore, we have

$$\Psi_x(t) := \lim_{n \to \infty} \frac{1}{nr^{d-1}(n)} \log \Psi_x^{(n)}(t) = f(x)(\psi(t) + \psi(-t)). \quad \Box$$

As $\Psi_x(t)$ is differentiable with respect to $t \in \mathbb{R}$, therefore, by Gärtner-Ellis theorem, we obtain the following pointwise large deviation.

Proposition 2.3 Suppose $\{r(n), n \ge 1\}$ satisfies (1.2). Let (A1) and (A2) hold. Then $\forall x \in \mathbb{S}^{d-1}$, for every closed set $F \subset \mathbb{R}$,

$$\limsup_{n \to \infty} \frac{1}{nr^{d-1}(n)} \log P\{(f_n(x) - f_n(-x)) \in F\} \le -\inf_{\lambda \in F} J_x(\lambda),$$
(2.6)

and for every open set $G \subset \mathbb{R}$,

$$\limsup_{n \to \infty} \frac{1}{nr^{d-1}(n)} \log P\{(f_n(x) - f_n(-x)) \in G\} \ge -\inf_{\lambda \in G} J_x(\lambda),$$
(2.7)

where

$$J_x(\lambda) = \sup_{t \in \mathbb{R}} \{ t\lambda - f(x)(\psi(t) + \psi(-t)) \}.$$

Suppose that (S, φ) is a measurable space and \mathscr{F} is a uniformly bounded collection of measurable functions on it. We call \mathscr{F} a bounded measurable VC (Vapnik-Červonenkis) class of functions if \mathscr{F} is separable and if $\exists A > 0, v > 0$ such that, for any probability μ on (S, φ) and

Large deviations for a test of symmetry based on Kernel density estimator of directional data

any $0 < \tau < 1$,

$$N(\mathscr{F}, \|\cdot\|_{L_2(\mu)}, \tau\|F\|_{L_2(\mu)}) \le (\frac{A}{\tau})^v,$$

643

where $F = \sup\{|g|, g \in \mathscr{F}\}\)$ and we denote the τ -covering number of the metric space $(\mathscr{F}, \|\cdot\|_{L_2(\mu)})\)$ by $N(\mathscr{F}, \|\cdot\|_{L_2(\mu)}, \tau)$, which is the smallest number of balls of radius not larger than τ and centers in \mathscr{F} needed to cover \mathscr{F} . We call (A, v) the characteristic of the class \mathscr{F} . Let K be a bounded variation function. Then by [16, Lemma 22],

$$\mathscr{F} = \{y \mapsto K(\frac{1-x'y}{r^2}) - K(\frac{1+x'y}{r^2}); x \in \mathbb{S}^{d-1}, r \in \mathbb{R}_+\}$$

is a bounded measurable VC class of functions.

The following deviation inequality of the VC class plays a crucial role in the proof of Theorem 1.1. As in [4], we give and establish a comparison lemma between the pointwise large deviations and the uniform large deviations by the deviation inequality.

Theorem 2.4 ([13]) Suppose \mathscr{F} is a uniformly bounded measurable VC class of functions, and σ^2 and U are any numbers satisfying $\sigma^2 \geq \sup_{g \in \mathscr{F}} E((g(X_1) - Eg(X_1))^2), U \geq \sup_{g \in \mathscr{F}} ||g||$ and $0 < \sigma \leq U/2$. Then $\exists C, L$ depending only on the characteristic (A, v) of the class \mathscr{F} , such that the inequality

$$P\left(\left\|\sum_{i=1}^{n} (g(X_i) - Eg(X_i))\right\|_{\mathscr{F}} > t\right)$$

$$\leq L \exp\left\{-\frac{t}{LU} \log\left(1 + \frac{tU}{L(\sqrt{n\sigma} + U\sqrt{\log\frac{U}{\sigma}})^2}\right)\right\}$$

is valid for all

$$t \ge C(U\log\frac{U}{\sigma} + \sqrt{n\sigma}\sqrt{\log\frac{U}{\sigma}}),$$

where for any map Φ from \mathscr{F} to \mathbb{R} , denote $\|\Phi\|_{\mathscr{F}} = \sup\{|\Phi(g)|; g \in \mathscr{F}\}.$

We below cite Lemmas 2.3 and 2.5 in [4].

Lemma 2.5 Write

$$S_{\gamma}(x) = \{ y \in \mathbb{S}^{d-1}; |x - y| \le \gamma \}, \ x \in \mathbb{S}^{d-1}, \ \gamma > 0$$

Then for any $n \ge 1$, $\exists l_n \le B(\delta)r^{2(1-d)}(n)$, $x_1, \ldots, x_{l_n} \in \mathbb{S}^{d-1}$, such that

$$\mathbb{S}^{d-1} = \bigcup_{i=1}^{l_n} S_{\delta r^2(n)}(x_i),$$

where $B(\delta)$ is a constant independent of n.

Lemma 2.6 Suppose (A2) holds. Then

$$\lim_{\delta \to 0} \int_0^\infty \sup_{|x| < \delta} |K(z) - K(z+x)|^2 z^{\frac{d-3}{2}} \mathrm{d}z = 0.$$

Lemma 2.7 Suppose that $\{r(n), n \ge 1\}$ satisfies (1.8) and (A1) and (A2) hold, for all $0 < \delta < 1$, let $B_{n,k}$, $k = 1, \ldots, l_n$, be l_n balls with $|x - y| \le \delta r^2(n)$, $x, y \in B_{n,k}$, such that $\{B_{n,k}, k = 0\}$

 $1, \ldots, l_n$ is a covering of \mathbb{S}^{d-1} and $l_n \leq B(\delta)r^{2(1-d)}(n)$. Take $z_{n,k} \in B_{n,k}$, $k = 1, \ldots, l_n$, $n \geq 1$. Then $\forall \varepsilon > 0$,

$$\lim_{\delta \to 0} \limsup_{n \to \infty} \frac{1}{nr^{d-1}(n)} \log P\{ \sup_{1 \le k \le l_n} \sup_{x \in B_{n,k}} |f_{n,k}(x) - f_{n,k}(-x)| \ge \varepsilon \} = -\infty,$$
(2.8)

where $f_{n,k}(x) = f_n(x) - f_n(z_{n,k}), \ f_{n,k}(-x) = f_n(-x) - f_n(-z_{n,k}).$

Proof Since $\mathscr{F} = \{y \mapsto K(\frac{1-x'y}{r^2}); x \in \mathbb{S}^{d-1}, r \in \mathbb{R}_+\}$ is a bounded measurable VC class of functions,

$$\mathscr{F}_{n,k} = \{ K(\frac{1-x'}{r^2}) - K(\frac{1-z'_{n,k}}{r^2}) - (K(\frac{1+x'}{r^2}) - K(\frac{1+z'_{n,k}}{r^2})); \\ x \in \mathbb{S}^{d-1}, r \in \mathbb{R}_+ \}, \quad k = 1, \dots, l_n; \ n \ge 1$$

are measurable VC classes of functions. Moreover, there is a common VC characteristic (A, v) that does not depend on k and n. Because for any $x \in B_{n,k}$,

$$\begin{split} &\int_{\mathbb{S}^{d-1}} (K(\frac{1-x'y}{r^2(n)}) - K(\frac{1-z'_{n,k}y}{r^2(n)}) - K(\frac{1+x'y}{r^2(n)}) + K(\frac{1+z'_{n,k}y}{r^2(n)}))^2 f(y) \Theta(\mathrm{d}y) \\ &\leq 2 \|f\| \int_{\mathbb{S}^{d-1}} (K(\frac{1-x'y}{r^2(n)}) - K(\frac{1-x'y}{r^2(n)} - \frac{(z_{n,k}-x)'y}{r^2(n)}))^2 + \\ & (K(\frac{1+x'y}{r^2(n)}) - K(\frac{1+x'y}{r^2(n)} + \frac{(z_{n,k}-x)'y}{r^2(n)}))^2 \mathrm{d}y \\ &\leq 2 \|f\| \frac{2\pi^{(d-1)/2}}{\Gamma((d-1)/2)} r^{d-1}(n) \int_0^\infty \sup_{|y|<\delta} 2 |K(z) - K(z+y)|^2 z^{\frac{d-3}{2}} \mathrm{d}z, \end{split}$$

by Lemma 2.6, for any $\eta \in (0, \varepsilon)$, there exists $\delta_0 > 0$ satisfying for any $\delta \leq \delta_0$ and any $x \in B_{n,k}$,

$$\int_{\mathbb{S}^{d-1}} \left(K(\frac{1-x'y}{r^2(n)}) - K(\frac{1-z'_{n,k}y}{r^2(n)}) - K(\frac{1+x'y}{r^2(n)}) + K(\frac{1+z'_{n,k}y}{r^2(n)}) \right)^2 f(y)\Theta(\mathrm{d}y)$$

$$\leq 4 \|f\|\eta r^{d-1}(n).$$

Take U = 4 ||K|| and $\sigma^2 = 4 ||f|| \eta r^{d-1}(n)$. By (A1) and (1.5), we see that $E(f_{n,k}(x) - f_{n,k}(-x)) = 0$. Then by Lemma 2.5, we deduce that for any *n* large sufficiently,

$$P\{\sup_{1 \le k \le l_n} \sup_{x \in B_{n,k}} |f_{n,k}(x) - f_{n,k}(-x)| \ge \varepsilon\}$$

$$\le Ll_n \exp\{-\frac{nr^{d-1}(n)C(r(n))^{-1}\varepsilon}{4L\|K\|}\log(1 + \frac{C(r(n))^{-1}\|K\|\varepsilon}{4L\|f\|\eta})\}.$$

Hence, by (1.8)

$$\limsup_{n \to \infty} \frac{1}{nr^{d-1}(n)} \log P\{ \sup_{1 \le k \le l_n} \sup_{x \in B_{n,k}} |f_{n,k}(x) - f_{n,k}(-x)| \ge \varepsilon \}$$
$$\leq -\frac{nr^{d-1}(n)M(K)\varepsilon}{4L\|K\|} \log(1 + \frac{M(K)\|K\|\varepsilon}{4L\|f\|\eta}),$$

which concludes (2.8) by letting $\eta \to 0$. \Box

Large deviations for a test of symmetry based on Kernel density estimator of directional data 645

Lemma 2.8 Suppose (A1) and (A2) hold. Then $\forall \lambda \in \mathbb{R}$,

$$\sup_{t\in\mathbb{R}}\inf_{x\in\mathbb{S}^{d-1}}\{t\lambda-\Psi_x(t)\} = \inf_{x\in\mathbb{S}^{d-1}}\sup_{t\in\mathbb{R}}\{t\lambda-\Psi_x(t)\}.$$
(2.9)

Proof Denote M = ||f|| and write

$$g(t, y) = t\lambda - y(\psi(t) + \psi(-t)).$$

Then, for t fixed, g(t, y) is convex as a function of y, and for y fixed, g(t, y) is concave as a function of t. By the minimax theorem [17] we see that

$$\inf_{y \in [0,M]} \sup_{t \in \mathbb{R}} g(t,y) = \sup_{t \in \mathbb{R}} \inf_{y \in [0,M]} g(t,y),$$

which concludes (2.9). \Box

Lemma 2.9 Suppose (A1) and (A2) hold. Write

$$h(t) = \frac{(2\pi)^{(d-1)/2}}{\Gamma((d-1)/2)} \int_0^\infty \frac{K(v)}{M(K)} \left(\exp\{\frac{tK(v)}{M(K)}\} - \exp\{\frac{-tK(v)}{M(K)}\}\right) v^{\frac{d-3}{2}} \mathrm{d}v$$

Then $\forall \lambda \in \mathbb{R}$,

$$\begin{split} \tilde{J}(\lambda) &:= \inf_{x \in \mathbb{S}^{d-1}} \sup_{t \in \mathbb{R}} \{ t\lambda - f(x)(\psi(t) + \psi(-t)) \} \\ &= \lambda h^{-1}(\lambda/M) - M \frac{(2\pi)^{(d-1)/2}}{\Gamma((d-1)/2)} \int_0^\infty (\exp\{\frac{h^{-1}(\lambda/M)K(v)}{M(K)}\} + \\ &\exp\{\frac{-h^{-1}(\lambda/M)K(v)}{M(K)}\} - 2)v^{\frac{d-3}{2}} \mathrm{d}v, \end{split}$$

where M = ||f|| and h^{-1} denotes the inverse of h. Particularly, J is continuous on $[0, \infty)$.

Proof Obiviouly, h is strictly increasing on $(-\infty, \infty)$ and $\lim_{t\to\infty} h(t) = -\infty$, $\lim_{t\to\infty} h(t) = \infty$, therefore h^{-1} exists, and it is strictly increasing and continuous on $(-\infty, \infty)$. Write

$$\begin{aligned} G(t,y) =& t\lambda - y \frac{(2\pi)^{(d-1)/2}}{\Gamma((d-1)/2)} \int_0^\infty (\exp\{\frac{tK(v)}{M(K)}\} + \exp\{\frac{-tK(v)}{M(K)}\} - 2) v^{\frac{d-3}{2}} \mathrm{d}v, \\ & t \in \mathbb{R}, \ y \in [0, M]. \end{aligned}$$

Then $\frac{\partial G(t,y)}{\partial t} = \lambda - yh(t)$, and so

$$\sup_{t \in \mathbb{R}} G(t, y) = \begin{cases} G(h^{-1}(\lambda/y), y), & \text{if } y \neq 0, \\ +\infty, & \text{if } y = 0. \end{cases}$$

Because

$$G(h^{-1}(\lambda/y), y) = \sup_{t \in \mathbb{R}} G(t, y)$$

=
$$\sup_{t \in \mathbb{R}} \left\{ t\lambda - y \frac{(2\pi)^{(d-1)/2}}{\Gamma((d-1)/2)} \int_0^\infty (\exp\{\frac{tK(v)}{M(K)}\} + \exp\{\frac{-tK(v)}{M(K)}\} - 2)v^{\frac{d-3}{2}} dv \right\}$$

is decreasing with respect to $y \in [0, M]$, we obtain

$$J(\lambda) = \inf_{y \in [0,M]} \sup_{t \in \mathbb{R}} G(t,y) = G(h^{-1}(\lambda/M), M).$$

Particularly, J is continuous on $[0,\infty)$. \Box

Proof of Theorem 1.1 For any $x \in \mathbb{S}^{d-1}$, by Proposition 2.3, we deduce that

$$\begin{split} \liminf_{n \to \infty} \frac{1}{n r^{d-1}(n)} \log P\{ \|f_n(\cdot) - f_n(-\cdot)\| > \lambda \} \\ \geq \liminf_{n \to \infty} \frac{1}{n r^{d-1}(n)} \log P\{ |f_n(x) - f_n(-x)| > \lambda \} \\ \geq -\inf\{J_x(\lambda), J_x(-\lambda)\}. \end{split}$$

Hence

$$\liminf_{n \to \infty} \frac{1}{nr^{d-1}(n)} \log P\{\|f_n(\cdot) - f_n(-\cdot)\| > \lambda\} \ge -J(\lambda).$$

To obtain the reverse inequality, we note

$$||f_n(\cdot) - f_n(-\cdot)|| = \sup_{x \in \mathbb{S}^{d-1}} |f_n(x) - f_n(-x)|,$$

and

$$\sup_{x \in \mathbb{S}^{d-1}} |f_n(x) - f_n(-x)| \le \max_{1 \le k \le l_n} \{ \sup_{x \in B_{n,k}} |f_{n,k}(x) - f_{n,k}(-x)| + |f_n(z_{n,k}) - f_n(-z_{n,k})| \}.$$

By Lemma 2.7, we deduce that for any $0<\varepsilon<\lambda/2,$

$$\begin{split} &\limsup_{n \to \infty} \frac{1}{nr^{d-1}(n)} \log P\{ \|f_n(\cdot) - f_n(-\cdot)\| > \lambda \} \\ &= \limsup_{n \to \infty} \frac{1}{nr^{d-1}(n)} \log P\{ \sup_{x \in \mathbb{S}^{d-1}} |f_n(x) - f_n(-x)| > \lambda \} \\ &\leq \lim_{\delta \to 0} \limsup_{n \to \infty} \frac{1}{nr^{d-1}(n)} \log (P(\max_{1 \leq k \leq l_n} \sup_{x \in B_{n,k}} |f_{n,k}(x) - f_{n,k}(-x)| \ge \varepsilon) + \\ &P(\max_{1 \leq k \leq l_n} |f_n(z_{n,k}) - f_n(-z_{n,k})| \ge \lambda - \varepsilon)) \\ &= \lim_{\delta \to 0} \limsup_{n \to \infty} \frac{1}{nr^{d-1}(n)} \log P(\max_{1 \leq k \leq l_n} |f_n(z_{n,k}) - f_n(-z_{n,k})| \ge \lambda - \varepsilon). \end{split}$$

On the other hand, by Chebyshev inequality, for any $s \ge 0, t \ge 0$,

$$P(\max_{1 \le k \le l_n} |f_n(z_{n,k}) - f_n(-z_{n,k})| \ge \lambda - \varepsilon)$$

$$\leq l_n \max_{1 \le k \le l_n} \{\exp\{-nr^{d-1}(n)(\lambda - \varepsilon)t\} \Psi_{z_{n,k}}^n(t), \exp\{-nr^{d-1}(n)(\lambda - \varepsilon)s\} \Psi_{z_{n,k}}^n(-s)\}.$$

Therefore,

$$\begin{split} \limsup_{n \to \infty} \frac{1}{nr^{d-1}(n)} \log P\{ \|f_n(\cdot) - f_n(-\cdot)\| > \lambda \} \\ &\leq -\inf\{ \sup_{t \ge 0} \{ (\lambda - \varepsilon)t - \sup_{x \in \mathbb{S}^{d-1}} \Psi_x(t) \}, \sup_{s \ge 0} \{ (\lambda - \varepsilon)s - \sup_{x \in \mathbb{S}^{d-1}} \Psi_x(-s) \} \}. \end{split}$$

Then, by Lemma 2.8,

$$\limsup_{n \to \infty} \frac{1}{nr^{d-1}(n)} \log P\{\|f_n(\cdot) - f_n(-\cdot)\| > \lambda\} \le -J(\lambda - \varepsilon).$$

Finally, by Lemma 2.9, the rate function J is continuous, therefore

$$\limsup_{n \to \infty} \frac{1}{nr^{d-1}(n)} \log P\{\|f_n(\cdot) - f_n(-\cdot)\| > \lambda\} \le -J(\lambda). \quad \Box$$

Acknowledgements We thank the referees for carefully reading the original manuscript and giving valuable comments.

References

- [1] K. V. MARDIA. Statistics of Directional Data. Academic Press, New York, 1972.
- [2] Zhidong BAI, C. R. RAO, Lincheng ZHAO. Kernel estimators of density function of directional data. J. Multivariate Anal., 1988, 27(1): 24–39.
- [3] Kaitai FANG, Yaoting ZHANG. Generalized Multivariate Analysis. Springer-Verlag, Berlin; Science Press Beijing, Beijing, 1990.
- [4] Fuqing GAO, Li-na LI. Large deviations and moderate deviations for kernel density estimators of directional data. Acta Math. Sin. (Engl. Ser.), 2010, 26(5): 937–950.
- [5] Lincheng ZHAO, Chengqing WU. Central limit theorem for integrated square error of kernel estimators of spherical density. Sci. China Ser. A, 2001, 44(4): 474–483.
- [6] Li-na LI, Fuqing GAO. Rates of strong uniform consistency for kernel density estimators of directional data. Acta Math. Sci. Ser. A (Chin. Ed.), 2009, 29(3): 707–715.
- [7] Xiaoxia HE, Fuqing GAO. Moderate deviations and large deviations for a test of symmetry based on kernel density estimator. Acta Math. Sci. Ser. B (Engl. Ed.), 2008, 28(3): 665–674.
- [8] Mingzhou XU, Yongzheng ZHOU. Moderate deviations and large deviations for a test of symmetry based on kernel density estimator in R^d. Math. Pract. Theory, 2015, 45(23): 209–215. (in Chinese)
- [9] Mingzhou XU, Yongzheng ZHOU. Large deviations for a test of symmetry based on kernel density estimator in R^d. Chinese J. Appl. Probab. Statist., 2015, 31(3): 238-246.
- [10] Li-na LI. Moderate deviations results for a symmetry testing statistic based on the kernel density estimator for directional data. Comm. Statist. Theory Methods, 2014, 43(14): 3007–3018.
- [11] U. EINMAHL, D. M. MASON. An empirical process approach to the uniform consistency of kernel-type function estimators. J. Theoret. Probab., 2000, 13(1): 1–37.
- [12] Fuqing GAO. Moderate deviations and large deviations for kernel density estimators. J. Theoret. Probab., 2003, 16(2): 401–418.
- [13] E. GINÉ, A. GUILLOU. On consistency of kernel density estimators for randomly censors data: rates holding uniformly over adaptive intervals. Ann. Inst. Henri Poincaré et Statistiques, 2001, 37(4): 503–522.
- [14] Mingzhou XU, Yunzheng DING, Yongzheng ZHOU. Moderate deviations in $L_1(\mathbb{R}^d)$ for a test of symmetry based on kernel density estimator. Chinese J. Appl. Probab. Statist., 2019, **35**(2): 141–152.
- [15] Fuqing GAO. Moderate deviations and law of the iterated logarithm in $L_1(\mathbb{R}^d)$ for kernel density estimators. Stochastic Process. Appl., 2008, **118**(3): 452–473.
- [16] D. NOLAN, D. POLLAD. U-process rates of convergence. Ann. Statist., 1987, 15(2): 780–799.
- [17] M. SION. On general minimax theorem. Pacific J. Math., 2003, 8(1): 171-176.
- [18] A. DEMBO, O. ZEITOUNI. Large Deviations Techniques and Applications. Second edition, Springer-Verlag, New York, 1998.
- [19] D. W. STROOK, J. D. DEUSCHEL. Large Deviations. American Mathematical Society, Rhode Island, 2001.