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Abstract Pythagorean-hodograph (PH) curve is widely used in curve modeling because of

its advantages in arc length and equidistant curve calculation. This paper discusses the G2

continuous blending of cubic PH curves under total arc length constraint. Given three points

including two end control points and a joint point, construct two cubic PH curves such that they

interpolate the end control points and are G2 continuous at joint point with prescribed total

arc length. It can also be regarded as a curve extension problem. According to the arc length

formula of cubic PH curve and the condition of G2 blending, the problem is transformed into a

constrained minimization problem. Several examples are served to illustrate our method.

Keywords Pythagorean-hodograph curve; G2 blending; prescribed arc length; nonlinear equa-

tions
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1. Introduction

Pthagorean-hodograph (PH) curves, introduced by Farouki and Sakkalis in 1990 (see [1]),

have been extensively studied in the past few decades. Because of their unique properties, such

as exact representation of polynomial arc length and rational offset, they are widely used in

geometric modeling and CNC machining [2]. We refer the reader to the book [3] for theories and

techniques about PH curves as well as their applications in CAGD, or a recent survey paper [4].

A lot of work have been given in the literature to deal with the problem of interpolating

the boundary data, such as curve blending, curve interpolation and curve extension. Geometric

continuity is often required in these operations. According to the advantages of PH curve, a PH

curve may also have a prescribed arc length besides interpolating the boundary data. Farouki [5]

proposed a problem of interpolating planar G1 Hermite data under arc length constraint and

developed a closed-form solution using quintic PH curves. A generalization of the results from

planar to spatial quintic PH curves was studied in [6]. Huard et al. [7] defined a spatial C2 PH

quintic spline interpolating a sequence of nodal points with specified internodal arc length, by

solving a system of nonlinear equations. Krajnc [8] studied the problem of interpolating spatial

G1 data using rational PH curves with prescribed arc length and provided a closed-form solution.
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In parametric curve design, a complicated curve sometimes can not have a unified expression,

so the curve usually is expressed by dividing into several poly-segment curves. A practical

and straightforward method is extending or blending based on geometric continuity and energy

constraints. Using single or multi-connected PH curves to approximate general smooth curves or

fit discrete data or interpolate Hermite data is an efficient way, which has been used in various

applications [9–11]. This paper also makes use of the property that the arc length of PH curve

can be expressed in an accurate polynomial formula, and focuses on the study of a pair of G2

blending cubic PH curves with prescribed total arc length. The G2 continuity of parametric

curve segments adopted here means that the position, tangent and curvature of the two adjacent

segments are continuous at the junction [12]. Specifically, given two distinct points and another

point as joint point, two interpolating cubic PH curves with G2 continuity at the joint point and

prescribed total length are constructed. The free parameters of the PH curves are then obtained

by solving a constrained minimization problem developed from the interpolation conditions of

end points and the constraint of a specified total arc length.

There are other two kinds of applications of our work. The first application deals with

the reconstruction of physical surfaces by means of a ribbon device (the Morphosense ribbon)

equipped with micro-sensors [13], just like the work in [7, 14]; The second application is that

our work can be regarded as a special case of curve extension which is an important operation

in computer aided design system. Given an original curve P (t) and several target points {Ri},
curve extension methods aim to find a resulting curve R(t), which contains all the curve points

of P (t) and also passes through every target point Ri. Our work can be considered as a special

case of curve extension problem in that only the two end points of the original curve P (t) are

known.

The remainder of this paper is organized as follows. Some preliminaries and commonly used

properties of PH curves are introduced in Section 2. Section 3 describes the problem and the

technique of G2 blending by two planar cubic PH curves with prescribed total arc length. Section

4 illustrates our method by proposing several examples. Finally, we conclude in Section 5 with

a brief summary and discussion.

2. Planar Pythagorean-hodograph curves

The definition of PH curve and its related theorems and corollaries are as follows.

Theorem 2.1 ([1]) A Pythagorean-hodograph curve P (t) = (x(t), y(t)), t ∈ [0, 1] has derivative

components x′(t), y′(t) satisfying the condition

x′2(t) + y′2(t) = σ2(t)

for some polynomial σ(t).

σ(t) specifies the parametric speed of P (t), i.e., the derivative of the arc length s with respect
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to the curve parameter t, then the cumulative arc length function is

s(t) =

∫ t

0

σ(ξ)dξ.

This feature makes PH curves have a lot of attractive computational properties: their arc lengths

are exactly computable as polynomials; their normals and curvatures, offset curves and unit

tangents are accurate rational polynomials; they are very suitable for real-time precision motion

control applications [5].

A planar Bézier curve r(t), t ∈ [0, 1] with control points {Pi}ni=0 can be expressed as

r(t) =
n∑

i=0

PiB
n
i (t)

where Bn
i (t) is Bernstein basis function, and its hodograph curve is

r′(t) = n
n−1∑
i=0

△PiB
n−1
i (t), △Pi = Pi+1 − Pi.

Theorem 2.2 ([1]) The cubic Bézier curve r(t) =
3∑

i=0

PiB
3
i (t) is a PH curve if and only if its

control points {Pi}3i=0 satisfy the following relations:
P1 = P0 +

1
3 (u

2
0 − v20 , 2u0v0),

P2 = P1 +
1
3 (u0u1 − v0v1, u0v1 + u1v0),

P3 = P2 +
1
3 (u

2
1 − v21 , 2u1v1),

where u0, v0, u1 and v1 are real numbers, P0 is a free initial control point.

Corollary 2.3 The arc length of cubic PH curve r(t) =
∑3

i=0 PiB
3
i (t) with control points in

Theorem 2.1 can be expressed as:

S = s(1) =
1

3
(u2

0 + v20 + u0u1 + v0v1 + u2
1 + v21).

Theorem 2.4 ([12]) Suppose that the control points of two cubic PH curves L(t) and R(t)

are P0, P1, P2, P3 and Q0, Q1, Q2, Q3 respectively, then these two curves are G2 continuous at

common point P3 (Q0) if the control points satisfy the following relations:
Q0 = P3,

Q1 = P3 + α(P3 − P2),

Q2 = P3 + α(P3 − P2)− α2(P2 − P1) + γ(P3 − P2),

where α > 0, γ are real numbers.

3. G2 blending with prescribed total arc length

In this section, we present the specific problem and show a detailed discussion and analysis.

3.1. Description of the problem
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Given three points

P0 = (x0, y0), P3 = Q0 = (x3, y3), Q3 = (x4, y4),

construct two cubic PH Bézier curves L(t) and R(t) as follows:

L(t) =
3∑

i=0

PiB
3
i (t), R(t) =

3∑
i=0

QiB
3
i (t), t ∈ [0, 1]

where all the inner control points P1, P2, Q1, Q2 are unknown. G2 blending of these two curves

is required at the joint point P3(Q0) of the two curves and the total arc length l = SL + SR is

prescribed. By the profound analyses on existence of PH interpolants with specified end points,

tangent data and a desired total arc length in [5, 6], we can conclude that the above problem is

solvable.

Obviously, according to Theorem 2.2 and Corollary 2.3, we have the following relations about

the control points {Pi}3i=0 and {Qi}3i=0:

P1 = P0 +
1
3 (u

2
0 − v20 , 2u0v0),

P2 = P1 +
1
3 (u0u1 − v0v1, u0v1 + u1v0),

P3 = P2 +
1
3 (u

2
1 − v21 , 2u1v1),

Q1 = Q0 +
1
3 (s

2
0 − t20, 2s0t0),

Q2 = Q1 +
1
3 (s0s1 − t0t1, s0t1 + s1t0),

Q3 = Q2 +
1
3 (s

2
1 − t21, 2s1t1),

(3.1)

where u0, v0, u1, v1, s0, t0, s1, t1 are all real numbers, and the total arc length of the two curves is

S = SL + SR

=
1

3
(u2

0 + v20 + u0u1 + v0v1 + u2
1 + v21 + s20 + t20 + s0s1 + t0t1 + s21 + t21)

= l.

(3.2)

Considering that L(t) and R(t) areG2 blending at common point P3(Q0) and combining Theorem

2.4, we have {
P3 + α(P3 − P2)−Q1 = 0,

P3 + α(P3 − P2)− α2(P2 − P1) + γ(P3 − P2)−Q2 = 0,
(3.3)

where α > 0, γ are real numbers. Therefore, the problem is transformed into solving the inner

control points P1, P2, Q1, Q2 under the constraints (3.1)–(3.3), then we can obtain two G2 blend-

ing curves L(t) and R(t) with prescribed total arc length l.

Remark 3.1 Obviously, there is no solution if l < d, and a trivial straight-line solution if l = d,

where d refers to the distance between P0, P3(Q0) and Q3, i.e., d = |P3 − P0|+ |Q3 −Q0|.

3.2. Analysis of constraints

Substituting P0 = (x0, y0), Q0 = (x3, y3) into Eq. (3.1), we can express the control points

P1, P2, P3, Q1, Q2, Q3 by x0, y0, x3, y3. Then by Eqs. (3.2) and (3.3), we have the following result.

Proposition 3.2 The two cubic PH Bézier curves L(t), R(t) with G2 continuity at joint point
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P3 = Q0 and the specified total arc length l satisfy the following system of equations:

P3 − (x3, y3) = 0,

Q3 − (x4, y4) = 0,

P3 + α(P3 − P2)−Q1 = 0,

P3 + α(P3 − P2)− α2(P2 − P1) + γ(P3 − P2)−Q2 = 0,

u2
0 + v20 + u0u1 + v0v1 + u2

1 + v21 + s20 + t20 + s0s1 + t0t1 + s21 + t21 = 3l,

(3.4)

where α > 0, γ, u0, v0, u1, v1, s0, t0, s1, t1 are all real numbers.

Remark 3.3 Since there are two components in every control point, the system (3.4) actually

defines 9 equations with 10 parameters u0, u1, v0, v1, s0, s1, t0, t1, α, γ, therefore the solution is

not unique.

Expanding the equations in system (3.4), we can get the following specific expressions.

Theorem 3.4 The equations in Proposition 3.2 can be expressed by the following equations:

αu1v1 − s0t0 = 0,

α(u2
1 − v21)− s20 + t20 = 0,

u2
0 + u0u1 + u2

1 − v20 − v0v1 − v21 + 3x0 − 3x3 = 0,

2(u0v0 + u1v1) + u0v1 + u1v0 + 3y0 − 3y3 = 0,

s20 + s0s1 + s21 − t20 − t0t1 − t21 + 3x3 − 3x4 = 0,

2(s0t0 + s1t1) + s0t1 + s1t0 + 3y3 − 3y4 = 0,

(α+ γ)(u2
1 − v21)− α2(u0u1 − v0v1)− s20 + t20 − s0s1 + t0t1 = 0,

2(α+ γ)(u1v1)− α2(u0v1 + u1v0)− 2s0t0 − s0t1 − s1t0 = 0,

u2
0 + v20 + u0u1 + v0v1 + u2

1 + v21 + s20 + t20 + s0s1 + t0t1 + s21 + t21 = 3l,

(3.5)

where α > 0, γ, u0, v0, u1, v1, s0, t0, s1, t1 are all real numbers.

Obviously, the system (3.5) is nonlinear equations. When the size of nonlinear equations

is not too large, Newton methods and Gauss-Newton methods are efficient [15], but they need

to compute the Jacobian matrix. It is well-known that the classical Newton method possesses

quadratic convergence rate. Quasi-Newton methods are also popular since they have locally

superlinear convergence and need not computing the Jacobian [16].

3.3. Analysis by complex representation

In this section, the complex representation will be adopted here to analyze the above problem.

A PH curve r(t) of degree n = 2m+ 1 is generated from a degree m complex polynomial

h(t) = u(t) + iv(t) =

m∑
k=0

wkB
m
k (t)

with Bernstein coefficients wk = uk + ivk, k = 0, 1 by integration of the expression

r′(t) = h2(t).
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The parametric speed σ(t) and the cumulative arc length function s(t) are

σ(t) = |h(t)|2, s(t) =

∫ t

0

σ(ξ)dξ.

A planar PH cubic is obtained by choosing m = 1. Suppose the cubic PH curve L(t) and

R(t) are generated from the following two complex polynomials:

w(t) = u(t) + iv(t) = w0(1− t) +w1t, v(t) = u(t) + iv(t) = v0(1− t) + v1t

respectively. On integrating, the Bézier control points Pk, Qk of the resulting PH cubic

L(t) =
3∑

k=0

PkB
3
k(t), R(t) =

3∑
k=0

QkB
3
k(t)

can be expressed as 

P1 = P0 +
1
3w

2
0,

P2 = P1 +
1
3w0w1,

P3 = P2 +
1
3w

2
1,

Q1 = Q0 +
1
3v

2
0,

Q2 = Q1 +
1
3v0v1,

Q3 = Q2 +
1
3v

2
1.

By this complex expression, the conditions of G2 continuity and the end points interpolation

turn into {
v2
0 = αw2

1,

v0v1 = γw2
1 − α2w0w1,

(3.6)

and {
w2

0 +w0w1 +w2
1 = 3(P3 − P0),

v2
0 + v0v1 + v2

1 = 3(Q3 − P3),
(3.7)

respectively, while their total arc length is

l =
|w0|2 +Re(w0w1) + |w1|2

3
+

|v0|2 +Re(v0v1) + |v1|2

3
. (3.8)

These conditions provide a system of 5 equations defined by (3.6), (3.7) and (3.8) in the 4 complex

variables w0,w1,v0,v1 and 2 real variables α > 0, γ. They can be recast as a system of 9 real

equations in 10 real variables (α > 0, γ, the real and imaginary parts of w0,w1,v0,v1). It should

be noted that these equations are nonlinear, therefore the proof of the existence of solutions and

their behavior with respect to the prescribed arc length are difficult to obtain.

Note the special structure of the first equation in (3.6), we choose a special case as

v0 =
√
αw1

to analyze the solution. Substituting in equations (3.6), (3.7) and (3.8), the conditions change
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into 

v0 =
√
αw1,√

αv1 = γw1 − α2w0,

w2
0 +w0w1 +w2

1 = 3(P3 − P0),

α3w2
0 − (α2 + 2γα)w0w1 + (α+ γ + γ2α−1)w2

1 = 3(Q3 − P3),

(1 + α3)|w0|2 + (1− α2 − 2αγ)Re(w0w1) + (1 + α+ γ + γ2α−1)|w1|2 = 3l.

(3.9)

Transforming the third and fourth equation in (3.9), we can get{
(α3 + α2 + 2γα)w2

0 = 3(α2 + 2γα)(P3 − P0) + 3(Q3 − P3)− (α2 + α+ 2γα+ γ + γ2α−1)w2
1,

(α3 + α2 + 2γα)w0w1 = 3α3(P3 − P0)− 3(Q3 − P3)− (α3 − α− γ − γ2α−1)w2
1,

Divide the two equations, the conditions (3.9) finally turn into

v0 =
√
αw1,√

αv1 = γw1 − α2w0,

w0 =
3(α2+2γα)(P3−P0)+3(Q3−P3)−(α2+α+2γα+γ+γ2α−1)w2

1

3α3(P3−P0)−3(Q3−P3)−(α3−α−γ−γ2α−1)w2
1

w1,

(α3 + α2 + 2γα)w2
0 = 3(α2 + 2γα)(P3 − P0) + 3(Q3 − P3)−

(α2 + α+ 2γα+ γ + γ2α−1)w2
1,

(1 + α3)|w0|2 + (1− α2 − 2αγ)Re(w0w1) + (1 + α+ γ + γ2α−1)|w1|2 = 3l,

(3.10)

Clearly, the variables v0,v1,w0 can be considered as functions of w1, α, γ, therefore we just need

to solve the variables w1, α, γ through the last two equations in (3.10).

Obviously, under the special assumption v0 =
√
αw1 by complex representation, the problem

finally turns into 3 real equations in 4 real variables (α > 0, γ, the real and imaginary part of

w1). It seems that the calculation of the problem is simplified. However, the 3 equations are

still complicated nonlinear equations and explicit solutions are still difficult to obtain.

3.4. Computation

Since our construction involves the solution of a set of nonlinear equations with coefficients

dependent on the specified data, the existence of such interpolants in all instances is non-obvious.

However, using the same ideas and methods in [5, 6], the thorough analyses in these two refer-

ences assure the solvability of our problem. Moreover, because of the nonlinear nature of the

equations, explicit symbolic solution is very difficult to be found. Therefore, we transform the

above nonlinear equations problem into the following equivalent constrained-optimization prob-

lem (3.11). So the G2 blending problem changes into an optimization problem with nonlinear

constraints.

The following presented examples are all performed using the interior-point algorithm of

the ‘fmincon’ constrained-optimization function in MATLAB. The efficiency of the method is

enhanced by exploiting the fact that the constraints have simple and closed-form expressions.
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All of the calculations are carried out on a PC with 8 GHz cpu.

min F = u2
0 + v20 + u0u1 + v0v1 + u2

1 + v21 + s20 + t20 + s0s1 + t0t1 + s21 + t21

s.t.



α > 0,

αu1v1 − s0t0 = 0,

α(u2
1 − v21)− s20 + t20 = 0,

u2
0 + u0u1 + u2

1 − v20 − v0v1 − v21 + 3x0 − 3x3 = 0,

2(u0v0 + u1v1) + u0v1 + u1v0 + 3y0 − 3y3 = 0,

s20 + s0s1 + s21 − t20 − t0t1 − t21 + 3x3 − 3x4 = 0,

2(s0t0 + s1t1) + s0t1 + s1t0 + 3y3 − 3y4 = 0,

(α+ γ)(u2
1 − v21)− α2(u0u1 − v0v1)− s20 + t20 − s0s1 + t0t1 = 0,

2(α+ γ)(u1v1)− α2(u0v1 + u1v0)− 2s0t0 − s0t1 − s1t0 = 0,

u2
0 + v20 + u0u1 + v0v1 + u2

1 + v21 + s20 + t20 + s0s1 + t0t1 + s21 + t21 ≥ 3l.

(3.11)

4. Examples

In this section, we list some examples to illustrate our method in operation.

Example 4.1 Suppose that the given points and total arc length are

P0 = (−2,−3), P3 = Q0 = (0, 10), Q3 = (3, 4), l = 30.8612

respectively. Since the solution is not unique, the ‘good’ solution can be identified as the one

with the least value for the absolute rotation index defined by

R =

∫ 1

0

|κ(ξ)|σ(ξ)dξ,

which has closed-form evaluation, as described in [17]. In this case, the original problem changes

into a minimization problem with constraint conditions (3.5). For this example, the ‘good’

solution is

Λ11 =[u0, u1, v0, v1, s0, s1, t0, t1, α, γ]

=[−2.1618, −3.4467, −3.3259, −1.4529, −4.6167, −1.4067, −1.9461,

5.2094, 1.7941, 2.5655],

and the resulting control points are

P0 =(−2.0000,−3.00000), P1 = (−4.1294, 1.7933),

P2 =(−3.2565, 6.6614), P3 = (−1.7771e− 04, 9.9998),

Q1 =(5.8420, 15.9896), Q2 = (11.3861, 8.8853),

Q3 =(2.9998, 4.0000),

with the interpolant shown in Figure 1(a), while the solution corresponding to the values

Λ12 =[u0, u1, v0, v1, s0, s1, t0, t1, α, γ]
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=[1.6867, 5.0856, 6.0308, −1.0132, 3.5352, 0.9029, −0.7044,

− 2.3186, 0.4832, 0.2009]

and the resulting control points

P0 =(−3.0000,−4.00000), P1 = (−13.1752, 3.7814),

P2 =(−8.2791, 13.4352), P3 = (−1.8352e− 04, 10.0000),

Q1 =(4.0003, 8.3399), Q2 = (4.5199, 5.3957),

Q3 =(2.9996, 4.0000).

is still a correct formal solution for the same data, shown in Figure 1 (b). It can be easily checked

that these two solutions are just the special case discussed in Section 3.3 as in (3.10).

-6 -4 -2 0 2 4 6 8 10 12
-4

-2

0

2

4

6

8

10

12

14

16

-14 -12 -10 -8 -6 -4 -2 0 2 4 6
-4

-2

0

2

4

6

8

10

12

14

(a) (b)

Figure 1 Two solutions for Example 4.1

For fixed points P0, P3(Q0), Q3, the next example illustrates the behavior of interpolants with

increasing arc length l.

-6 -4 -2 0 2 4 6 8 10 12
-1

0

1

2

3

4

5

6

7

8

Figure 2 Interpolants for Example 4.2 with increasing arc lengths l = 20.1803, 24.1803

and 28.1803, respectively
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Example 4.2 For the control points

P0 = (1, 2), P3 = Q0 = (3, 6), Q3 = (9, 3),

Figure 2 illustrates the solutions for the sequence of increasing total arc lengths l as 20.1803,

24.1803 and 28.1803, respectively.

Example 4.3 Note that the given three control points in both of the above two examples all

form convex broken lines, in this example we consider given control points

P0 = (0, 0), P3 = Q0 = (5,−8), Q3 = (9, 2),

distributed as a concave broken line. Figure 3 (a) shows two interpolating cubic PH curves with

prescribed total arc length l31 = 20.9604, l32 = 22.2043, respectively, while Figure 3 (b) presents

two solutions to the interpolation problem with prescribed arc length l33 = 31.2043.

0 1 2 3 4 5 6 7 8 9 10
-10

-8

-6

-4

-2

0

2

-5 0 5 10 15
-10

-8

-6

-4

-2

0

2

(a) (b)

Figure 3 The solution obtained by different arc length of Example 4.3

Remark 4.4 Quintic or even the higher degree planar PH Bézier curve can also be used to

solve the above interpolation problem, while by quintic PH Bézier curve we can obtain two G3

blending curves with prescribed total arc length.

5. Conclusions

In free-form curve design, interpolation of boundary data with a prescribed arc length may be

desired to satisfy certain geometrical or physical constraints. Taking advantage of the distinctive

properties of PH curves, the problem of constructing two cubic planar PH curves with given

end points P0, Q3 and G2 continuous blending at joint point P3(Q0) with specified total arc

length l is discussed herein. Exploiting the PH curve representation in control points and the

G2 blending condition, the problem finally turns into an optimization problem with nonlinear

constraints. Moreover, very simple and efficient solutions can be easily obtained. Furthermore,

by construction, the computed interpolants are found to be convex or concave curve when the

given control points are distributed as convex or concave broken line.
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By appealing to the excellent characteristics of PH curves, this study is only a basic inves-

tigation into the possibility of geometric blending. It accommodates an efficient solution that

admits a very straightforward implementation. There are several interesting directions in which

the present results may possibly be extended, including:

• interpolation of higher-order local data, such as end curvatures;

• the interpolation from planar data to spatial data;

• the imposition of global shape measures, such as the bending energy;

• geometric blending with prescribed segment arc length.

However, these are analytically and computationally more challenging problems, which are

unlikely to possess simple and exact solutions as obtained in the present context.
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