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Abstract In this work, we prove Clarkson-type and Nash-type inequalities for the Laguerre
transform §7, on M = [0, 00) xR. By combining these inequalities, we show Laeng-Morpurgo-type
uncertainty inequalities. We establish also a local-type uncertainty inequalities for the Laguerre
transform §r, and we deduce a Heisenberg-Pauli-Weyl-type inequality for this transform.

Keywords Laeng-Morpurgo-type inequality; local-type inequality; Heisenberg-Pauli-Weyl-type

inequality

MR (2020) Subject Classification 42B10; 44A20; 46G12

1. Introduction

Uncertainty principles are mathematical arguments that give limitations on the simultaneous
concentration of a function and its Fourier transform. They have implications in quantum physics
and signal analysis. They also play an important role in harmonic analysis, many of them have
already been studied from several points of view for the Fourier transform, Heisenberg-Pauli-
Weyl inequality [1] and local uncertainty [2-4]. Laeng-Morpurgo [5] and Morpurgo [6] obtained
Heisenberg inequality involving a combination of L' and L? norms. Folland and Sitaram [7]
proved general forms of the Heisenberg-Pauli-Weyl inequality.

In this paper, we consider the Laguerre transform g, (see [8,9]) defined on L*(M,my) by

3o(f)n) = / o, 0@, O)dmy (e, 1), (An) €V,

M
where M := [0,00) x R, V1= R x N, dmy,(z,t) := %dxdt and
_ L (A)2?) 2

an(@:t) = exp(iMt — [\ ), (@) € M.

LP(0)

Here lek) is the Laguerre polynomial of degree n and order k.
In this work, we establish Clarkson-type inequality and Nash-type inequality for the Laguerre
transform §r on L' N L?(M,my). Next, building on the techniques of Laeng-Morpurgo [5, 6],

we deduce uncertainty inequalities of Heisenberg-type for the Laguerre transform §z on L' N
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L?(M,my,). Finally, due to a local uncertainty inequality for the Laguerre transform §; on
L?(M, my,), we show uncertainty inequality of Heisenberg-Pauli-Weyl-type for the transform .
on L?(M, my).

The analog uncertainty inequalities are also proved, for the Dunkl transform §; on R? by
Soltani [10-12], and for the Segal-Bargmann transform 9By, by Soltani [13-15].

This paper is organized as follows. In Section 2, we recall some results about the Laguerre
transform §7 on M. In Section 3, we prove uncertainty inequalities of Heisenberg-type for the
Laguerre transform §r on L' N L2(M,my). In Section 4, we show uncertainty inequality of

Heisenberg-Pauli-Weyl-type for the transform §z on L2(M, my).

2. Laguerre transform

We consider the Laguerre operator Ay, defined on (0,00) x R, by

9?2 2k+1 0 9?2
PN kL LA )
L 8x2+ x (‘3x+x ot?’ >0

The Laguerre operator has gained considerable interest in various field of mathematics [9, 16,
17]. Tt gives rise to generalizations of many two-variable analytic structures like the Laguerre
transform §7 and the Laguerre-convolution product [8,9,16], the dispersion and the Gaussian
distributions [8,9], and the Laguerre and Weierstrass transform [18].

Throughout this subsection, let k& > 0, M := [0,00) x R and V := R x N. For (z,t) € M we
denote by |(z,t)] := (z* 4+ 2)/* and for (\,n) € V, we denote by |(A,n)| := |A|(n + £EL). We
denote by LP(M,my), p € [1, 00|, the space of measurable functions f on M, such that

1/p
9 zsame =( [ 1@ 0Pdmizn) " <oc, pe 1,00,
K
£l eamey =ess sup_|f(@.8)] < oo,
(z,t)eM

where my is the measure given by

l’2k+1
dmk (.I, t) = mdxdt

And by LP(V,vg), p € [1,00], the space of measurable functions g on V, such that

1/p
lollzncrany =( [ o mPauum) ™" <o, pe 1),
9]l Loo(v,0,) :=e€Ss sup |g(A,n)| < oo,
(A\n)ev

where vy, is the positive measure defined on V by
[ atmdonnm = 3100 [ gomat
\ "0 R

Here LI is the Laguerre polynomial of degree n and order k. Let r» > 0, the measures my, and

vy, satisfy [19]:

L5

2wk +2)T(k+1I(% +1)

my(|(z,t)| < 1) = p2(k+2), (2.1)
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(2.2)

We denote by

and

2 & LMo
= . 2.4
P (n + Bt )k+2 24

n=0
For all (A,n) € V, the system [9]:
Apu = =2|N(2n +k + 1)u,

Ju Ju
— =4\ 0,0)=1, —(0,t) =0, VteR
315 ZU,U(,) ’817(,) ) 67
admits a unique solution ¢ ,(z,t), given by
k
Li (\l?)

2
x

exp(iAt — A=), (z,t) € ML
LP(0) 2

90)\7”(%, t) =

And for all (A\,n) € V, we have

sup |oxm(z,t)] = 1.
(z,t)eEM

The Laguerre transform §p, (see [8,9]) is defined on L!(M, my) by

30(H)(0n) = / o, 0)f () dmi (1), (An) €V,

M

extends uniquely to an isometric isomorphism on L?(M, my) onto L?(V,vy), that is
12N 22w = Il 2@eme),  f € L2 (M, my,). (2.5)
Moreover, if f € L*(M,my), then

1L ()l Lo (vion) < It ,m)- (2.6)

Finally, if f € L*(M, my,) such that F1(f) € L'(V,v;), the inverse Laguerre transform is defined
by

flz,t) = /VSL(f)()\,n)gp,\’n(:r,t)dvk()\,n), a.e. (x,t) € M.

Throughout this paper we shall use the notation g = k + 2.

3. Heisenberg-type uncertainty principles

Soltani [12] proved a Laeng-Morpurgo-type uncertainty inequalities for the Dunkl transform
Tr on R%. In the following, we will give Laeng-Morpurgo-type uncertainty inequalities for the

Laguerre transform §y on M.
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Lemma 3.1 (Clarkson-type inequality) Let a > 0. If f € L' N L?*(M,my,), there exists a

constant A > 0 such that
a 8

1122 @y < AN 5 1@ D1 AU - (3.1)

Proof Let f € L' N L*(M, my) and r,a > 0. Then

1Nl oamey = 118, fllor@ame) + 11 =18, fll 1 @a,my) (3.2)
where 1p, is the characteristic function of the set B, := {(z,t) € M : |(z, )| < r}. Firstly,
1A =15)f o @mey < 7 O1 fll L oam) - (3-3)

By (2.1) and Hoélder’s inequality, we get

115, [l me < (me(B)Y 21 l20mi < ear® 1 F1lL2 ame)s (3-4)

where ¢ is the constant given by (2.3). Combining the relations (3.2)—(3.4), we obtain

1220ty < eI fllzqame + 771 1l qam-

By setting
_al I(wvt)I“fIILl(M,mk))Bia
Beall fll z2@ama) ’
we get the desired inequality with
_a_ ﬂ “ a
A=ci™(=)Pe(1+=). O 3.5
SO (35)

Lemma 3.2 (Nash-type inequality) Let b > 0. If f € L' N L?(M, my,), there exists a constant
B > 0 such that

8

_ab
1 s aame < BIANE S, o O PEL (A IR (3.6)
Proof Let f € L' N L?*(M,my) and r,b > 0. Then

I gy = IS O v = 13,8 (D F2we + 10 =15 )8(DTo iy, B

where 15 is the characteristic function of the set B, :={(A\n) € V:|(\n)| <r}. Firstly,

11 = 158002y < 72 A DIPEL 0 (3.5)
By (2.2) and (2.6), we get,
115 S Z20 0 < oeBAIBLU T 0 < 2”112 ) (3.9)

where ¢ is the constant given by (2.4). Combining the relations (3.7)—(3.9), we obtain

Hf”QL?(M,mk) < CQTﬁ”fH%l(M,mk) +r7% |()\,n)\b3L(f)H%2(v,vk)-

By choosing
20[ [\ )" T L ()12 )

1
T = )ma
602||f||2L1(M,mk)
we get the inequality with
B:Cﬁ(ﬁ)ﬂf2b(l+&b)l/2 0
D)) g’



12 Fethi SOLTANI

By combining and multiplying the two relations (3.1) and (3.6) we obtain the following
uncertainty inequalities of Laeng-Morpurgo-type [5,6] for the Laguerre transform Fz on L' N
LQ(M,mk).

Theorem 3.3 Let a,b> 0. If f € L* N L*(M,my), then
(i) There exists a constant C' > 0 such that

LA 122G oy < @ O AU g ) PF L N2 -

(ii) There exists a constant N > 0 such that

a+2b 2b a
VNG < NG O P12 O PEL 2y
(iii) There exists a constant D > 0 such that

a b a b a
e I o N oY TR e O T W) 50

By application of the two relations (3.1) and (3.6) we deduce also a local-type uncertainty

inequalities for the Laguerre transform gz on L' N L?(M, my).

Theorem 3.4 Let E be a measurable subset of V such that 0 < vg(E) < oo, and let a,b > 0.
If f € L' N L*(M, my), then

0) 11EFL (2o < AWk(EDY2IFI 2 g m (@ 1)]* fllfffM i)
where A is the constant given by Lemma 3.1.

(i) 1Sl v, < Bluk(E ))l/QHfllffz&lmk)H [\ ) PFL(f )II£§2§Uk),
where B is the constant given by Lemma 3.2.

Proof Let f € L' N L*(M,my) and a,b > 0.
(i) From (2.6) we have

11632 ()2 < OEN2ITL(N) v < @B IF ||t -

The desired result follows from Lemma 3.1.
(ii) From (2.5) we have

ESL(Allnr w0 < O EN2IFLN) 2 v.on) < We(EDY2Fll 20 mp)-

The desired result follows from Lemma 3.2. O

4. Heisenberg-Pauli-Weyl uncertainty principle

Soltani [10,11] proved a Heisenberg-Pauli-Weyl uncertainty principle for the Dunkl transform
Tr on R% 1In the following, we will give Heisenberg-Pauli-Weyl uncertainty principle for the

Laguerre transform §z, on L?(M, my).

Lemma 4.1 (local-type inequality) Let a > 0 and let f € L*(M,my). If E is a measurable
subset of V such that 0 < vi(E) < oo, then

1582 2wy < AR (E)T | FIEm o 1@ DI (4.1)
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where A is the constant given by Lemma 3.1.

Proof Let f € L*(M, my) and a > 0. The inequality holds if || [(x,)|* || L2(v,m,) = 00. Assume
that || (2, )" f|l L2 a,m,) < o0 For all 7 > 0, we have

1S (Nllr2wey SIS, Pllr2ww) + 11eFL((1 = 18,) ) L2(v00)
(o (ENY2IFL A5, )l e (v + 1821 = 1) Pl 22(v,00)-
Hence it follows from (2.5) and (2.6) that
L EFL(Hllzw.w) < (BN 118, fllogame + 1= 18,) fll22@am,)- (4.2)
On the other hand, by Holder’s inequality, we obtain
115, fllzr emi) < e[ fllz2 @my)s (4.3)
where ¢; is the constant given by (2.3). Moreover,
10 = 1) F 2 < 7=l 11 Fl 2 0m)- (4.4
Combining the relations (4.2)—(4.4), we deduce that
I EFL(Hl2w.e0 < (BN 2err?|| fllz@ume + 1@ 01 FllL20am) -
By choosing
all [(@, )1 fllz2ame) 2 o
= d +a Vk E 2(ﬁ+a)’
( Berll fllzz@ame) )77 (s(E))

we obtain the desired inequality. O

We shall use the local uncertainty principle to obtain the following uncertainty principle of

Heisenberg-Pauli-Weyl-type for the Laguerre transform §z, on L?(M, my).
Theorem 4.2 Let a,b > 0. If f € L?(M, my,), there exists a constant K > 0 so that

AN E Gy < G O1 £ i [T )T LN 2,0
(

Proof Let a,b > 0 and let » > 0. Then

I iy = 1115, L T2 + 10 =15 )L (9,00 (4.5)
Firstly,
10 =15 )8 LN Z2 w0 < 77O PFLOD (4,0 - (4.6)
From (2.2) and (4.1), we get
_2a_
115, SL(NIEe v 00 < A2(c2r) T 1 Eafg o | (2 I f||f¥riw ) (4.7)

where ¢y is the constant given by (2.4). Combining the relations (4.5)—(4.7), we obtain

a _2a _
£ 20ty < A% (e2r) P52 1 23 G I ()1 fllﬁszM ) T PFL ()2 (v,

By setting
25(6 +a)|l | n)PFL (I 2w, v

R 4 N [ [CR0 00 s

B+a
)a13+2b(6+a)
b
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we get the inequality with

2b(6+a) aB aﬂ 2a8+4b(B+a)
7 ) U g =

Remark 4.3 The local uncertainty principle given by Lemma 4.1 is different from the one

K = A4b([‘3+a)c§ab(

given by Rahmouni in [19], who proved the Theorem 4.2 in the particular case a,b > 1, and
whose approach known as Ciatti-Ricci-Sundari method [20], is based on the estimation of the

Laguerre-type heat convolution.
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