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Abstract The first purpose of this paper is to study the properties on some q-shift difference

differential polynomials of meromorphic functions, some theorems about the zeros of some q-shift

difference-differential polynomials with more general forms are obtained. The second purpose

of this paper is to investigate the properties on the Nevanlinna deficiencies for q-shift differ-

ence differential monomials of meromorphic functions, we obtain some relations among δ(∞, f),

δ(∞, f ′), δ(∞, f(z)nf(qz + c)mf ′(z)), δ(∞, f(qz + c)mf ′(z)) and δ(∞, f(z)nf(qz + c)m).

Keywords Nevanlinna theory; q-shift difference differential; zero order

MR(2020) Subject Classification 30D35; 39A45

1. Introduction and main results

We assume that the readers shall be familiar with the fundamental theorems and the standard

notations of the Nevanlinna value distribution theory of meromorphic functions which can be

found in Hayman [1], Yang [2] and Yi and Yang [3]. For meromorphic function f , let S(r, f) be

any quantity satisfying S(r, f) = o(T (r, f)) for all r outside a possible exceptional set E of finite

logarithmic measure

lim
r→∞

∫
[1,r)∩E

dt

t
< ∞.

We also use S1(r, f) to denote any quantity satisfying S1(r, f) = o(T (r, f)) for all r on a set F

of logarithmic density 1, where the logarithmic density of a set F is defined by

lim sup
r→∞

1

log r

∫
[1,r]∩F

1

t
dt.

Let δ(a, f) be the Nevanlinna deficiency of a to f , which is defined by

δ(a, f) = lim inf
r→+∞

m(r, 1
f−a )

T (r, f)
= 1− lim sup

r→+∞

N(r, 1
f−a )

T (r, f)
,
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where m(r, f) = m(r, 1
f−a ) and N(r, f) = N(r, 1

f−a ) if a = +∞, a ∈ C̃ := C ∪ {∞}.

If δ(a, f) > 0, then the value a is deficient in Nevanlinna’s sense. It is clear from Nevanlinna’s

first fundamental theorem that 0 ≤ δ(a, f) ≤ 1.

In 1959, Hayman [4] studied value distribution of meromorphic function and its derivatives,

and obtained the following famous theorem.

Theorem 1.1 ([4]) Let f(z) be a transcendental entire function. Then for n ≥ 2, f(z)nf ′(z)

assumes all finite values except possibly zero infinitely often.

For transcendental meromorphic function f , Chen-Fang [5] obtained the following result

Theorem 1.2 ([5, Theorem 1]) Let f(z) be a transcendental meromorphic function. If n ≥ 1 is

a positive integer, f(z)nf ′(z)− 1 has infinitely many zeros.

Recently, many articles have focused on the zeros of f(z)nf(z+c)−α, f(z)nf(qz)−α or their

improvements, α is a nonzero constant, where and in the following, q, c are nonzero complex

constants, including [6–15]. The main purpose of these results is to get the sharp number of n to

make that the difference polynomials or q-difference polynomials admit infinitely many zeros. For

transcendental meromorphic (resp., entire) function f of zero order, Zhang and Korhonen [16]

studied the value distribution of q-difference polynomials of meromorphic functions and obtained

that if n ≥ 6 (resp., n ≥ 2), then f(z)nf(qz) assumes every nonzero value a ∈ C infinitely

often [16, Theorem 4.1].

Recently, Liu-Cao [17] considered the value distribution of f(qz)nf ′(z) − a(z) and obtained

the following result

Theorem 1.3 ([17, Theorem 4.2]) Let f(z) be a transcendental entire function with zero-order,

q ∈ C \ {0} and n ≥ 9. Then f(qz)nf ′(z) − a(z) has infinitely many zeros, where and in the

following a(z) is a non-zero small function of growth S(r, f).

In this paper, we further investigate the zeros of several q-shift difference differential polyno-

mials of meromorphic function when f(qz) is replaced by f(qz + c) in Theorem 1.3, and obtain

the following results.

Theorem 1.4 Let f(z) be a transcendental meromorphic function of zero order and n ≥ 11.

Then f(qz + c)n + f ′(z) + f(z)− a has infinitely many zeros.

Theorem 1.5 Let f(z) be a transcendental meromorphic function of zero order, and let

F1(z) = f(z)nf(qz + c)mf ′(z),

where m,n are positive integers and satisfy m ≥ n+ 10 or n ≥ m+ 10. Then F1(z)− a(z) has

infinitely many zeros.

Let Pn(z) = anz
n+an−1z

n−1+ · · ·+a1z+a0 be a nonzero polynomial, and tn be the number

of the distinct zeros of Pn(z), where a0, a1, . . . , an are complex constants. Then we have
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Theorem 1.6 Let f(z) be a transcendental meromorphic function of zero order, and let

F2(z) = f(z)mPn(f(qz + c))
k∏

j=1

f (j)(z),

where m,n are positive integers and satisfy m ≥ n + tn + k(k + 3) + 4. Then F2(z) − a(z) has

infinitely many zeros.

Theorem 1.7 If f(z) is a transcendental meromorphic function of zero order, and let

F3(z) = Pm(f(z))f(qz + c)n
k∏

j=1

f (j)(z),

where m,n are positive integers and satisfy n ≥ m+ tm + k(k + 3) + 4. Then F3(z)− a(z) has

infinitely many zeros.

For meromorphic function f(z), we also deal with the relations of Nevanlinna deficiencies

among f(z), f ′(z) and

F4(z) = f(qz + c)mf ′(z) and F5(z) = f(z)nf(qz + c)m,

and obtain the following theorems.

Theorem 1.8 Let f(z) be a meromorphic function of zero order, and q, c be two nonzero

complex constants. If δ(∞, f) > 4m+4
n+3m+3 , then we have δ(∞, F1) > 0.

Corollary 1.9 Let f(z) be a non-constant meromorphic function of zero order. If δ(∞, f) >
4

m+3 , then we have δ(∞, F4) > 0.

Corollary 1.10 Let f(z) be a non-constant meromorphic function of zero order. If δ(∞, f) >
4m

n+3m , then we have δ(∞, F5) > 0.

Theorem 1.11 Let f(z) be a meromorphic function of zero order satisfying

lim sup
r→+∞

T (r, f)

T (r, f ′)
< +∞, (1.1)

and c be a nonzero complex constant. Then we have

δ(∞, F1) ≥ δ(∞, f ′), δ(∞, F4) ≥ δ(∞, f ′).

Example 1.12 Let f1(z) =
z3+1

z , q = 2, c = 1 and n = 3,m = 2. Then we have

f ′
1(z) =

2z3 − 1

z2
and f1(2z + 1) =

8z3 + 12z2 + 6z + 2

2z + 1
.

Thus, it yields that

F1(z) = f1(z)
3f1(2z + 1)2f ′

1(z) =
128z18 + P1(z)

4z7 + P2(z)
,

F4(z) = f1(2z + 1)2f ′
1(z) =

128z9 + P3(z)

4z4 + P4(z)
,
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where P1(z), P2(z), P3(z), P4(z) are polynomials with degz P1(z) ≤ 17, degz P2(z) ≤ 4, degz P3(z)

≤ 8 and degz P4(z) ≤ 3. Since

lim sup
r→+∞

T (r, f1)

T (r, f ′
1)

= lim sup
r→+∞

3 log r

3 log r
= 1 < +∞,

it thus leads to

δ(∞, F1) =
11

18
> δ(∞, f ′

1) =
1

3
,

and

δ(∞, F4) =
5

9
> δ(∞, f ′

1) =
1

3
.

Therefore, this shows that the conclusions of Theorem 1.11 are sharp.

In addition, in view of the above examples, we have that δ(∞, F1) =
11
18 < δ(∞, f1) =

2
3 and

δ(∞, F4) =
5
9 < δ(∞, f1) =

2
3 . Hence, a natural question is

Question 1.13 What conditions can guarantee the following inequalities that

δ(∞, f ′) ≤ δ(∞, F1) ≤ δ(∞, f),

or

δ(∞, f ′) ≤ δ(∞, F4) ≤ δ(∞, f)?

Example 1.14 Let f2(z) = z2, q = 2, c = 1. Thus we have that

δ(∞, f ′
2) = δ(∞, F1) = δ(∞, F4) = δ(∞, f2) = 1.

This shows that the equalities in Theorem 1.11 can be attained.

2. Some lemmas

To prove the above theorems, some lemmas below will be required.

Lemma 2.1 ([3]) Let f be a nonconstant meromorphic function and P (f) = a0+a1f+· · ·+anf
n,

where a0, a1, . . . , an are constants and an ̸= 0. Then

T (r, P (f)) = nT (r, f) + S(r, f).

By [18] and [19, p.66], we can immediately get the following lemma.

Lemma 2.2 Let f(z) be a transcendental meromorphic function of zero order and q be a nonzero

complex constants. Then

T (r, f(qz + c)) = T (r, f(z)) + S1(r, f), N(r,
1

f(qz)
) = N(r,

1

f
) + S1(r, f),

N(r, f(qz + c)) = N(r, f) + S1(r, f), N(r,
1

f(qz + c)
) = N(r,

1

f
) + S1(r, f),

N(r, f(qz + c)) = N(r, f) + S1(r, f).

Lemma 2.3 ([10, Theorem 2.1]) Let f(z) be a nonconstant zero-order meromorphic function

and q ∈ C \ {0}. Then

m(r,
f(qz + c)

f(z)
) = S1(r, f).
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Lemma 2.4 ([3, p. 37]) Let f(z) be a nonconstant meromorphic function in the complex plane

and l be a positive integer. Then

T (r, f (l)(z)) ≤ T (r, f) + lN(r, f) + S(r, f), N(r, f (l)(z)) = N(r, f) + lN(r, f).

Lemma 2.5 Let f be a transcendental meromorphic function of zero order, F5(z) be stated as

in Theorem 1.5. Then we have

(|m− n| − 2)T (r, f) + S1(r, f) ≤ T (r, F1) ≤ (n+m+ 2)T (r, f) + S1(r, f). (2.1)

Proof If f is a meromorphic function of zero order, from Lemmas 2.1, 2.2 and 2.4, we have

T (r, f(z)nf(qz + c)mf ′(z)) ≤ T (r, f(z)n) + T (r, f(qz + c)m) + T (r, f ′(z))

≤ (n+m+ 2)T (r, f) + S1(r, f).

On the other hand, from Lemmas 2.1–2.4, we have

(n+m+ 1)T (r, f) = T (r, f(qz + c)m+n+1) + S1(r, f)

= m(r, f(qz + c)m+n+1) +N(r, f(qz + c)m+n+1) + S1(r, f)

≤ m(r, F1(z)
f(qz + c)

f ′(z)

f(qz + c)n

f(z)n
) +N(r, F1(z)

f(qz + c)

f ′(z)

f(qz + c)n

f(z)n
) + S1(r, f)

≤ T (r, F1) + (2n+ 3)T (r, f) + S1(r, f).

Thus, we prove that the first inequality of (2.1) holds when m > n.

From Lemmas 2.1, 2.2 and 2.4, we have

(n+m+ 1)T (r, f) = T (r, f(z)n+m+1) + S1(r, f)

= T (r,
f(z)m+1F1(z)

f(qz + c)mf ′(z)
) + S1(r, f)

≤ T (r, F1(z)) + T (r,
f(z)

f ′(z)
) + T (r,

f(z)m

f(qz + c)m
) + S1(r, f)

≤ T (r, F1(z)) + (2m+ 3)T (r, f) + S1(r, f).

Thus, it follows that the second inequality of (2.1) is proved when n > m. 2
Lemma 2.6 Let f be a transcendental meromorphic function of zero order, F2(z) be stated as

in Theorem 1.6. Then we have

(m− n− k(k + 3)

2
)T (r, f) ≤ T (r, F2(z)) ≤ (m+ n+

k(k + 3)

2
)T (r, f) + S1(r, f).

Proof Since f is a transcendental meromorphic function of zero order, by Lemmas 2.1, 2.2 and

2.4, we can deduce the second inequality. On the other hand, it follows by Lemmas 2.1, 2.2 and

2.4 that

(m+ k)T (r, f) = T (r, fm+k) + S1(r, f)

≤ T (r,
f(z)kF2(z)

Pn(f(qz + c))
∏k

j=1 f
(j)(z)

) + S1(r, f)
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≤ T (r, F2) + T (r, Pn(f(qz + c))) + T (r,
f(z)k∏k

j=1 f
(j)(z)

) + S1(r, f)

≤ T (r, F2) + (n+ 2k)T (r, f) +
k(k + 1)

2
N(r, f) + S1(r, f)

≤ T (r, F2) +

(
n+ 2k +

k(k + 1)

2

)
T (r, f) + S1(r, f),

that is

T (r, F2(z)) ≥ (m− n− k(k + 3)

2
)T (r, f) + S1(r, f).

Thus, this completes the proof of Lemma 2.6. 2
Similarly, we get the following lemma.

Lemma 2.7 Let f be a transcendental meromorphic function of zero order, F3(z) be stated as

in Theorem 1.7. Then we have

(n−m− k(k + 3)

2
)T (r, f) ≤ T (r, F3(z)) ≤ (m+ n+

k(k + 3)

2
)T (r, f) + S1(r, f).

3. Proofs of Theorems

Now, we will show the proofs of our theorems in this section.

Proof of Theorem 1.4 Since f(z) is a transcendental meromorphic function of zero order, we

first claim that f ′(z) + f(z) − a ̸≡ 0. In fact, if f ′(z) + f(z) − a ≡ 0, that is, f ′(z)
f(z)−a ≡ −1. By

solving the above equation, we have f(z) = Ae−z + a, where A ̸= 0 is a constant. Thus, we have

ρ(f) = 1 which contradicts the fact that f(z) is of zero order. Set

F6(z) =
a− f(z)− f ′(z)

f(qz + c)n
.

Thus, it follows by Lemmas 2.1, 2.2 and 2.4 that

nT (r, f) = T (r, f(qz + c)n) + S1(r, f) ≤ T (r,
F6(z)

a− f(z)− f ′(z)
) + S1(r, f)

≤ T (r, F6) + T (r, f(z)) + T (r, f ′(z)) + S1(r, f)

≤ T (r, F6) + 3T (r, f(z)) + S1(r, f),

that is,

(n− 3)T (r, f) ≤ T (r, F6) + S1(r, f). (3.1)

On the other hand, we can easily get that

T (r, F6) ≤ T (r, f(qz + c)n) + T (r, f) + T (r, f ′) + S1(r, f) ≤ (n+ 3)T (r, f) + S1(r, f). (3.2)

Noting that n ≥ 4, and from (3.1) and (3.2), it thus follows that

T (r, F6) = O(T (r, f)).

By Lemma 2.2, we have

N(r,
1

F6 − 1
) = N(r,

f(qz + c)n

f(qz + c)n + f ′(z) + f(z)− a
)
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≤ N(r,
1

f(qz + c)n + f ′(z) + f(z)− a
) +N(r, f) + S1(r, f).

Assume that f(qz + c)n + f ′(z) + f(z)− a has finitely many zeros, then

N(r,
1

F6 − 1
) ≤ N(r, f) + S1(r, f). (3.3)

Since

N(r,
1

F6
) ≤ N(r, f(qz + c)) +N(r,

1

a− f(z)− f ′(z)
) +O(1), (3.4)

and

N(r, F6) ≤ N(r,
1

f(qz + c)
) +N(r, a− f(z)− f ′(z)) +O(1), (3.5)

using the second main theorem and Lemmas 2.1, 2.2 and 2.6, from (3.3)–(3.5), we have

T (r, F6) ≤ N(r, F6) +N(r,
1

F6
) +N(r,

1

F6 − 1
) + S(r, F6)

≤ T (r,
1

a− f(z)− f ′(z)
) + 4T (r, f) + S1(r, f)

≤ 7T (r, f) + S1(r, f).

Thus, it yields by the above inequality that (n − 10)T (r, f) ≤ S1(r, f), which is contradiction

with n ≥ 11. Thus, f(qz + c)n + f ′(z) + f(z)− a has infinitely many zeros. 2
Proof of Theorem 1.5 (i) Assume thatm ≥ n+10. Since f(z) is a transcendental meromorphic

function of zero order, by Lemma 2.5, we have S(r, f) = S(r, F1). Thus, by using the second

fundamental theorem and Lemmas 2.2 and 2.4, again, we have

(m− n− 2)T (r, f) ≤ T (r, F1) + S1(r, f)

≤ N(r, F1) +N(r,
1

F1
) +N(r,

1

F1(z)− a(z)
) + S(r, F5)

≤ N(r, f(z)) +N(r, f(qz + c)) +N(r, f ′(z)) +N(r,
1

f(z)
) +N(r,

1

f(qz + c)
)+

N(r,
1

f ′ ) +N(r,
1

F1(z)− a(z)
) + S(r, F1)

≤ 7T (r, f) +N(r,
1

F1(z)− a(z)
) + S1(r, f),

that is,

m− n− 8

m+ n+ 2
T (r, F1) + S(r, F1) ≤ (m− n− 8)T (r, f) ≤ N(r,

1

F1(z)− a(z)
) + S1(r, F1).

In view of m ≥ n+ 10, it yields that

δ(a, F1) ≤ 1− m− n− 8

m+ n+ 2
< 1.

Hence, F1(z)− a(z) has infinitely many zeros.

(ii) Assume that n ≥ m + 10. Similar to the same discussion as in the proof of Theorem

1.5 (i), it is easy to get that F1(z)− a(z) has infinitely many zeros. 2
Proof of Theorem 1.6 If f(z) is a transcendental meromorphic function of zero order, then
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by Lemma 2.6, we get S(r, f) = S(r, F2). Thus, by using the second fundamental theorem and

Lemmas 2.2 and 2.6 again, it follows that

(m− n− k(k + 3)

2
)T (r, f) ≤ T (r, F2) + S1(r, f)

≤ N(r, F2) +N(r,
1

F2
) +N(r,

1

F2(z)− a(z)
) + S1(r, F2)

≤ N(r, f) +N(r, f(qz + c)) +

tn∑
l=1

N(r,
1

f − γi
) +N(r,

1

f(qz + c)
)+

k∑
j=1

N(r,
1

f (j)
) +N(r,

1

F2(z)− a(z)
) + S1(r, F2)

≤ (3 + tn +
k(k + 1)

2
+ k)T (r, f) +N(r,

1

F2(z)− a(z)
) + S(r, F2),

that is,

m− n− tn − k(k + 3)− 3

m+ n+ k(k+3)
2

T (r, F2) + S(r, F2)

≤ (m− n− tn − k(k + 3)− 3)T (r, f) ≤ N(r,
1

F2(z)− a(z)
) + S1(r, F2),

where γ1, γ2, . . . , γt are distinct roots of Pm(t) = 0. Noting that m ≥ n + tn + k(k + 3) + 4, it

yields that

δ(a, F2) ≤ 1− m− n− tn − k(k + 3)− 3

m+ n+ k(k+3)
2

< 1.

Hence, it follows that F2(z)− a(z) has infinitely many zeros. 2
Proof of Theorem 1.7 Similar to the argument as in the proof of Theorems 1.5 and 1.6, we

can prove the conclusions of Theorem 1.7 easily. 2
Proof of Theorem 1.8 Set F7(z) = f(z)n+m+1. So, it follows thatN(r, F7) = (n+m+1)N(r, f)

and T (r, F7) = (n + m + 1)T (r, f) + S1(r, f). Thus, it yields that S1(r, F7) = S1(r, f) and

δ(∞, F7) = δ(∞, f). Besides, we have

F7(z) = F1(z)(
f(z)

f(qz + c)
)m

f(z)

f ′(z)
, (3.6)

N(r, f) ≤ N(r, f) ≤ 1

n+m+ 1
N(r, F7) ≤

1− δ

n+m+ 1
T (r, F7) + S1(r, F7), (3.7)

N(r,
1

f
) ≤ N(r,

1

f
) ≤ 1

n+m+ 1
N(r,

1

F7
) ≤ 1

n+m+ 1
T (r, F7) +O(1). (3.8)

Hence, in view of Lemmas 2.1–2.4 and (3.6)–(3.8), it follows that

T (r, F7) = T (r, F1
f

f ′ (
f(z)

f(qz + c)
)m)

≤ T (r, F1) +mN(r,
1

f
) +N(r,

1

f
) +mN(r, f) +N(r, f) + S1(r, f)

≤ T (r, F1) +
m+ 1

n+m+ 1
T (r, F7) +

m+ 1

n+m+ 1
N(r, F7) + S1(r, f),
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which implies

T (r, F1) ≥
n− (m+ 1)(1− δ)

n+m+ 1
T (r, F7) + S1(r, F7). (3.9)

And by applying Lemmas 2.2–2.4 and (3.6)–(3.8) again, it follows

N(r, F1) ≤ N(r, F7) +mN(r,
f(qz + c)

f(z)
) +N(r,

f ′

f
)

≤ N(r, F7) +mN(r,
1

f
) +N(r,

1

f
) +mN(r, f) +N(r, f) + S1(r, f)

≤ (n+ 2m+ 2)(1− δ) +m+ 1

n+m+ 1
T (r, F7) + S1(r, f),

that is,

N(r, F1) ≤
(n+ 2m+ 2)(1− δ) +m+ 1

n+m+ 1
T (r, F7) + S1(r, f). (3.10)

Thus, from (3.9), (3.10) and δ = δ(∞, f) = δ(∞, F7) >
4m+4

n+3m+3 , it follows that

lim sup
r→+∞

N(r, F1)

T (r, F1)
≤ (n+ 2m+ 2)(1− δ) +m+ 1

n− (m+ 1)(1− δ)
< 1,

that is,

δ(∞, F1) = 1− lim sup
r→+∞

N(r, F1)

T (r, F1)
> 0. 2

Proofs of Corollaries 1.9 and 1.10 Noting that

f(z)m+1 = F4
f(z)

f ′(z)

f(z)m

f(qz + c)m
, f(z)n+m = F5

f(z)m

f(qz + c)m

thus, by using the similar discussion as in the proof of Theorem 1.8, we can prove Corollaries 1.9

and 1.10 easily. 2
Proof of Theorem 1.11 Let

f ′(z)m+1 = F4(z)
f ′(z)m

f(z)m
f(z)m

f(qz + c)m
.

Then we can deduce

(m+ 1)m(r, f ′) ≤ m(r, F4) + (m+ 1)m(r,
f ′

f
) +mm(r,

f(z)

f(qz + c)
) +O(1).

In view of Lemma 2.3, it yields that

m(r, F4) ≥ (m+ 1)m(r, f ′) + S1(r, f). (3.11)

On the other hand, it follows from Lemmas 2.2 and 2.4 that

N(r, F4) ≤ (m+ 1)N(r, f) +N(r, f) ≤ (m+ 1)N(r, f ′). (3.12)

From the assumption of Theorem 1.11, we have

lim sup
r→+∞

S1(r, f)

T (r, f ′)
= lim sup

r→+∞

S1(r, f)

T (r, f)

T (r, f)

T (r, f ′)
= 0. (3.13)

Then, it follows from (3.11)–(3.13) that

N(r, F4)

T (r, F4)
≤ (m+ 1)N(r, f ′)

(m+ 1)N(r, f ′) + (m+ 1)m(r, f ′) + S1(r, f)
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≤ N(r, f ′)

T (r, f ′) + S1(r, f)
=

N(r, f ′)

(1 + o(1))T (r, f ′)
.

Hence we have δ(∞, f ′) ≤ δ(∞, F4).

Besides, using the similar method as above and noting that

f ′(z)n+m+1 = F1
f ′(z)n+m

f(z)n+m

f(z)m

f(qz + c)m
,

we can easily deduce that δ(∞, f ′) ≤ δ(∞, F1). 2
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