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1. Introduction and main results

The nonlinear problems driven by variable exponent operators appear in numerous physical

models, such as the model of motion of electrorheological fluids [1, 2]. An other application

which uses variable exponent Laplacian operators is related to the modeling of image restora-

tion [3]. The field of differential equations with various types of nonstandard growth conditions

has witnessed an explosive growth in recent years. In the monograph [4], Radulescu and Re-

povs provided a thorough introduction to the theory of nonlinear partial differential equations

(PDEs) with a variable exponent. The operator −∆p(x)u : = −div(|∇u|p(x)−2∇u) is called p(x)-
Laplacian, where div is the vectorial divergence. The study of nonlinear differential equations

with p(x)-Laplacian operator is an interesting topic, some results can be found, in [5–13].

In [14], Rodrigues has obtained the existence of nontrivial solution for the Dirichlet problem

involving the p(x)-Laplacian-like of the following form −div
(
|∇u|p(x)−2∇u+ |∇u|2p(x)−2∇u√

1+|∇u|2p(x)

)
= λf(x, u), in Ω

u = 0, on ∂Ω
(1.1)

where Ω ⊂ RN is a bounded domain with smooth boundary ∂Ω, λ > 0, p ∈ C(Ω) such that

2 < p(x) < N for any x ∈ Ω, and f(x, u) : Ω × R → R satisfies the Caratheodory condition.

Boundary problem (1.1) was originated from capillarity phenomena [15]. In short, the capillary

action is due to the pressure of cohesion and adhesion which cause the liquid to work against
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gravity. The study of capillarity can be applied in many areas, such as biomedical, industrial

and pharmaceutical to microfluidic systems and so on.

It is worth mentioning that problem (1.1) can be viewed as a generalization of the following

elliptic Dirichlet problem  −div
( ∇u√

1+|∇u|2
)
= f(x, u), in Ω,

u = 0, on ∂Ω,
(1.2)

where Ω ⊂ RN is a bounded domain with smooth boundary ∂Ω, f ∈ C(Ω×R,R). Problem (1.2)

is the capillary surface equation or the mean curvature equation; when f(x, u) = u, it describes

the equilibrium shape of a liquid surface with constant surface tension in a uniform gravity field,

and this is the shape of a pendent drop [16].

In [17], Zhou and Ge studied a class of nonlinear elliptic problems driven by p(x)-Laplacian-

like with a nonsmooth locally Lipschitz potential, and they proved existence of three solutions

of the problem. In [18], the authors obtained weak solutions for a class of nonlinear elliptic

problems for the p(x)-Laplacian-like operators under no-flux boundary conditions.

Recently, Vetro in [19] investigated the existence and multiplicity of solutions for the following

p(x)-Laplacian-like equations −div
(
|∇u|p(x)−2∇u+ |∇u|2p(x)−2∇u√

1+|∇u|2p(x)

)
+ |u|p(x)−2u = λg(x, u), in Ω,

u = 0, on ∂Ω,
(1.3)

where Ω ⊂ RN is a bounded domain with smooth boundary ∂Ω, p ∈ C(Ω) such that 1 < p(x) < N

for any x ∈ Ω, λ > 0 and g(x, u) : Ω × R → R satisfies the Caratheodory condition. When

reaction term satisfies a sub-critical growth condition, the author established the existence of at

least one nontrivial weak solution and three weak solutions, by using variational methods and

critical point theory. In [20], by using variational methods, Afrouzi, Kirane and Shokooh studied

a class of p(x)-Laplacian-like equations with Neumann boundary condition, and they obtained

the existence of infinitely many solutions of this problem depending on two parameters.

A lot of works concerning superlinear elliptic boundary value problem have been written

by using this usual Ambrosetti-Rabinowitz type superlinear condition ((AR) for short), that is,

there exist L > 0 and µ > p+ such that

0 < µF (x, u) ≤ f(x, u)u

for all x ∈ Ω and u ∈ R with |u| ≥ L, where F (x, u) :=
∫ u

0
f(x, s) ds. This kind of technical

condition implies that f(x, u) grows at a superlinear rate with respect to |u|p+−2u at infinity,

whose role consists in ensuring the boundedness of the Palais-Smale sequences of the energy

functional associated with the problem under consideration. However, there are many functions

which are superlinear but not satisfies (AR), and these functions have attracted much interest in

recent years, for example, see [21–25]. In [26], the authors studied the existence and multiplicity

of solutions to a class of p(x)-Laplacian-like equations in RN originated from a capillary phe-

nomena, and they introduced a revised Ambrosetti-Rabinowitz type condition, and proved that
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the problem has a nontrivial solution and infinitely many pairs of radially symmetric solutions,

respectively. In [27, 28], the authors investigated the existence of weak solutions for problem

(1.1), when the nonlinear term is p+-superlinear at infinity, some solvability conditions of non-

trivial periodic solutions are obtained through the use of mountain pass theorem. A major point

in [27,28] is that they ensure compactness without the well-known Ambrosetti-Rabinowitz type

superlinearity condition.

When the nonlinear term satisfies (AR) condition and a sub-critical growth condition, Avci

in [29] obtained the existence of weak solutions for an elliptic boundary value problem with

p(x)-Laplacian-like operator and nonlocal term given by −M(ψ(u))div
(
|∇u|p(x)−2∇u+ |∇u|2p(x)−2∇u√

1+|∇u|2p(x)

)
= f(x, u), in Ω,

u = 0, on ∂Ω,
(1.4)

where Ω ⊂ RN is a bounded domain with smooth boundary ∂Ω, p ∈ C(Ω) such that 1 < p(x) < N

for any x ∈ Ω, M(t) ∈ C(R+,R+) and f(x, u) : Ω×R → R satisfies the Caratheodory condition,

and

ψ(u) =

∫
Ω

|∇u|p(x) +
√
1 + |∇u|2p(x)

p(x)
dx.

Comparing with problems (1.1), (1.2) or (1.3), one typical feature of the equation in problem

(1.4) is the nonlocality. Due to the presence of a nonlocal coefficient M(ψ(u)), it is no longer

pointwise identity, and it is often called nonlocal problem or Kirchhoff-type equation. Boundary

value problems like (1.4) model several ecosystems where u describes a process depending on

the average of itself, as for example, population densities [30, 31]. This problem has a physical

motivation, in boundary problem (1.4), the nonlocal coefficient is a function depending on the

average of the kinetic energy [7].

In this paper, we will use a weaker superlinear assumption instead of condition (AR), an exis-

tence theorem is obtained for infinitely many weak solutions of a nonlocal (p(x), q(x))-Laplacian-

like systems by using the symmetric mountain pass theorem [32].

Consider the following nonlocal (p(x), q(x))-Laplacian-like systems
−M(Ψ(u))div

(
|∇u|p(x)−2∇u+ |∇u|2p(x)−2∇u√

1+|∇u|2p(x)

)
= Fu(x, u, v), in Ω,

−M(Φ(v))div
(
|∇v|q(x)−2∇v + |∇v|2q(x)−2∇v√

1+|∇v|2q(x)

)
= Fv(x, u, v), in Ω,

u = v = 0, on ∂Ω,

(1.5)

where Ω ⊂ RN is a bounded domain with smooth boundary ∂Ω, and p(x), q(x) ∈ C(Ω) such that

1 < p(x) < N , 1 < q(x) < N for any x ∈ Ω and

1 < p− := inf
Ω
p(x) ≤ p+ := sup

Ω
p(x) < +∞,

1 < q− := inf
Ω
q(x) ≤ q+ := sup

Ω
q(x) < +∞,

Ψ(u) =

∫
Ω

|∇u|p(x) +
√

1 + |∇u|2p(x)
p(x)

dx,
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Φ(v) =

∫
Ω

|∇v|q(x) +
√
1 + |∇v|2q(x)

q(x)
dx.

F : Ω × R2 → R is a function such that F (., s, t) is continuous in Ω, for all (s, t) ∈ R2 and F is

C1 in R2 for every x ∈ Ω, and Fu, Fv denote the partial derivatives of F , with respect to u, v,

respectively.

In this paper, we suppose that the Kirchhoff function M satisfies the following conditions:

(M0) M(t): [0,+∞) → (m0,+∞) is a continuous and increasing function with m0 > 0.

(M1) There exists constant η ≥ 1, such that

M̂(t) :=

∫ t

0

M(s) ds ≥ 1

η
M(t)t

for all t ≥ 0.

Now, we state the assumptions on function F :

Let

C+(Ω) = {h |h ∈ C(Ω), h(x) > 1, ∀x ∈ Ω},

p∗(x) =

{
Np(x)
N−p(x) , p(x) < N,

+∞, p(x) ≥ N.

q∗(x) =

{
Nq(x)
N−q(x) , q(x) < N,

+∞, q(x) ≥ N.

α(x), β(x) ∈ C+(Ω),

p+ < α− := inf
Ω
α(x) ≤ α+ := sup

Ω
α(x) < p∗(x),

q+ < β− := inf
Ω
β(x) ≤ β+ := sup

Ω
β(x) < q∗(x).

(F0) There exists constant c > 0, such that

|F (x, u, v)| ≤ c (|u|α(x) + |v|β(x))

for all x ∈ Ω and (u, v) ∈ R2.

(F1) lim|(u,v)|→0
F (x,u,v)

|u|p++|v|q+
= 0, uniformly for x ∈ Ω.

(F2) lim|(u,v)|→+∞
F (x,u,v)

|u|ηp++|v|ηq+
= +∞, uniformly for x ∈ Ω, where η ≥ 1 is given in (M1).

Let

F(x, u, v) : =
1

max{ηp+, ηq+}
[Fu(x, u, v)u+ Fv(x, u, v)v ]− F (x, u, v).

(F3) There are constants c1 > 0, L > 0, such that

F(x, u, v) ≥ c1 (|u|p
−
+ |v|q

−
)

for all x ∈ Ω and (u, v) ∈ R2 with |(u, v)| > L.

(F4) There are constants c2 > 0, L > 0, σ > max{ p∗

(1−θ)(p∗−p−) ,
q∗

(1−θ)(q∗−q−)} and θ ∈ (0, 1),

such that ( |F (x, u, v)|
|u|p−

)σ
+
( |F (x, u, v)|

|v|q−
)σ ≤ c2 F(x, u, v)
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for all x ∈ Ω and (u, v) ∈ R2 with |(u, v)| > L.

(F5) F (x,−u,−v) = F (x, u, v) for all x ∈ Ω and (u, v) ∈ R2.

The main result in this paper is the following.

Theorem 1.1 Assume that hypotheses (M0), (M1) and (F0)–(F5) are fulfilled. Then problem

(1.5) has infinitely many weak solutions.

Remark 1.2 A typical example for the nonlocal coefficient M(t) is given by

M(t) = (a+ bγt)γ−1,

where t ≥ 0, γ ≥ 0 and a, b are two positive constants, then M satisfies (M0) and (M1). In fact,

we have

M(t) = (a+ bγt)γ−1 ≥ aγ−1 > 0,

for all t ≥ 0. Therefore, (M0) holds and M(t): [0,+∞) → (aγ−1,+∞) is a continuous and

increasing function. Let η = γ. One has

M̂(t) =

∫ t

0

M(s) ds =
1

bγ2
(a+ bγt)γ − aγ

bγ2

≥ 1

γ
(a+ bγt)γ−1t =

1

η
M(t)t,

for all t ≥ 0. Thus, (M1) holds.

Remark 1.3 The conditions of Theorem 1.1 are different from the results in [5–29]. If

M(t) = 1 +
cos t

1 + t2
,

then M(t) satisfies (M0)-(M1) with η = 1. In this case, if p(x) = q(x) = 2, consider the function

F (x, u, v) = F (u, v) = (|u|2 + |v|2) ln(1 + |u|+ |v|).

By some simple computations, we can show that all the conditions of Theorem 1.1 hold, and F

is not covered by results in [5–29].

2. Preliminaries

In this section we give some preliminary results which will be used in the sequal.

Definition 2.1 ([5]) Define the variable exponent Lebesgue space:

Lp(x)(Ω) =
{
u : u is a measureable real value function satisfies

∫
Ω

|u(x)|p(x) dx <∞
}
,

with the norm

|u|Lp(x)(Ω) = |u|p(x) = inf
{
λ > 0 :

∫
Ω

|u(x)
λ

|p(x) dx ≤ 1
}
.

Proposition 2.2 ([5]) The space (Lp(x)(Ω), | · |p(x)) is separable, uniformly convex, reflexive and

its conjugate space is Lq(x)(Ω). We have∣∣∣ ∫
Ω

uv dx
∣∣∣ ≤ (

1

p−
+

1

q−
)|u|p(x)|v|q(x) ≤ 2|u|p(x)|v|q(x)
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for u ∈ Lp(x)(Ω) and v ∈ Lq(x)(Ω), where 1
p(x) +

1
q(x) = 1.

Definition 2.3 ([5]) The Sobolev space with variable exponent W 1,p(x)(Ω) is defined as

W 1,p(x)(Ω) = {u ∈ Lp(x)(Ω) : ∇u ∈ Lp(x)(Ω)}

with the norm

∥u∥W 1,p(x)(Ω) = |u|p(x) + |∇u|p(x).

Proposition 2.4 ([10]) We denote by W
1,p(x)
0 (Ω) the closure of C∞

0 (Ω) in W 1,p(x)(Ω). Then

W
1,p(x)
0 (Ω) endowed with an equivalent norm

∥u∥
W

1,p(x)
0

(Ω) = |∇u|p(x),

becomes a reflexive and separable Banach space.

Proposition 2.5 ([6]) (i) Poincare inequality inW
1,p(x)
0 (Ω) holds, that is, there exists a positive

constant C such that |u|p(x) ≤ C |∇u|p(x), ∀u ∈W
1,p(x)
0 (Ω);

(ii) If q ∈ C(Ω) and 1 < q(x) < p∗(x) for any x ∈ Ω̄, then the embedding from W
1,p(x)
0 (Ω)

to Lq(x)(Ω) is compact and continuous.

Proposition 2.6 ([6]) Set

J(u) =

∫
Ω

|∇u|p(x) dx,

if u ∈W
1,p(x)
0 (Ω), we have

(i) ∥u∥
W

1,p(x)
0 (Ω)

≤ 1 ⇒ ∥u∥p
+

W
1,p(x)
0 (Ω)

≤ J(u) ≤ ∥u∥p
−

W
1,p(x)
0 (Ω)

;

(ii) ∥u∥
W

1,p(x)
0 (Ω)

≥ 1 ⇒ ∥u∥p
−

W
1,p(x)
0 (Ω)

≤ J(u) ≤ ∥u∥p
+

W
1,p(x)
0 (Ω)

.

Throughout this paper, X denotes the Cartesian product of two Sobolev spaces with variable

exponent W
1,p(x)
0 (Ω) and W

1,q(x)
0 (Ω), i.e.,

X : =W
1,p(x)
0 (Ω)×W

1,q(x)
0 (Ω).

Then X endowed with an equivalent norm

∥(u, v)∥ = ∥(u, v)∥X : = max{∥u∥
W

1,p(x)
0 (Ω)

, ∥v∥
W

1,q(x)
0 (Ω)

},

becomes a reflexive and separable Banach space [33], where

∥u∥
W

1,p(x)
0 (Ω)

= inf
{
λ > 0 :

∫
Ω

|u(x)
λ

|p(x) dx ≤ 1
}

and

∥v∥
W

1,q(x)
0 (Ω)

= inf
{
λ > 0 :

∫
Ω

|v(x)
λ

|q(x) dx ≤ 1
}
.

We say that (u, v) ∈ X is a weak solution of problem (1.5), if

M(Ψ(u))

∫
Ω

(
|∇u|p(x)−2 +

|∇u|2p(x)−2√
1 + |∇u|2p(x)

)
∇u∇ζ dx+

M(Φ(v))

∫
Ω

(
|∇v|p(x)−2 +

|∇v|2p(x)−2√
1 + |∇v|2p(x)

)
∇v∇ϵ dx
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=

∫
Ω

Fu(x, u, v)ζ dx+

∫
Ω

Fv(x, u, v)ϵ dx,

for all (ζ, ϵ) ∈ X.

Define the Euler-Lagrange functional associated I : X → R to problem (1.5) given by

I(u.v) = M̂ (Ψ(u)) + M̂ (Φ(v))−
∫
Ω

F (x, u, v) dx

for all (u, v) ∈ X.

From the assumptions (F0), it is standard to check that I ∈ C1(X,R) whose Gateaux deriva-

tive is

⟨I ′(u, v), (ζ, ϵ)⟩ =M(Ψ(u))

∫
Ω

(
|∇u|p(x)−2 +

|∇u|2p(x)−2√
1 + |∇u|2p(x)

)
∇u∇ζ dx+

M(Φ(v))

∫
Ω

(
|∇v|p(x)−2 +

|∇v|2p(x)−2√
1 + |∇v|2p(x)

)
∇v∇ϵ dx−∫

Ω

Fu(x, u, v)ζ dx−
∫
Ω

Fv(x, u, v)ϵdx,

for all (ζ, ϵ) ∈ X. Then, (u, v) ∈ X is a critical point of I if and only if (u, v) is a weak solution

of problem (1.5).

3. Proof of Theorem 1.1

In order to obtain infinitely many solutions of (1.5), we shall use the symmetric mountain

pass theorem [32] introduced by Jabri.

Theorem 3.1 ([32]) Let X be a real infinite-dimensional Banach space and, I ∈ C1(X,R) is

an even functional and I(0) = 0. Assume that I satisfies:

(i) I satisfies the (C) condition, that is, sequence {xn} ⊂ X such that {I(xn)} is bounded

and ∥I ′(xn)∥(1 + ∥xn∥) → 0 as n→ ∞ has a convergent sequence;

(ii) There are constants ρ, δ > 0 such that

I |∂Bρ∩X ≥ δ > 0

where ∂Bρ = {x ∈ X | ∥x∥ = ρ};
(iii) For all finite-dimensional subspace X̃ of X, there exists positive constant r(X̃) such

that I(x) ≤ 0 for u ∈ X̃\Br(0), where Br(0) is an open ball in X̃ of radius r centred at 0.

Then I possesses an unbounded sequence of critical values characterized by a minimax argument.

For the sake of convenience, we denote by ci (i = 1, 2, 3, . . .) various positive constants. At

first, we show that the functional I satisfies the compactness condition (C).

Lemma 3.2 Suppose that (M0), (M1), (F0), (F3) and (F4) hold. Then functional I satisfies

condition (C).

Proof Suppose that {(un, vn)} ⊂ X : =W
1,p(x)
0 (Ω)×W 1,q(x)

0 (Ω) ia a Cerami sequence of I, that

is, {I(un, vn)} is bounded and (1 + ∥(un, vn)∥)∥I ′(un, vn)∥ → 0 as n → ∞. There then exists a
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constant c3 > 0 such that

|I(un, vn)| ≤ c3, (1 + ∥(un, vn)∥)∥I ′(un, vn)∥ ≤ c3 (3.1)

for all n. We claim that the sequence {(un, vn)} is bounded in X. Suppose that is not the case.

Passing to a subsequence if necessary, we can assume that

∥(un, vn)∥ : = max
{
∥un∥W 1,p(x)

0 (Ω)
, ∥vn∥W 1,q(x)

0 (Ω)

}
→ +∞ (3.2)

as n→ +∞. From condition (F0), it follows that

|F(x, u, v)| =
∣∣ 1

max{ηp+, ηq+}
[Fu(x, u, v)u+ Fv(x, u, v)v ]− F (x, u, v)

∣∣ ≤ c4 (3.3)

for all x ∈ Ω and (u, v) ∈ R2 with |(u, v)| ≤ L.

Combining (F3) and (3.3) leads to

F(x, u, v) =
1

max{ηp+, ηq+}
[Fu(x, u, v)u+ Fv(x, u, v)v ]− F (x, u, v)

≥c1 (|u|p
−
+ |v|q

−
)− c4 (3.4)

for all x ∈ Ω and (u, v) ∈ R2.

It follows from (M0), (M1) and (3.4) that

c5 ≥I(un, vn) +
1

max{ηp+, ηq+}
(1 + ∥(un, vn)∥)∥I ′(un, vn)∥

≥I(un, vn)−
1

max{ηp+, ηq+}
⟨I ′(un, vn), (un, vn)⟩

=M̂
(∫

Ω

|∇un|p(x) +
√
1 + |∇un|2p(x)

p(x)
dx

)
+

M̂
(∫

Ω

|∇vn|q(x) +
√
1 + |∇vn|2q(x)

q(x)
dx

)
−
∫
Ω

F (x, un, vn) dx−

M(
∫
Ω

|∇un|p(x)+
√

1+|∇un|2p(x)

p(x) dx)

max{ηp+, ηq+}

∫
Ω

(
|∇un|p(x) +

|∇un|2p(x)√
1 + |∇un|2p(x)

)
dx−

M(
∫
Ω

|∇vn|q(x)+
√

1+|∇vn|2q(x)

q(x) dx)

max{ηp+, ηq+}

∫
Ω

(
|∇vn|q(x) +

|∇vn|2q(x)√
1 + |∇vn|2q(x)

)
dx+

1

max{ηp+, ηq+}

[ ∫
Ω

Fu(x, un, vn)un dx+

∫
Ω

Fv(x, un, vn)vn dx
]

≥ 1

ηp+
M

(∫
Ω

|∇un|p(x) +
√
1 + |∇un|2p(x)

p(x)
dx

)∫
Ω

(
|∇un|p(x) +

√
1 + |∇un|2p(x)

)
dx+

1

ηq+
M

(∫
Ω

|∇vn|q(x) +
√
1 + |∇vn|2q(x)

q(x)
dx

)∫
Ω

(
|∇vn|q(x) +

√
1 + |∇vn|2q(x)

)
dx−

M(
∫
Ω

|∇un|p(x)+
√

1+|∇un|2p(x)

p(x) dx)

max{ηp+, ηq+}

∫
Ω

(
|∇un|p(x) +

|∇un|2p(x)√
1 + |∇un|2p(x)

)
dx−

M(
∫
Ω

|∇vn|q(x)+
√

1+|∇vn|2q(x)

q(x) dx)

max{ηp+, ηq+}

∫
Ω

(
|∇vn|q(x) +

|∇vn|2q(x)√
1 + |∇vn|2q(x)

)
dx+



Existence of solutions for a nonlocal problem with variable exponent operator 49∫
Ω

F(x, un, vn) dx

≥m0(
1

ηp+
− 1

max{ηp+, ηq+}
)

∫
Ω

1√
1 + |∇un|2p(x)

dx+

m0(
1

ηq+
− 1

max{ηp+, ηq+}
)

∫
Ω

1√
1 + |∇vn|2q(x)

dx+

∫
Ω

F(x, un, vn) dx

≥
∫
Ω

F(x, un, vn) dx

≥c1
(∫

Ω

|un|p
−
dx+

∫
Ω

|vn|q
−
dx

)
− c4 |Ω|.

So, we have ∫
Ω

F(x, un, vn) dx ≤ c5 (3.5)

and ∫
Ω

|un|p
−
dx+

∫
Ω

|vn|q
−
dx ≤ c6. (3.6)

Set

ωn =
un

∥un∥W 1,p(x)
0 (Ω)

,

then ∥ωn∥W 1,p(x)
0 (Ω)

= 1. By (3.6), it holds that∫
Ω

|ωn|p
−
dx =

1

∥un∥p
−

W
1,p(x)
0 (Ω)

∫
Ω

|un|p
−
dx ≤ c6

∥un∥p
−

W
1,p(x)
0 (Ω)

. (3.7)

Without loss of generality, we may assume ∥un∥W 1,p(x)
0 (Ω)

≥ ∥vn∥W 1,q(x)
0 (Ω)

> 1. By (3.2) and

(3.7), we have ∫
Ω

|ωn|p
−
dx→ 0, as n→ ∞. (3.8)

By σ > p∗

(1−θ)(p∗−p−) , θ ∈ (0, 1) and p∗ > p−, one then arrives that

σ > 1,
σ − 1

θσ
> 1,

(1− θ)σp−

(1− θ)σ − 1
< p∗.

According to Proposition 2.5, we deduce that the embedding W
1,p(x)
0 (Ω) ↪→ L

(1−θ)σp−
(1−θ)σ−1 (Ω) is

compact, then there exists constant c7 > 0, such that∫
Ω

|ωn|
(1−θ)σp−
(1−θ)σ−1 dx ≤ c7

(
∥ωn∥W 1,p(x)

0 (Ω)

) (1−θ)σ−1

(1−θ)σp− = c7. (3.9)

It follows from the Hölder inequality, (3.9) that∫
Ω

|ωn|p
−σ′

dx =

∫
Ω

|ωn|
σp−
σ−1 dx

=

∫
Ω

|ωn|
θσp−
σ−1 |ωn|

(1−θ)σp−
σ−1 dx

≤
[ ∫

Ω

(|ωn|
θσp−
σ−1 )

σ−1
θσ dx

] θσ
σ−1

[ ∫
Ω

(|ωn|
(1−θ)σp−

σ−1 )
1

1− θσ
σ−1 dx

]1− θσ
σ−1
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=
(∫

Ω

|ωn|p
−
dx

) θσ
σ−1

(∫
Ω

|ωn|
(1−θ)σp−
(1−θ)σ−1 dx

)1− θσ
σ−1

≤
(∫

Ω

|ωn|p
−
dx

) θσ
σ−1

(c7)
1− θσ

σ−1 ,

where 1
σ + 1

σ′ = 1. Hence, by (3.8) we have∫
Ω

|ωn|p
−σ′

dx −→ 0, as n→ ∞. (3.10)

From (3.3), (3.5), (F0), (F4), using Hölder inequality, we can prove that∣∣∣ ∫
Ω

F (x, un, vn)

∥un∥p
−

W
1,p(x)
0 (Ω)

+ ∥vn∥q
−

W
1,q(x)
0 (Ω)

dx
∣∣∣

≤
∫
{x∈Ω||(u,v)|>L}

|F (x, un, vn)|
∥un∥p

−

W
1,p(x)
0 (Ω)

+ ∥vn∥q
−

W
1,q(x)
0 (Ω)

dx+

∫
{x∈Ω||(u,v)|≤L}

|F (x, un, vn)|
∥un∥p

−

W
1,p(x)
0 (Ω)

+ ∥vn∥q
−

W
1,q(x)
0 (Ω)

dx

≤
∫
{x∈Ω||(u,v)|>L}

|F (x, un, vn)|
∥un∥p

−

W
1,p(x)
0 (Ω)

dx+

∫
{x∈Ω||(u,v)|≤L}

|F (x, un, vn)|
∥un∥p

−

W
1,p(x)
0 (Ω)

+ ∥vn∥q
−

W
1,q(x)
0 (Ω)

dx

≤
∫
{x∈Ω||(u,v)|>L}

|F (x, un, vn)|
|un|p− |ωn|p

−
dx+

c8

∥un∥p
−

W
1,p(x)
0 (Ω)

+ ∥vn∥q
−

W
1,q(x)
0 (Ω)

≤
(∫

{x∈Ω||(u,v)|>L}
(
|F (x, un, vn)|

|un|p− )σ dx
) 1

σ
(∫

{x∈Ω||(u,v)|>L}
|ωn|p

−σ′
dx

) 1
σ′
+

c8

∥un∥p
−

W
1,p(x)
0 (Ω)

+ ∥vn∥q
−

W
1,q(x)
0 (Ω)

≤
(
c2

∫
{x∈Ω||(u,v)|>L}

F(x, un, vn) dx
) 1

σ
(∫

{x∈Ω||(u,v)|>L}
|ωn|p

−σ′
dx

) 1
σ′
+

c8

∥un∥p
−

W
1,p(x)
0 (Ω)

+ ∥vn∥q
−

W
1,q(x)
0 (Ω)

≤
(
c2

∫
Ω

F(x, un, vn) dx− c2

∫
{x∈Ω||(u,v)|≤L}

F(x, un, vn) dx
) 1

σ
(∫

Ω

|ωn|p
−σ′

dx
) 1

σ′
+

c8

∥un∥p
−

W
1,p(x)
0 (Ω)

+ ∥vn∥q
−

W
1,q(x)
0 (Ω)

≤ (c2c5 + c2c4|Ω|)
1
σ

(∫
Ω

|ωn|p
−σ′

dx
) 1

σ′
+

c8

∥un∥p
−

W
1,p(x)
0 (Ω)

+ ∥vn∥q
−

W
1,q(x)
0 (Ω)
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for large n. From (3.2) and (3.10) one obtains∣∣∣ ∫
Ω

F (x, un, vn)

∥un∥p
−

W
1,p(x)
0 (Ω)

+ ∥vn∥q
−

W
1,q(x)
0 (Ω)

dx
∣∣∣ −→ 0, as n→ ∞. (3.11)

Without loss of generality, we may assume ∥un∥W 1,p(x)
0 (Ω)

≥ ∥vn∥W 1,q(x)
0 (Ω)

> 1. Using

Proposition 2.6, condition (M0), we deduce that

c3 ≥I(un, vn)

=M̂
(∫

Ω

|∇un|p(x) +
√

1 + |∇un|2p(x)
p(x)

dx
)
+ M̂

(∫
Ω

|∇vn|q(x) +
√
1 + |∇vn|2q(x)

q(x)
dx

)
−∫

Ω

F (x, un, vn) dx

≥
∫ ∫

Ω

|∇un|p(x)+

√
1+|∇un|2p(x)

p(x)
dx

0

M(s) ds+

∫ ∫
Ω

|∇vn|q(x)+

√
1+|∇vn|2q(x)

q(x)
dx

0

M(s) ds−∫
Ω

F (x, un, vn) dx

≥m0

p+

∫
Ω

|∇un|p(x) dx+
m0

q+

∫
Ω

|∇vn|q(x) dx−
∫
Ω

F (x, un, vn) dx

≥m0

p+
∥un∥p

−

W
1,p(x)
0 (Ω)

+
m0

q+
∥vn∥q

−

W
1,q(x)
0 (Ω)

−
∫
Ω

F (x, un, vn) dx.

Hence, we have

c3

∥un∥p
−

W
1,p(x)
0 (Ω)

+ ∥vn∥q
−

W
1,q(x)
0 (Ω)

≥ min{m0

p+
,
m0

q+
} −

∫
Ω

F (x, un, vn)

∥un∥p
−

W
1,p(x)
0 (Ω)

+ ∥vn∥q
−

W
1,q(x)
0 (Ω)

dx. (3.12)

Combining (3.2), (3.11) with (3.12), we can infer that

0 ≥ min{m0

p+
,
m0

q+
}.

This contradicts the fact that m0 > 0, p+ > 1 and q+ > 1. Hence {(un, vn)} is bounded in X.

Notice that the Banach space W
1,p(x)
0 (Ω) is reflexive, and there exists u ∈ W

1,p(x)
0 (Ω) such

that the sequence {un}, passing to the subsequence, still denoted by {un}, converges weakly to

u in W
1,p(x)
0 (Ω) and converges strongly to u in Lα(x)(Ω). Furthermore, by (F0), applying Hölder

inequality yields∣∣∣ ∫
Ω

Fu(x, un, vn)(un − u) dx
∣∣∣ ≤ ∫

Ω

|Fu(x, un, vn)||un − u| dx

≤ c

∫
Ω

|1 + |un|α(x)−1| |un − u|dx

≤ 2c |1 + |un|α(x)−1|(α′(x)) |un − u|α(x),

which implies that

lim
n→∞

∫
Ω

Fu(x, un, vn)(un − u) dx = 0. (3.13)
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By (F0), similar to the proof of (3.13), there exists v ∈ W
1,q(x)
0 (Ω) such that passing to the

subsequence, still denoted by {vn}, we have

lim
n→∞

∫
Ω

Fv(x, un, vn)(vn − v) dx = 0. (3.14)

On the other hand, by (3.1), we have

⟨I ′(un, vn), (un − u, vn − v)⟩ → 0, as n→ ∞.

Thus, from (M0), we get

⟨A(un), un − u⟩ =
∫
Ω

(
|∇un|p(x)−2∇un +

|∇un|2p(x)−2∇un√
1 + |∇un|2p(x)

)
(∇un −∇u) dx→ 0, as n→ ∞,

and

⟨B(vn), vn − v⟩ =
∫
Ω

(
|∇vn|q(x)−2∇vn +

|∇vn|2q(x)−2∇vn√
1 + |∇vn|2q(x)

)
(∇vn −∇v) dx→ 0, as n→ ∞.

By [14, Proposition 3.1], the functional A : W
1,p(x)
0 (Ω) → (W

1,p(x)
0 (Ω))∗ is a mapping of type

(S+), i.e., un ⇀ u (weakly) in W
1,p(x)
0 (Ω) and lim supn→∞ ⟨A(un), un − u⟩ ≤ 0, implies un →

u (strongly) in W
1,p(x)
0 (Ω). So we get un → u (strongly) in W

1,p(x)
0 (Ω). In a similar way, we

obtain that vn → v (strongly) in W
1,q(x)
0 (Ω), which implies that (un, vn) → (u, v) (strongly)

in X : = W
1,p(x)
0 (Ω) × W

1,q(x)
0 (Ω). This proves that I satisfies the (C) condition in X : =

W
1,p(x)
0 (Ω)×W

1,q(x)
0 (Ω). 2

Lemma 3.3 If (M0), (F0) and (F1) hold. Then there are constants ρ, δ > 0 such that

I |∂Bρ∩X ≥ δ > 0,

where ∂Bρ : = {(u, v) ∈ X|∥(u, v)∥ = ρ}.

Proof Condition (F0) and (F1) imply that for a given ε > 0, we can find cε > 0 such that

|F (x, u, v)| ≤ ε(|u|p
+

+ |v|q
+

) + cε(|u|α(x) + |v|β(x)), (3.15)

for all x ∈ Ω and every (u, v) ∈ R2.

Since the embeddings W
1,p(x)
0 (Ω) ↪→ Lp+

(Ω) and W
1,p(x)
0 (Ω) ↪→ Lα(x)(Ω) are continuous and

compact, for all u ∈W
1,p(x)
0 (Ω). Then there exist constants c9, c10 > 0, such that

|u|p+ ≤ c9∥u∥W 1,p(x)
0 (Ω)

(3.16)

and

|u|α(x) ≤ c10∥u∥W 1,p(x)
0 (Ω)

. (3.17)

For ∥u∥
W

1,p(x)
0 (Ω)

small enough, we deduce that∫
Ω

|u|α(x)dx ≤ max{ |u|α
−

α(x), |u|
α+

α(x) } ≤ c11 ∥u∥α
−

W
1,p(x)
0 (Ω)

. (3.18)

Similar to the proof of (3.16) and (3.18), there exist constants c12, c13 > 0 such that

|v|q+ ≤ c12∥v∥W 1,q(x)
0 (Ω)

, (3.19)
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and for ∥v∥
W

1,q(x)
0 (Ω)

small enough, we have∫
Ω

|v|β(x)dx ≤ max{ |v|β
−

β(x), |v|
β+

β(x) } ≤ c13 ∥v∥β
−

W
1,q(x)
0 (Ω)

. (3.20)

Taking into account (3.15), (3.16), (3.18)–(3.20), we obtain that∣∣∣ ∫
Ω

F (x, u, v) dx
∣∣∣

≤ ε
[ ∫

Ω

|u|p
+

dx+

∫
Ω

|v|q
+

dx
]
+ cε

[ ∫
Ω

|u|α(x) dx+

∫
Ω

|v|β(x) dx
]

≤ ε
[
c9∥u∥p

+

W
1,p(x)
0 (Ω)

+ c12∥v∥q
+

W
1,q(x)
0 (Ω)

]
+ cε

[
c11∥u∥α

−

W
1,p(x)
0 (Ω)

+ c13∥v∥β
−

W
1,q(x)
0 (Ω)

]
. (3.21)

For any (u, v) ∈ X, ∥v∥
W

1,q(x)
0 (Ω)

≤ ∥u∥
W

1,p(x)
0 (Ω)

< 1, by condition (M0) and Proposition

2.6, one has that

M̂
(∫

Ω

|∇u|p(x) +
√

1 + |∇u|2p(x)
p(x)

dx
)
+ M̂

(∫
Ω

|∇v|q(x) +
√
1 + |∇v|2q(x)

q(x)
dx

)

=

∫ ∫
Ω

|∇u|p(x)+

√
1+|∇u|2p(x)

p(x)
dx

0

M(s) ds+

∫ ∫
Ω

|∇v|q(x)+

√
1+|∇v|2q(x)

q(x)
dx

0

M(s) ds

≥ m0

p+

∫
Ω

|∇u|p
+

dx+
m0

q+

∫
Ω

|∇v|q
+

dx

≥ m0

p+
∥u∥p

+

W
1,p(x)
0 (Ω)

+
m0

q+
∥v∥q

+

W
1,q(x)
0 (Ω)

. (3.22)

Choosing ε > 0 such that

ε c9 ≤ m0

2p+
and ε c12 ≤ m0

2q+

for any (u, v) ∈ X, ∥v∥
W

1,q(x)
0 (Ω)

≤ ∥u∥
W

1,p(x)
0 (Ω)

< 1 and ∥u∥
W

1,p(x)
0 (Ω)

small enough, by (3.21)

and (3.22), we have

I(u, v) =M̂
(∫

Ω

|∇u|p(x) +
√
1 + |∇u|2p(x)

p(x)
dx

)
+ M̂

(∫
Ω

|∇v|q(x) +
√
1 + |∇v|2q(x)

q(x)
dx

)
−∫

Ω

F (x, u, v) dx

≥(
m0

p+
− ε c9)∥u∥p

+

W
1,p(x)
0 (Ω)

+ (
m0

q+
− ε c12)∥v∥q

+

W
1,q(x)
0 (Ω)

−

cε[c11∥u∥α
−

W
1,p(x)
0 (Ω)

+ c13∥v∥β
−

W
1,q(x)
0 (Ω)

]

≥(
m0

2p+
− cε c11 ∥u∥α

−−p+

W
1,p(x)
0 (Ω)

)∥u∥p
+

W
1,p(x)
0 (Ω)

+

(
m0

2q+
− cε c13 ∥v∥β

−−q+

W
1,q(x)
0 (Ω)

)∥u∥q
+

W
1,q(x)
0 (Ω)

≥(
m0

2p+
− cε c11 ∥u∥α

−−p+

W
1,p(x)
0 (Ω)

)∥u∥p
+

W
1,p(x)
0 (Ω)

=(
m0

2p+
− cε c11 ∥(u, v)∥α

−−p+

)∥(u, v)∥p
+

. (3.23)
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At this stage, we fix ρ as follows:

ρ := (
m0

4cε c11 p+
)

1

α−−p+ .

Consequently, if ∥(u, v)∥ = ρ, then

I(u, v) ≥ m0

4p+
ρp

+

: = δ > 0,

which implies the conclusion of Lemma 3.3 holds. 2
Lemma 3.4 If (M1), (F0) and (F2) hold. Then, for all finite-dimensional subspace X̃ of X,

there exists positive constant r(X̃) such that I(u, v) ≤ 0 for (u, v) ∈ X̃\Br(0), where Br(0) is

an open ball in X̃ of radius r centred at 0.

Proof Let t1 > 0. By (M1), we find that

M(t)

M̂(t)
≤ η

t

for every t ∈ [t1,+∞). Integrating this inequality, we obtain

ln
M̂(t)

M̂(t1)
=

∫ t

t1

M(s)

M̂(s)
ds ≤

∫ t

t1

η

s
ds = ln(

t

t1
)η

for every t ∈ [t1,+∞). Therefore,

M̂(t) ≤ M̂(t1)

tη1
tη

for every t ∈ [t1,+∞). Thus there exist constants c14 > 0 and c15 > 0, such that

M̂(t) ≤ c14 t
η + c15 (3.24)

for all t > 0, where c14 := M̂(t1)
tη1

and c15 := maxt∈[0,t1] M̂(t).

From (F0) and (F2), it follows that, ∀ϑ > 0, there exists constant c16 > 0, such that

F (x, u, v) ≥ ϑ(|u|ηp
+

+ |v|ηq
+

)− c16 (3.25)

for all x ∈ Ω and (u, v) ∈ R2.

Without loss of generality, we may assume ∥u∥
W

1,p(x)
0 (Ω)

≥ ∥v∥
W

1,q(x)
0 (Ω)

> 1. Let

∥(u, v)∥ := max{∥u∥
W

1,p(x)
0 (Ω)

, ∥v∥
W

1,q(x)
0 (Ω)

} ≥ r > 1.

By (3.24), (3.25) and Proposition 2.6, for (u, v) ∈ X̃, we have

I(u, v) =M̂
(∫

Ω

|∇u|p(x) +
√
1 + |∇u|2p(x)

p(x)
dx

)
+ M̂

(∫
Ω

|∇v|q(x) +
√

1 + |∇v|2q(x)
q(x)

dx
)
−∫

Ω

F (x, u, v) dx

≤c14
[( ∫

Ω

|∇u|p(x) +
√

1 + |∇u|2p(x)
p(x)

dx
)η

+
(∫

Ω

|∇v|q(x) +
√
1 + |∇v|2q(x)

q(x)
dx

)η]
+

2c15 −
∫
Ω

F (x, u, v) dx
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≤c14(
1

p−
)η
[ ∫

Ω

(2|∇u|p(x) + 1)dx
]η

+ c14(
1

q−
)η
[ ∫

Ω

(2|∇v|q(x) + 1)dx
]η
+

2c15 −
∫
Ω

F (x, u, v) dx

≤c14(
1

p−
)η(2∥u∥p

+

W
1,p(x)
0 (Ω)

+ |Ω|)η + c14(
1

q−
)η(2∥v∥q

+

W
1,q(x)
0 (Ω)

+ |Ω|)η+

2c15 − ϑ
[ ∫

Ω

|u|ηp
+

dx+

∫
Ω

|v|ηq
+

dx
]
+ c16|Ω|

≤[c14(
2

p−
)η∥u∥ηp

+

W
1,p(x)
0 (Ω)

− ϑ

∫
Ω

|u|ηp
+

dx]+

[c14(
2

q−
)η∥v∥ηq

+

W
1,q(x)
0 (Ω)

− ϑ

∫
Ω

|v|ηq
+

dx] + c17. (3.26)

Because all norms on the finite dimension space are equivalent, choosing ϑ large enough, (3.26)

implies the conclusion of Lemma 3.4 holds. 2
Proof of Theorem 1.1 By Lemmas 3.2–3.4, the functional I satisfies all the assumptions of

Theorem 3.1. Therefore, I possesses an unbounded sequence of critical values. Thus, problem

(1.5) has infinitely many weak solutions. The proof of Theorem 1.1 is completed. 2
Acknowledgements We thank the referees for their time and comments.
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