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Abstract By combined power evolution laws of the spectral parameter and the initial constants

of integration, a new differential-difference hierarchy is presented from the Toda spectral problem.

The hierarchy contains the classic Toda lattice equation, the nonisospectral Toda lattice equation

and the mixed Toda lattice equation as reduced cases. The evolution of the scattering data in

the inverse scattering transform is analyzed in detail and exact soliton solutions are computed

through the corresponding inverse scattering transform.
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1. Introduction

Integrability is one of the most important characters of soliton equations. For decades,

many methods have been developed to research the integrability of soliton equations. First of

all, a soliton equation is called integrable, if it has a Lax pair [1]. Based on Lax pairs, many

other integrable properties can be discussed such as infinitely many conservation laws [2–4],

bi-Hamiltonian structures [5–7], nonlinearizations of Lax pairs [8, 9], Darboux and Bäcklund

transformation [10], Lie algebras structures [11, 12], and so on. However, the Hirota bilinear

method is the other powerful tool to study soliton equations which does not depend on Lax

pairs [13, 14]. It can not only solve soliton equations, but also nonlinear systems of ordinary

differential equations [15–17]. In general, a soliton equation is considered to be integrable if it

can be transformed into bilinear derivative forms and owns N -soliton solutions (N ≥ 3). It is

interesting that many other solutions can also be gotten by the bilinear method such as lump

and kink solutions of high dimensional soliton equations [18–20].

The inverse transformation (IST) [21] is a useful method to study soliton equations [22, 23].

Over the years, research has shown that all the methods mentioned above have relations with

the IST. Sometimes a soliton equation is considered to be integrable if it can be solved through

the IST. The IST can solve not only the classic soliton equations but also soliton equations with

self-consistent sources [24], nonisospectral soliton equations [25–28] and nonisospectral soliton
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equations with self-consistent sources [29]. More recently, there have been a lot of popular works

on multi-component local and nonlocal soliton equations by the inverse scattering transformation

[30–32]. One advantage of this powerful tool is that it can be applied to a whole hierarchy

of evolution equations related to a certain spectral problem [27]. It is interesting that the

exponential matrix solutions can also be obtained by this method [33–35].

In general, there are two sets of evolution equations, called the isospectral hierarchy and

the nonisospectral hierarchy, respectively, generated from the same spectral problem [36–38].

Isospectral equations often describe the solitary waves in the lossless and uniform media, while

the nonisospectral equations, the solitary waves in a certain type of nonuniform media [26–29,39].

Nonisospectral soliton equations presents τ -symmetries [12], and we often take λt = λk, k ∈ N
as we construct continuous nonisospectral soliton equations. But this is not the case of the Toda

lattice equation.

In 2011, Zhang et al. considered the following relation

λt =

{
µ(λk+1 − 2k+1), k is a positive odd number,

µλ(λk − 2k), k is a postive even number,

where λt is the derivative of λ with respect to t and µ is a constant. By these relations, two Toda

hierarchies were obtained. They were proved to be integrable through the IST [27]. Is there

any other evolution law of the spectral parameter which allows one to construct nonisospectral

integrable lattice equations?

In this paper, we would like to consider a new relation between the time t and the spectral

parameter

λt = µ(λk+1 − 4λk−1).

A new differential-difference hierarchy of mixed isospectral and nonisospectral equations is con-

structed from the Toda spectral problem with new integration conditions. The scattering data

depending on t will be discussed in detail. The IST will be used to solve an initial-value problem

for the differential-difference hierarchy in a systematic way.

The paper is organized as follows. In Section 2, we will construct a new differential-difference

hierarchy from the Toda spectral problem. In Section 3, we will establish the IST theory for the

new hierarchy and construct soliton solutions of the hierarchy through the IST. Some conclusions

and remarks will be given in Section 4.

2. A new differential-difference hierarchy

Let Ws = {w(t, n) = (w1, w2, . . . , ws)
T } be an s-dimensional vector field space, where wi =

wi(t, n), 1 ≤ i ≤ s are all real functions defined over R× Z, and vanish rapidly as |n| → ∞. E

is the shift operator defined as Ekf(n) = f(n+ k), k ∈ Z and n is a discrete variable.

Definition 2.1 Let f(t, n) = (f1, f2, . . . , fs)
T , g(t, n) = (g1, g2, . . . , gs)

T ∈ Ws be two vector
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functions. The inner product of them is defined as

⟨f(t, n), g(t, n)⟩ =
∞∑

n=−∞

s∑
j=1

fj(t, n)gj(t, n).

Definition 2.2 Suppose that Ψ :Ws →Ws is an operator. Ψ∗ is called the conjugate operator

of Ψ, if

⟨Ψf(t, n), g(t, n)⟩ = ⟨f(t, n),Ψ∗g(t, n)⟩.

An operator Ψ is called skew-symmetric if

⟨Ψf(t, n), g(t, n)⟩ = −⟨f(t, n),Ψg(t, n)⟩,

i.e., Ψ∗ = −Ψ.

After the above preparation, let us introduce a new differential-difference hierarchy. Consider

the spectral problem of the Toda lattice [40–42]

EΦ =MΦ, M =

(
0 1

−u(t, n) λ− v(t, n)

)
, Φ =

(
ϕ1(t, n)

ϕ2(t, n)

)
, (2.1a)

and the time evolution

Φt = NΦ, N =

(
A(n) B(n)

C(n) D(n)

)
, (2.1b)

where u(t, n), v(t, n), A(n), B(n), C(n) and D(n) defined over R × Z are smooth functions, λ

is a spectral parameter and the subscript t denotes the derivative with respect to t. We assume

that (u(t, n), v(t, n)) goes to (1, 0) rapidly as |n| → ∞ for the physical background of the Toda

lattice. The compatibility condition of (2.1) reads

Mt = (EN)M −MN, (2.2)

which gives

u(t, n)B(n+ 1) + C(n) = 0, (2.3a)

A(n+ 1) + (λ− v(t, n))B(n+ 1)−D(n) = 0, (2.3b)

u(t, n)t = u(t, n)D(n+ 1)− u(t, n)A(n) + (λ− v(t, n))C(n), (2.3c)

v(t, n)t = −C(n+ 1)− (λ− v(t, n))D(n+ 1)− u(t, n)B(n) + (λ− v(t, n))D(n) + λt. (2.3d)

By simple calculation, we obtain(
lnu(t, n)

v(t, n)

)
t

= L1

(
D(n)

B(n)

)
− λL2

(
D(n)

B(n)

)
+ λt

(
0

1

)
, (2.4)

where

L1 =

(
E − E−1 (E − 1)v(t, n− 1)

v(t, n)(E − 1) Eu(t, n)E − u(t, n)

)
, L2 =

(
0 E − 1

E − 1 0

)
.

To construct an integrable hierarchy, we expand (D(n), B(n))T as a series(
D(n)

B(n)

)
=

k∑
j=0

(
dn,j

bn,j

)
λk−j (2.5)
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and let

λtk = µ(λk+1 − 4λk−1), (2.6)

where µ is a constant and k is an arbitrary non-negative integer by which we can generate a

differential-difference hierarchy. In (2.6) and below, we add a subscript k for t to correspond to

the time evolution relation (2.6). Comparing the coefficients of the same power of the λ in (2.4),

we get (
lnu(t, n)

v(t, n)

)
tk

= L1

(
dn,k

bn,k

)
,

L2

(
dn,j+1

bn,j+1

)
= L1

(
dn,j

bn,j

)
, j ≥ 2, j = 0,

L2

(
dn,2

bn,2

)
= L1

(
dn,1

bn,1

)
− 4

(
0

µ

)
,

L2

(
dn,0

bn,0

)
=

(
0

µ

)
.

Under a new boundary condition(
D(n)

B(n)

)
(u(n,t),v(n,t))=(1,0)

=

(
nµλk + νλk−1

νλk + 2nµλk−1

)
, (2.7)

we obtain a new differential-difference hierarchy(
lnu(n, t)

v(n, t)

)
tk

= Hk = Lk

(
2µ+ ν(v(n, t)− v(n− 1, t))

µv(n, t) + ν(u(n+ 1, t)− u(n, t))

)
− 4Lk−1

(
0

µ

)
, (2.8)

where µ and ν are arbitrary constants satisfying µ2 + ν2 ̸= 0 and L = L1L
−1
2 . In fact, (2.8) can

be looked as a new mixed Toda lattice hierarchy and µ presents the non-isospectral part while ν

presents the isospectral part. For example,

• k = 0, (µ, ν) = (0, 1).

In this case, (2.8) becomes(
lnu(n, t)

v(n, t)

)
t

=

(
v(n, t)− v(n− 1, t)

u(n+ 1, t)− u(n, t)

)
,

which is the classic Toda lattice equation

d2

dt2
x(n, t) = exp [x(n− 1, t)− x(n, t)]− exp [x(n, t)− x(n+ 1, t)]

by taking u(n, t) = exp [x(n− 1, t)− x(n, t)], v(n, t) = −x(n, t).
• k = 1, (µ, ν) = (1, 0).

In this case, (2.8) becomes(
lnu(n, t)

v(n, t)

)
t

=

(
v(n, t) + v(n− 1, t) + 2(n+ 1)v(n, t)− 2nv(n− 1, t)

v2(n, t) + 2(n+ 2)u(n+ 1, t)− 2nu(n, t)− 4

)
, (2.9)
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which is the first nonisospectral Toda lattice.

• k = 1, µν ̸= 0.

In this case, (2.8) gives(
lnu(n, t)

v(n, t)

)
t

=

(
(E − 1)v(n− 1, t)a11 + (1 + E−1)a12

(Eu(n, t)E − u(n, t))a11 + v(n, t)a12 − 4µ

)
(2.10)

which is the first mixed Toda lattice, where{
a11 = 2nµ+ νv(n+ 1, t),

a12 = µv(n, t) + ν[u(n+ 1, t)− u(n, t)].

Here we note that the boundary condition (2.7) is necessary. It guarantees Hk = 0 when

(u(n, t), v(n, t)) = (1, 0), which keeps the consistence of the both sides of (2.8) when |n| → ∞.

Before moving to the next section, let us discuss some properties of the operators related to

the differential-difference hierarchy.

Let

Γ =

(
u(n, t)E−1 − Eu(n, t) v(n, t)(1− E)

(E−1 − 1)v(n, t) E−1 − E

)
, J =

(
0 1− E

E−1 − 1 0

)
,

and

P =

(
v(n, t) (Eu(n, t)E − u(n, t))(E − 1)−1

1 + E−1 (E − 1)v(n− 1, t)(E − 1)−1

)
be three operators W2 →W2, then the following propositions hold.

Proposition 2.3 The vector (dn,j , bn,j)
T in (2.5) satisfies another recurrence relation:

(E − 1)

(
dn,j+1

bn,j+1

)
= P (E − 1)

(
dn,j

bn,j

)
, j ≥ 2.

Proof It is easy to verify that (E − 1)L−1
2 L1 = P (E − 1), which completes the proof. 2

Proposition 2.4 The operators Γ and J are skew-symmetric and satisfy P = ΓJ−1.

Proof It is easy to verify P = ΓJ−1. Now let us prove T and J are both skew-symmetric. Let

f(n, t) = (f1(n), f2(n))
T , g(n, t) = (g1(n), g2(n))

T ∈W2.

Then we have

⟨Γf(n, t), g(n, t)⟩

=
∞∑

n=−∞
{[u(n, t)f1(n− 1)− u(n+ 1, t)f1(n+ 1) + v(n, t)f2(n)− v(n, t)f2(n+ 1)]g1(n)+

[v(n− 1, t)f1(n− 1)− v(n, t)f1(n) + f2(n− 1)− f2(n+ 1)]g2(n)}

=
∞∑

n=−∞
{f1(n)[u(n+ 1, t)g1(n+ 1)− u(n, t)g1(n− 1) + v(n, t)g2(n+ 1)− v(n, t)g2(n)]+

f2(n)[v(n, t)g1(n)− v(n− 1, t)g1(n− 1) + g2(n+ 1)− g2(n− 1)]
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= ⟨f(n, t),−Γg(n, t)⟩}.

Similarly, we can also obtain

⟨Jf(n, t), g(n, t)⟩ = ⟨f(n, t),−Jg(n, t)⟩. 2
Finally, we remark that if we take ϕ2(n, t) = ϕ(n, z) and λ = z + 1

z in (2.1), the Lax pair of

the Toda lattice can be rewritten as

ϕ(n+ 1, z) + u(n, t)ϕ(n− 1, z) + v(n, t)ϕ(n, z) = (z +
1

z
)ϕ(n, z), (2.11a)

ϕ(n, z)t = C(n, t)ϕ(n− 1, z) +D(n, t)ϕ(n, z). (2.11b)

Eq. (2.11) will be our starting point of the IST procedure in the next section.

3. Solving the new differential-difference hierarchy

In this section, we will solve the whole differential-difference hierarchy by the IST. To make

the paper self-contained, we will give a few results existing in some references.

3.1. The direct scattering problem

In this subsection, we will introduce the direct scattering theory of the Toda hierarchy in

some references. Since all the results in the direct scattering part only have relations with the

variable n, they also satisfy the whole differential-difference hierarchy. Moreover, we note that

the bar does not denote the complex conjugation and instead we use ∗ to denote the complex

conjugation.

Lemma 3.1 ([43]) Suppose that the potentials u(n, t) and v(n, t) satisfy

∞∑
n=−∞

|nj(u(n, t)− 1)| <∞ and
∞∑

n=−∞
|njv(n, t)| <∞, j = 0, 1, 2.

Then the spectral problem (2.11a) has two sets of Jost solutions ϕn(z), ϕ̄n(z) and ψn(z), ψ̄n(z)

which are bounded for all values of n, and satisfy the following asymptotic behaviors:

• n→ +∞
ϕn(z) ∼ zn, ϕ̄n(z) ∼ z−n,
d
dzϕn(z) ∼ nzn−1, d

dz ϕ̄n(z) ∼ −nz−n−1;
(3.1a)

• n→ −∞
ψn(z) ∼ z−n, ψ̄n(z) ∼ zn,
d
dzψn(z) ∼ −nz−n−1, d

dz ψ̄n,z(z) ∼ nzn−1.
(3.1b)

Furthermore, ϕn(z) and ψn(z) are analytic in the inside of unit circle, i.e., |z| ≤ 1 on complex

plane of z, while ϕ̄n(z) and ψ̄n(z) are analytic outside of the unit circle, i.e., |z| > 1. In addition,

on unit circle, i.e., |z| = 1, ϕn(z) and ψn(z) satisfy

ϕ̄n(z) = ϕ∗n(z), ψ̄n(z) = ψ∗
n(z).
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Let

Sn =
∞∏

j=n+1

u(j, t),

and

θn(z) =
√
Snϕn(z).

We define the discrete Wronskian as follows.

Definition 3.2 The discrete Wronskian of spectral functions ϕn(z) and ψn(z) is defined by

W (ϕn(z), ψn(z)) = Sn−1[ϕn(z)ψn−1(z)− ϕn−1(z)ψn(z)].

Noticing that ϕn(z), ϕ̄n(z) and ψn(z), ψ̄n(z) are two sets of linearly independent solutions to

the second order difference equation (2.14a), we can suppose that they satisfy following linear

relations:

ψn(z) = a(z)ϕ̄n(z) + b(z)ϕn(z), (3.2a)

ψ̄n(z) = ā(z)ϕn(z) + b̄(z)ϕ̄n(z). (3.2b)

According to Eq. (3.2) and the asymptotic condition (3.1), we have

(z − 1

z
)a(z) =W (ϕn(z), ψn(z)), (z − 1

z
)b(z) =W (ψn(z), ϕ̄n(z)),

(z − 1

z
)ā(z) = −W (ϕ̄n(z), ψ̄n(z)), (z − 1

z
)b̄(z) =W (ϕn(z), ψ̄n(z)),

and the zeros of a(z) (ā(z)) obey the following lemma:

Lemma 3.3 ([43]) The function a(z) (ā(z)) has only a finite number of zeros at z1, z2, . . . , zl

in the unit circle.

From the above lemma, ϕn(zj) and ψn(zj) are linearly dependent, which means there exists

a constant bj such that

ψn(zj) = bjϕn(zj), j = 1, 2, . . . , l.

Lemma 3.4 ([27]) Assume that a(z) and ā(z) have only simple roots z1, z2, . . . , zl. Then we

have
∞∑

n=−∞
Snϕ

2
n(zj) = −zjaz(zj)

bj
, j = 1, 2, . . . , l,

where az(z) denotes the derivative of a(z) with respect to z.

Now let us define the normalization constants and normalization eigenfunctions as follows.

Definition 3.5 We call cj the normalization constant for the eigenfunction θn(zj) and cjθn(zj)

the normalization eigenfunction, if

∞∑
n=−∞

c2jSnϕ
2
n(zj) = ⟨cjθn(zj), cjθn(zj)⟩ = 1,

where zj is the simple root of a(zj) and it is also called discrete spectrum.
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By Lemma 3.4, it is easy to find that

c2j = − bj
zjaz(zj)

, j = 1, 2, . . . l.

In addition to the discrete spectrum zj of the square integrable eigenfunctions, there are continu-

ous spectrum z corresponding to the eigenfunction which cannot be normalized. The continuous

spectral is the complete circle |z| = 1.

Definition 3.6 The set

{|z| = 1, R(z) =
b(z)

a(z)
, zj , cj , j = 1, 2, . . . , l} (3.3)

is named the scattering data of the spectral problem (2.11a).

We have already gotten the expressions of the scattering data, and now let us consider the

evolution of them. It is very important to establish the IST. Since the evolution of the spectral

parameter λ is new, we will see that the evolution of the scattering data are also new, which

leads to different solutions.

3.2. The time dependence of the scattering data

In this part we will determine the time dependence of the scattering data.

Lemma 3.7 ([27]) Suppose that Φ(z) is a solution of (2.1a),M and N satisfy the zero curvature

equation (2.2). Then

Pn(z) = Φt(z)−NΦ(z)

solves (2.1a) as well.

Lemma 3.8 The formula

ϕn,tk(z)− C(n)ϕn−1(z)−D(n)ϕn(z) (3.4)

is equivalent to

θn,tk(z) +
1

2
B(n+ 1)(

√
u(n, t)θn−1(z)−

√
u(n+ 1, t)θn+1(z)) +

1

2
θn(z)(E − 1)D(n). (3.5)

Proof It is easy to obtain

Sn,tk(t) = −[D(n+ 1) +D(n)− (λ− v(n, t))B(n+ 1)]Sn

by (2.3). Further, we get

θn,tk(z) = −1

2
[D(n+ 1) +D(n)− (λ− v(n, t))B(n+ 1)]θn(z) +

√
Snϕn,tk(z). (3.6)

The spectral problem (2.11a) can be rewritten in term of θn(z) as√
u(n+ 1, t)θn+1(z) +

√
u(n, t)θn−1(z) + v(n, t)θn(z) = λθn(z). (3.7)

Now, multiplying Eq. (3.4) by
√
Sn yields

θn,tk(z) +
1

2
θn(z)(E − 1)D(n) + [

√
u(n, t)θn−1(z)−

1

2
(λ− v(n, t))θn(z)]B(n+ 1),
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where (3.6) has been used. Then, we complete the proof by using (3.7). 2
Lemma 3.9 The operator Γ owns an eigenvector (θ2n(z),

√
u(n, t)θn−1(z)θn(z))

T , its corre-

sponding eigenvalue is λ, i.e.,

Γ

(
θ2n(z)√

u(n, t)θn−1(z)θn(z)

)
= λ

(
θ2n(z)√

u(n, t)θn−1(z)θn(z)

)
.

Proof On one hand, multiplying (3.7) by θn(z), we get

(E−1 − 1)v(n, t)θ2n(z) + (E−1 − E)
√
u(n, t)θn−1(z)θn(z) = λ(E−1 − 1)θ2n(z). (3.8a)

On the other hand, multiplying (3.7) by
√
u(n, t)θn−1(zj) and

√
u(n+ 1, t)θn+1(zj) respectively,

then the subtraction of them gives

(u(n, t)E−1 − Eu(n, t))θ2n(z) + v(n, t)(1− E)
√
u(n, t)θn−1(z)θn(z)

=λ(1− E)
√
u(n, t)θn−1(z)θn(z).

(3.8b)

We complete the proof by rewriting (3.8a) and (3.8b) in vector forms. 2
Lemma 3.10 Let zj be the discrete spectrum of (2.11a) and θ̃(zj) = cjθ(zj) the normaliza-

tion eigenfunction. Then the product of the eigenvector (θ̃2n(zj),
√
u(n, t)θ̃n−1(zj)θ̃n(zj))

T and

(Dn, Bn)
T |λ=λj has following relation:⟨

(E − 1)

(
D(n)

B(n)

)∣∣∣∣
λ=λj

,

(
θ̃2n(zj)√

u(n, t)θ̃n−1(zj)θ̃n(zj)

)⟩
= (k + 1)µλkj − 4(k − 1)µλk−2

j ,

where λj = zj +
1
zj

and cj , j = 1, 2, . . . l is the normalization constant.

Proof For the θ̃(zj) is a normalization eigenfunction, we have⟨
(E − 1)

(
D(n)

B(n)

)∣∣∣∣
λ=λj

,

(
θ̃2n(zj)√

u(n, t)θ̃n−1(zj)θ̃n(zj)

)⟩

=

⟨
(E − 1)

k∑
j=0

(
dn,j

bn,j

)
λk−j
j ,

(
θ̃2n(zj)√

u(n, t)θ̃n−1(zj)θ̃n(zj)

)⟩

=

⟨
(E − 1)

k∑
j=0

(
dn,0

bn,0

)
λkj ,

(
θ̃2n(zj)√

u(n, t)θ̃n−1(zj)θ̃n(zj)

)⟩

=

⟨
(E − 1)

[ k∑
j=0

(
µn

ν

)
λkj − 4

k∑
j=2

(
µn

ν

)
λk−2
j

]
,

(
θ̃2n(zj)√

u(n, t)θ̃n−1(zj)θ̃n(zj)

)⟩
=µ(k + 1)λkj − 4µ(k − 1)λk−2

j ,

where we have used Propositions 2.3, 2.4 and Lemma 3.9. 2
Theorem 3.11 The scattering data (3.3) of the spectral problem (2.11a) possesses the following

time evolutions relations:

R(t, z) = R(0, z) exp
{∫ t

0

[ν(z2(ξ)− z−2(ξ)) + 2µ(z(ξ)− z−1(ξ))]λk−1(ξ)dξ
}
, (3.9a)
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c2j (t) = c2j (0) exp
{∫ t

0

νλkj (ξ)(zj(ξ)−z−1
j (ξ))+µ(k+2)λkj (ξ)−4µ(k+z−2

j (ξ))λk−2
j (ξ)dξ

}
. (3.9b)

Proof If Φ is a solution of (2.1a), then

Pn(z) = Φt(z)−NΦ(z)

is still a solution of (2.1a) by Lemma 3.7. Hence there exist two constants α and β such that

ψn,t(z)− C(n)ψn−1(z)−D(n)ψn(z) = αψ̄n(z) + βψn(z) (3.10)

where ψn(z) is independent of ψ̄n(z). Noticing that ψn(z) goes to z−n, while ψ̄n(z) goes to zn

when n→ −∞, we immediately get α = 0. Thus, Eq. (3.10) is reduced to

ψn,t(z)− C(n)ψn−1(z)−D(n)ψn(z) = βψn(z). (3.11)

Letting n→ −∞ and comparing the coefficient of n in (3.11), we can obtain

β = (2µ+ νz)zλk−1,

by taking advantage of the asymptotic condition (2.7). So Eq. (3.11) is changed into

ψn,tk(z) + [νλ+ 2µ(n+ 1)]λk−1ψn−1(z)− (nµλ+ ν + 2µz + νz2)λk−1ψn(z) = 0.

Replacing ψn(z) by a(z)ϕ̄n(z) + b(z)ϕn(z) and letting n→ +∞, we find that

a(z)tkz
−n + b(z)tkz

n + nb(z)zn−1ztk + [2(n+ 1)µ+ νλ− µnλz − νz]λk−1b(z)zn−1

= (2µ+ νz)zλk−1b(z)zn,

where (3.1) has been used. Comparing the coefficient of n, z−n and zn in the above equation

yields {
a(t, z) = a(0, z),

b(t, z) = b(0, z) exp {
∫ t

0
[ν(z(ξ) + z−1(ξ)) + 2µ]λk−1(ξ)(z(ξ)− z−1(ξ))dξ},

which means

R(t, z) = R(0, z) exp
{∫ t

0

[ν(z(ξ) + z−1(ξ)) + 2µ]λk−1(ξ)(z(ξ)− z−1(ξ))dξ
}
.

Next, we will consider time evolutions of the discrete scattering data. Taking z = zj in (3.10),

we have the linear relationship

ϕn,tk(zj)− C(n)|λ=λjϕn−1(zj)−D(n)|λ=λjϕn(zj) = αϕn(zj) + βϕ̄n(zj), (3.12)

where ϕn(zj) and ϕ̄n(zj) follow the asymptotic condition (3.1a). We can find that β = 0 because

ϕn(zj) tends to z
n
j , while ϕ̄n(zj) tends to z

−n
j when n→ +∞. Thus Eq. (3.12) reads

ϕn,tk(zj)− C(n)ϕn−1(zj)−D(n)ϕn(zj) = αϕn(zj).

By Lemma 3.8, we have

1

2
(B(n+ 1)−B(n))

√
u(n, t)θn−1(zj) +

1

2
(D(n+ 1)−D(n))θn(zj)

= αθn(zj)− θn,tk(zj)−
1

2
(B(n)

√
u(n, t)θn−1(zj)−B(n+ 1)

√
u(n+ 1, t)θn+1(zj)). (3.13)
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Multiplying the above equation by 2θn(zj) and summing it, we obtain

(2α− d

dtk
)⟨θn(zj), θn(zj)⟩ =

⟨
(E − 1)

(
D(n)

B(n)

)
,

(
θ2n(zj)√

u(n, t)θn−1(zj)θn(zj)

)⟩
.

Let θn(zj) be a normalization eigenfunction. We have

2α =

⟨
(E − 1)

(
D(n)

B(n)

)
,

(
θ2n(zj)√

u(n, t)θn−1(zj)θn(zj)

)⟩
.

Finally, we obtain

α =
k + 1

2
µλkj − 2(k − 1)µλk−2

j ,

by Lemma 3.10.

Noting that θn(zj) → cj(t)z
n
j as n→ +∞, from (3.13) we have

cjtk
cj

zj + nzjtk +
1

2
[νλj + 2µ(n+ 1)]λk−1

j (1− z2j ) =
1

2
µ[kλ2j − 4(k − 1)]zjλ

k−2
j ,

which gives
cjtk
cj

=
1

2
νλkj (zj −

1

zj
) + µ(

1

2
k + 1)λkj − 2(

1

z2j
+ k)µλk−2

j . 2
Since we have already obtained the evolution of the scattering data, next we will recover the

potential u(n, t) by the IST.

3.3. Exact solutions

In this part, we will derive the exact expression of the reflectionless potentials u(n, t). Letting

ϕn(z) =
∞∑
j=n

Kn,jz
j , ϕ̄n(z) =

∞∑
j=n

Kn,jz
−j ,

we can get

u(n, t)Kn−1,n−1 = Kn,n,

u(n, t)Kn−1,n + v(n, t)Kn,n = Kn,n+1,

Kn+1,n+1 + u(n, t)Kn−1,n+1 + v(n, t)Kn,n+1 = Kn,n +Kn,n+2,

· · ·

by (2.11a). Through the above recurrence, we can easily obtain Kn,j and recover u(n, t) and

v(n, t) as

u(n, t) =
Kn,n

Kn−1,n−1
, v(n, t) =

Kn,n+1

Kn,n
− Kn−1,n

Kn−1,n−1
. (3.14)

To formulate the exact expression of the potential u(n, t), let us consider the following proposi-

tion.

Proposition 3.12 ([27]) Let S and Q be two l × l matrices and R(Q) = 1. Then

|S +Q| = |S|+ tr(S∗Q),
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where R(Q) means the rank of matrix Q, and S∗ is the adjoint matrix of matrix S. Especially,

when |S| ̸= 0, we have

|S +Q| = |S|[1 + tr(S−1)Q].

Similar to the isospectral case [43], Kn,m can be formulated by the discrete Gel’fand-Levitan-

Marchenko equation. We skip the details and only give the following theorem.

Theorem 3.13 ([43]) Given the scattering data (3.3) of the spectral problem (2.11a) and

Fm =

l∑
j=1

c2jz
m
j +

1

2πi

∮
|z|=1

R(z)zm−1dz,

then K̂n,m =
Kn,m

Kn,n
solves the discrete Gel’fand-Levitan-Marchenko equation

K̂n,m + Fn,m +

∞∑
s=n+1

K̂n,sFs+m = 0, m > n, (3.15a)

and

K−1
n,n = 1 + F2n +

∞∑
j=n+1

Kn,jFj+n, m = n. (3.15b)

When the reflection coefficient R(t, z(t)) = 0, Eq. (3.15a) is

gn,j(t) + cj(t)z
n
j +

l∑
k=1

cj(t)ck(t)
zn+1
j zn+1

k

1− zjzk
gn,k(t) = 0, j = 1, 2, . . . l, (3.16)

by letting

K̂n,m(t) =
l∑

j=1

cj(t)z
m
j gn,j(t). (3.17)

By Theorem 3.13, we can get the expression of K̂n,m. Furthermore, when the reflection

coefficient is zero, we can get K̂n,m by solving a system of linear equations.

Let Dn = [(Dn(t))j,k] be an l × l matrix with entries as follows

(Dn(t))j,k = cj(t)ck(t)
zn+1
j zn+1

k

1− zjzk
, 1 ≤ j, k ≤ l.

Then we have following theorem.

Theorem 3.14 K̂n,m and Kn,n can be expressed as

K̂n,m(t) = −tr[(I +Dn(t))
−1hn(t)hm(t)T ], m > n,

Kn,n(t) =
det(I +Dn(t))

det(I +Dn−1(t))
.

Proof Eq. (3.16) can be rewritten as

gn(t) = −(I +Dn(t))
−1hn(t), (3.18)
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where gn(t) = (gn,1(t), gn,2(t), . . . , gn,l(t))
T and hn(t) = (c1(t)z

n
1 , c2(t)z

n
2 , . . . , cl(t)z

n
l )

T . By

(3.17), we obtain

K̂n,m(t) = −tr[(I +Dn(t))
−1hn(t)hm(t)T ], m > n,

where tr means the trace of a matrix.

When m = n, we obtain

K−1
n,n(t) = 1 +

l∑
j=1

c2j (t)z
2n
j +

l∑
j,k=1

c2j (t)ck(t)
zn+1
j zn+1

k

1− zjzk
znj gn,k(t) (3.19)

from (3.15b). Multiplying the j-th equation of (3.16) with cj(t)z
n
j and summing them with

respect to j, then we see that the subtraction of the resulting expression and (3.19) gives

K−1
n,n(t) = 1−

l∑
j=1

cj(t)z
n
j gn,j(t).

Taking the place of gn,j(t) with its expression (3.18), the above formula can be rewritten as

K−1
n,n(t) = 1 + hTn (t)(I +Dn(t))

−1hn(t). (3.20)

The trace of both sides of Eq. (3.20) gives

K−1
n,n = 1 + tr[(I +Dn(t))

−1hn(t)h
T
n (t)].

Noticing that

det(I +Dn−1(t)) = det [(I +Dn(t)) +Dn−1(t)−Dn(t)]

and Dn−1(t)−Dn(t) = hn(t)h
T
n (t), we can easily get

det (I +Dn−1(t)) = det (I +Dn(t)){1 + tr[(1 +Dn(t))
−1hn(t)h

T
n (t)]}

by using Proposition 3.12. Thus, we complete the proof. 2
Therefore, the solution of the differential-difference hierarchy can be given as follows

u(n, t) =
det(I +Dn(t))det(I +Dn−2(t))

det(I +Dn−1(t))2

by (3.14).

Especially, when l = 1, it yields

u(n, t) =
(1− z21 + c21(t)z

2n+2
1 )(1− z21 + c21(t)z

2n−2
1 )

(1− z21 + c21(t)z
2n
1 )2

.

Substituting the relation of cj depending on the time t into (3.9b), we can obtain explicit solutions

for the hierarchy. For example,

• k = 0, (µ, ν) = (0, 1).

In this case, we suppose that z1 = e
κj
2 is a constant for λt = 0. Further, it is easy to obtain

c2j = c2j (0) exp [(e
κj − e−κj )t].

Letting c2j (0) = 1, we obtain the potential of isospectral Toda lattice

un =
[1− eκ1 + e(e

κ1−e−κ1 )t+(n−1)κ1 ][1− eκ1 + e(e
κ1−e−κ1 )t+(n+1)κ1 ]

[1− eκ1 + e(e
κ1−e−κ1 )t+nκ1 ]2

.
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• k = 1, (µ, ν) = (1, 0).

In this case, we can easily find z1 = 1+ce2t

1−ce2t and

c21 = c21(0)e
2t (1 + ce2t)

(1− ce2t)3
,

where c is a constant. Let c = 2, c21(0) = 1 and

r(t, n) = (1− 2e2t)2n+3 − (1 + 2e2t)2(1− 2e2t)2n+1 + e2t(1 + 2e2t)2n+1.

Then the potential u(n, t) of Eq. (2.9) can be recovered as

u(n, t) =
r(t, n− 1)r(t, n+ 1)

r2(t, n)
.

• k = 1, µν ̸= 0.

In this case, z1 = 1+ce2t

1−ce2t and

c21(t) =
(1 + ce2t)µ

(1− ce2t)3µ
exp(

4cνe2t

1− c2e4t
+ 2µt),

the potential u(n, t) of the Eq. (2.10) is recovered as

u(n, t) =
s(n− 1)s(n+ 1)

s2(n)
,

where

s(n) = 1− (1 + ec2t)2

(1− ce2t)2
+

(1 + ce2t)2n+µ

(1− ce2t)2n+3µ
exp(

4cνe2t

1− c2e4t
+ 2µt).

4. Conclusions and remarks

When we consider continuous soliton equations, we always assume that potentials go to zero

as x go to infinity. But this is not the case for some discrete soliton equations because of physical

background. As we all know, the potential of the Toda lattice (u(n, t), v(n, t)) goes to (1, 0) as

n goes to infinity. This results in the difficulty of choosing suitable evolution relations of the

spectral parameter to construct the nonisospectral integrable lattice.

In this paper, by the new evolution relations of the parameter λ and the boundary conditions,

we have derived a novel differential-difference hierarchy from the Toda spectral problem through

the discrete zero curvature equation. The obtained differential-difference hierarchy is Liouville

integrable and its exact soliton solutions have been presented through the IST.
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