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Abstract The aim of this paper is to establish the necessary and sufficient conditions for the

compactness of fractional integral commutator [b, Iγ ] which is generated by fractional integral Iγ
and function b ∈ Lipβ(µ) on Morrey space over non-homogeneous metric measure space, which

satisfies the geometrically doubling and upper doubling conditions in the sense of Hytönen.

Under assumption that the dominating function λ satisfies weak reverse doubling condition, the

author proves that the commutator [b, Iγ ] is compact from Morrey space Mp
q (µ) into Morrey

space Ms
t (µ) if and only if b ∈ Lipβ(µ).
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1. Introduction

To unify both the spaces of homogeneous type in the sense of Coifman and Weiss [1, 2] and

the non-doubling spaces whose measure satisfies the polynomial growth conditions [3–10], in

2010, Hytönen [11] first introduced a new class of metric measure spaces satisfying the so-called

upper doubling and the geometrically doubling conditions (respectively, see Definitions 1.1 and

1.2 below). And the new-introduced space is now called non-homogeneous metric measure space.

Since then, many classical results about the singular integral operators and function spaces on

homogeneous space or non-homogeneous space have been proved still valid if the underlying

spaces are replaced by the non-homogeneous metric measure spaces, for example, the readers

can see [12–20] and their references therein.

In this paper, let (X , d, µ) be a non-homogeneous metric measure space in the sense of the

Hytönen [11]. In the setting of this condition, we will mainly study the necessary and sufficient

conditions of the compactness for the commutator [b, Iγ ] which is generated by fractional integral

Iγ and function b ∈ L1
loc(µ) on Morrey space over (X , d, µ).

Recall that a linear operator T from a Banach space X to a Banach space Y is compact

if {Txj}∞j=1 has a convergent subsequence in Y whenever {xj}∞j=1 is bounded sequence in X.

In 2007, Betancor and Fariña [9] obtained the compactness of commutator [b, Iα] generated by
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fractional integral operators Iα and spaces RBMO(µ) under non-doubling measures. In 2008,

Sawano and Shirai [10] proved that the multi-commutators generated by spaces RBMO(µ) and

singular integrals or fractional integrals are compact on Morrey spaces if one of the RBMO

functions can be approximated with compactly supported smooth functions. Nogayama and

Sawano [21] obtained the necessary and sufficient conditions for the compact commutators, which

are generated by Lipschitz functions and fractional integral operators Iα, on Morrey spaces

Mp
q (Rn).

Before stating the main result of this paper, we need to recall some necessary notions.

Definition 1.1 ([11]) A metric measure space (X , d, µ) is said to be upper doubling if µ is a

Borel measure on X and there exist a dominating function λ : X ×(0,∞) → (0,∞) and a positive

constant Cλ such that, for each x ∈ X , r → λ(x, r) is non-decreasing and, for all x ∈ X and

r ∈ (0,∞),

µ(B(x, r)) ≤ λ(x, r) ≤ Cλλ(x, r/2). (1.1)

From [12], Hytönen et al. have showed that, there exists another dominating function λ̃ such

that λ̃ ≤ λ, Cλ̃ ≤ Cλ and

λ̃(x, r) ≤ Cλ̃λ̃(y, r), (1.2)

where d(x, y) ≤ r for all x, y ∈ X . If there is no special explanation in this paper, we always

assume λ as in (1.1) satisfies (1.2).

Definition 1.2 ([11]) A metric space (X , d) is said to be geometrically doubling, if there exists

some N0 ∈ N such that, for any ball B(x, r) ⊂ X , there exists a finite ball covering {B(xi, r/2)}i
of B(x, r) such that the cardinality of this covering is at most N0.

Remark 1.3 Let (X , d) be a metric space. Hytönen in [11] has showed that the geometrically

doubling (X , d) is equivalent to the following statement: for any ϵ ∈ (0, 1) and any ball B(x, r) ⊂
X , there is a finite ball covering {B(xi, ϵr)}i of B(x, r) such that the cardinality of this covering

is at most N0ϵ
−n, where n := log2 N0.

Definition 1.4 ([20]) Given β ∈ (0, 1), the function f : X → C is said to satisfy the Lipschitz

condition of β order provided that

|f(x)− f(y)| ≤ C[λ(x, d(x, y))]β , for any x, y ∈ X . (1.3)

The smallest constant in (1.3) will be denoted by ∥f∥Lipβ(µ).

Let L∞
b (µ) be the space of all L∞(µ) functions with bounded support. Then, for all γ ∈ (0, 1)

and f ∈ L∞
b (µ), the fractional integral Iγ on (X , d, µ) is defined by

Iγ(f)(x) =

∫
X

f(y)

[λ(x, d(x, y))]1−γ
dµ(y), x ∈ X . (1.4)

Moreover, we refer to [15] for the bounded properties on Iγ . And, we have the following remark

about Iγ .
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Remark 1.5 (1) If we take

(X , d, µ) := (Rn, | · |, µ), λ(x, r) := Crd

with d ∈ (0, n] and the measure µ to satisfy the non-doubling measure, then the Iγ defined in

(1.4) is just the fractional integral operator under non-doubling measures [4].

(2) If we take

(X , d, µ) := (Rn, | · |,dx),

then fractional integral operator Iγ defined as in (1.4) is just the classical fractional integral

operator defined as follows:

Ĩγ(f)(x) :=

∫
Rn

f(y)

|x− y|n−γ
dy, x ∈ Rn,

for more properties of Ĩγ(f), we can see [22–24].

In 1965, Calderón firstly introduced the commutator [b, T ](f) = bT (f)−T (bf) which was also

called Calderón commutator, and obtained the boundedness of the commutator [b,H] generated

by the Hilbert transform and space BMO(Rn) on L2(Rn) (see [25]). In 1976, Coifman, Rochberg

and Weiss [26] proved that the commutator [b, T ] which was generated by the classical Calderón-

Zygmund operator and b ∈ BMO(Rn) is bounded on the Lebesgue space Lp(Rn) for p ∈ (1,∞).

About the more development and the applications of the commutator, we can see [27–30].

Given a function b ∈ Lipβ(µ). The commutator [b, Iγ ] closely related to the fractional integral

operator Iγ is defined by

[b, Iγ ](f)(x) =

∫
X

b(x)− b(y)

[λ(x, d(x, y))]1−γ
f(y)dµ(y), x ∈ X . (1.5)

Definition 1.6 ([14]) Let k > 1 and 1 < q ≤ p < ∞. Then Morrey space Mp
q (µ) is defined by

Mp
q (µ) = {f ∈ Lq

loc(µ) : ∥f∥Mp
q (µ) < ∞},

where

∥f∥Mp
q (µ) := sup

B
[µ(kB)]

1
p−

1
q

(∫
B

|f(y)|qdµ(y)
) 1

q

. (1.6)

Moreover, Cao and Zhou in [14] have showed that the norm of ∥f∥Mp
q (µ) is independent of the

choices of k for k > 1.

Definition 1.7 ([11]) Let τ > 1 be some fixed constant. A function f ∈ L1
loc(µ) is said to be in

the space RBMO(µ) if there exists some constant C > 0 such that, for any ball B,

1

µ(τB)

∫
B

|f(x)− fB |dµ(x) ≤ C, (1.7)

and, for any two balls B and S such that B ⊂ S,

|fB − fS | ≤ CKB,S , (1.8)

here and in what follows,

fB =
1

µ(B)

∫
B

f(x)dµ(x).
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Then take

∥f∥RBMO(µ) = inf{C : (1.7) and (1.8) hold}.

Moreover, Hytönen [11] showed that the space RBMO(µ) is independent of the choice of τ > 1.

Definition 1.8 ([13]) Let θ ∈ (0,∞). A dominating function λ is said to satisfy θ-weak reverse

doubling condition if, for all r ∈ (0, 2diam(X )) and a ∈ (1, 2diam(X )/r), there exists a number

C(a) ∈ [1,∞), depending only on a and X , such that, for all x ∈ X

λ(x, ar) ≥ C(a)λ(x, r), (1.9)

and
∞∑
k=1

1

[C(ak)]θ
< ∞. (1.10)

We are now in the position to state the main theorem of this paper as follows.

Theorem 1.9 Let b ∈ L1
loc(µ), 0 < γ < 1, 0 < β < 1, 1 < q ≤ p < ∞, 1 < t ≤ s < ∞, q

p = t
s

and 1
s = 1

p − (β + γ). Suppose that the dominating function λ satisfies θ-weak reverse doubling

condition. Then the commutator [b, Iγ ] is a compact operator from the Morrey space Mp
q (µ) into

the Morrey space Ms
t (µ) if and only if b ∈ Lipβ(µ).

Finally, we make some conventions on notion. Throughout the whole paper, C represents

a positive constant being independent of the main parameters. For any subset E ⊂ X , we use

χE to denote its characteristic function. Given any q ∈ (1,∞), let q′ := q/(q − 1) denote its

conjugate index. Moreover, for any ball B, cB and rB represent the center and radius of ball B.

2. Preliminaries

To prove the main theorem of this paper, in this section, we will recall and establish some

necessary lemmas. First, we need to establish the following lemma being sightly modified in [31].

Lemma 2.1 Assume b ∈ L1
loc(µ) and β ∈ (0, 1). Then the following statements are mutually

equivalent:

(1) There exists a function f ∈ Lipβ(µ) such that b(x) = f(x) for a.e., x ∈ X .

(2) sup
B

1
µ(B)[λ(cB ,rB)]β

∫
B
|b(x)−mB(b)|dµ(x) < ∞, where mB(b) represents the mean value

of function b on ball B, that is,

mB(b) =
1

µ(B)

∫
B

b(y)dµ(y).

Proof (1)⇒(2). By the Definition 1.4 and b(x) = f(x) with f ∈ Lipβ(µ), we have

1

µ(B)[λ(cB , rB)]β

∫
B

|b(x)−mB(b)|dµ(x)

≤ 1

µ(B)

1

µ(B)

1

[λ(cB , rB)]β

∫
B

∫
B

|f(x)− f(y)|dµ(x)dµ(y)

≤ C∥f∥Lipβ(µ)
1

µ(B)

1

µ(B)

1

[λ(cB, rB)]β

∫
B

∫
B

[λ(x, d(x, y))]βdµ(x)dµ(y)
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≤ C∥f∥Lipβ(µ)
< ∞.

Taking the supremum over ball B, we get (2).

(2)⇒(1). Without loss of generality, we assume that there exists a function f ∈ Lipβ(µ). For

any x, y ∈ B, by Definition 1.4, we can deduce that

|f(x)− f(y)| ≤ C[λ(x, d(x, y))]β ≤ C[λ(cB , rB)]
β .

Further, we get

1

µ(B)[λ(cB , rB)]β

∫
B

|f(x)−mB(f)|dµ(x)

≤ 1

µ(B)[λ(cB , rB)]β

∫
B

|f(x)− f(y)|dµ(x) + 1

µ(B)[λ(cB , rB)]β

∫
B

|f(y)−mB(f)|dµ(x)

≤ C

µ(B)[λ(cB , rB)]β

∫
B

|f(x)− f(y)|dµ(x) ≤ C,

especially, we take b = f with f ∈ Lipβ(µ). Thus, we show that (1) holds. 2
Now we recall the following lemma which is sightly modified from [10].

Lemma 2.2 Let h be an integrable function on a bounded ball B0. Suppose that there exists

a non-decreasing function ω(·) and a constant ε ∈ (0, 1] such that for every ball B and some

constant fB
1

µ(B)

∫
B

|h(x)− fB |dµ(x) ≤ ω(rB)[λ(cB, rB)]
ε.

Then there exists a function ν which almost everywhere equals to h such that

|ν(x)− ν(y)| ≤ Cω(d(x, y))[d(x, y)]ε (2.1)

holds for all x, y ∈ B0, with the constant C only depending on ε.

Lemma 2.3 Let (X , d, µ) be a non-homogeneous metric measure space, β ∈ (0, 1) and b ∈
L1
loc(µ). Then, the following statements are mutually equivalent:

(i) b ∈ Lipβ(µ).

(ii) The following two equalities hold:

lim
R→∞

(
sup

B: balls,
rB>R

1

[λ(cB , rB)]1+β

∫
B

|b(x)−mB(b)|dµ(x)
)
= 0 (2.2)

and

lim
t↓0

(
sup

B: balls,
rB<t

1

[λ(cB , rB)]1+β

∫
B

|b(x)−mB(b)|dµ(x)
)
= 0. (2.3)

Proof (i)⇒(ii) is obvious, the details are omitted here.

(ii)⇒(i) (2.3) implies that

b = lim
j→∞

mB(·,2−j)(b)

belongs to the space Lipβ(µ), further, (2.2) implies

b = lim
j→∞

(mB(·,2−j)(b)−mB(·,2j)(b))
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in Lipβ(µ). Thus, we have b ∈ Lipβ(µ). 2
Also, we need to establish the following lemma.

Lemma 2.4 Let 1 < q ≤ p < ∞ and 1 < t ≤ s < ∞. Assume that K : (X × X ) \ {(x, y) : x =

y} → C is a compactly supported L∞-function and satisfies the following conditions:

|K(x, y)| ≤ C

λ(x, d(x, y))
, (2.4)

and, for all x, x′, y ∈ X with d(x, y) ≥ 2d(x, x′) and δ ∈ (0, 1],

|K(x, y)−K(x′, y)|+ |K(y, x)−K(y, x′)| ≤ C
[d(x, x′)]δ

[d(x, y)]δλ(x, d(x, y))
. (2.5)

Then

Tf(x) =

∫
X
K(x, y)f(y)dµ(y) (2.6)

is a compact operator from Morrey space Mp
q (µ) into Morrey space Ms

t (µ).

To prove the Lemma 2.4, we also need the following lemma whose proof is similar to [10,

Proposition 2.1].

Lemma 2.5 Let 1 < q, p < ∞. Suppose that the kernel function K : (X × X ) \ {(x, y) : x =

y} → C satisfies

∥K∥Lq(Xx;Lp′ (Xy))
:=

{∫
X

(∫
X
|K(x, y)|p

′
dµ(y)

) q
p′
dµ(x)

} 1
q

< ∞.

Then the operator T defined as in (2.6) is compact operator from Lp(µ) into Lq(µ).

Proof of Lemma 2.4 Let B be a large doubling ball such that supp(k) ⊂ B × B. Define the

following three linear operators T1, T2 and T3:

T1 : f ∈ Mp
q(µ) 7→ χB · f ∈ Lq(µ),

T2 : f ∈ Lq(µ) 7→ Tf ∈ Ls(µ)

and

T3 : f ∈ Ls(µ) 7→ χB · f ∈ Ms
t (µ).

By applying Lemma 2.5 and the fact that T = T3T2T1, the proof of Lemma 2.4 is completed. 2
3. Necessity of Theorem 1.9

To prove the necessity of Theorem 1.9, we first recall some notion and signs.

Assume that b ∈ RBMO(µ) with ∥b∥RBMO(µ) = 1. And define

oscβ(b, B) =
1

[µ(B)]1+β

∫
B

|b(x)−mB(b)|dµ(x),

where β ∈ (0, 1) and B is a doubling ball. If there is no special instruction, we always assume

that oscβ(b,B) > 0 in the latter of the paper.
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Let

c0 = mB(sgn(b−mB(b))) ∈ [−1, 1]. (3.1)

Define

f = [µ(B)]−
1
p (sgn(b−mB(b))− c0)χB . (3.2)

Then we can get the following properties:

f · (b−mB(b)) ≥ 0,

∫
X
f(y)dµ(y) = 0, |f | ≤ 2[µ(B)]−

1
pχB,

and ∫
X
(b(y)−mB(b))f(y)dµ(y) =

∫
X
|b(y)−mB(b)||f(y)|dµ(y)

≤ 2[µ(B)]1−
1
pmB(|b−mB(b)|) ≤ C[µ(B)]1−

1
p . (3.3)

Here we have used the properties of the RBMO norm for (3.3).

Now we should establish the following lemmas being used in the proof of Theorem 1.9.

Lemma 3.1 For all x ∈ X \ 6B, then the following inequality

Iγ((b−mB(b))f)(x) ≤ C
[µ(B)]1−

1
p

[λ(x, d(x, cB))]1−γ

holds.

Proof For any x ∈ X \ 6B. By applying the definition of the fractional integral, Definition 1.1

and (3.3), we have

Iγ((b−mB(b))f)(x) =

∫
B

b(y)−mB(b)

[λ(x, d(x, y))]1−γ
f(y)dµ(y) +

∫
X\B

b(y)−mB(b)

[λ(x, d(x, y))]1−γ
f(y)dµ(y)

=

∫
B

b(y)−mB(b)

[λ(x, d(x, y))]1−γ
f(y)dµ(y)

≤ C

[λ(x, d(x, cB))]1−γ

∫
B

(b(y)−mB(b))f(y)dµ(y)

≤C
[µ(B)]1−

1
p

[λ(x, d(x, cB))]1−γ
.

Thus, the proof of the Lemma 3.1 is completed. 2
Lemma 3.2 For any x ∈ X \ 6B, and ϵ ∈ (0, 1), then the following equality

|Iγf(x)| ≤ C
[µ(B)]1−

1
p

[λ(x, d(x, cB))]1−γ

rϵB
[d(x, cB)]ϵ

holds.

Proof By using the fact
∫
X f(y)dµ(y) = 0, we can get

Iγ(f)(x) =

∫
X

f(y)

[λ(x, d(x, y))]1−γ
dµ(y)−

∫
X

f(y)

[λ(x, d(x, cB))]1−γ
dµ(y)
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=

∫
X

[ f(y)

[λ(x, d(x, y))]1−γ
− f(y)

[λ(x, d(x, cB))]1−γ

]
dµ(y).

Via (1.1) and (1.2), for x ∈ X \ 6B and y ∈ B, we can deduce that

λ(x, d(x, y)) ≤ λ(x, d(x, cB) + d(y, cB)) ≤ Cλλ(x, d(x, cB))

and

λ(x, d(x, cB)) ≤ λ(x, d(y, cB) + d(x, y)) ≤ Cλλ(x, d(x, y)),

that is, λ(x, d(x, y)) ∼ λ(x, d(x, cB)). Hence, we can get∣∣ 1

[λ(x, d(x, y))]1−γ
− 1

[λ(x, d(x, cB))]1−γ

∣∣
=

∣∣∣ 1

−1 + γ

∫ λ(x,d(x,cB))

λ(x,d(x,y))

dt

t2−γ

∣∣∣
≤ C

[λ(x, d(x, cB))]2−γ
|λ(x, d(x, y) + d(cB , y))− λ(x, d(x, y))|

≤ C

[λ(x, d(x, cB))]2−γ

[d(cB , y)
d(x, y)

]ϵ
λ(x, d(x, y))

≤ C

[λ(x, d(x, cB))]1−γ

[ rB
d(cB , x)

]ϵ
,

where we have used the following fact [13, Remark 1.4 (iii)]

|λ(y, r + t)− λ(x, r)| ≤ Cλ

[d(x, y) + t

r

]ϵ
λ(x, r), for r ∈ (0,∞), t ∈ [0, r] and d(x, y) ∈ [0, r].

Further, we have

|Iγ(f)(x)| ≤
C

[λ(x, d(x, cB))]1−γ

[ rB
d(cB , x)

]ϵ ∫
X
|f(y)|dµ(y)

≤C
[µ(B)]−

1
p

[λ(x, d(x, cB))]1−γ

[ rB
d(cB , x)

]ϵ ∫
B

|b(y)−mB(b)|dµ(y)

≤C
[µ(B)]1−

1
p

[λ(x, d(x, cB))]1−γ

[ rB
d(cB , x)

]ϵ
.

The proof of Lemma 3.2 is completed. 2
Lemma 3.3 For any x ∈ X \ 6B,

Iγ((b−mB(b))f)(x) &
[µ(B)]1+β− 1

p

[λ(x, d(x, cB))]1−γ
oscβ(b,B)(1− |c0|).

Proof Since (b(y)−mB(b))f(y) ≥ 0, we can get

(b(y)−mB(b))f(y) =[µ(B)]−
1
p (b(y)−mB(b))[(sgn(b−mB(b))− c0)χB]

=[µ(B)]−
1
p |b(y)−mB(b)| − [µ(B)]−

1
p c0(b(y)−mB(b))

≥[µ(B)]−
1
p |b(y)−mB(b)| − [µ(B)]−

1
p |c0||b(y)−mB(b)|

=[µ(B)]−
1
p (1− |c0|)|b(y)−mB(b)|.
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Further, by applying the definition of fractional integral as in (1.4), we can get

Iγ((b−mB(b))f)(x) ≥
1− |c0|
[µ(B)]

1
p

∫
B

|b(y)−mB(b)|
[λ(x, d(x, y))]1−γ

dµ(y)

& 1− |c0|
[µ(B)]

1
p

1

[λ(x, d(x, cB))]1−γ

∫
B

|b(y)−mB(b)|dµ(y)

& 1− |c0|
[µ(B)]

1
p

[µ(B)]1+β

[λ(x, d(x, cB))]1−γ

1

[µ(B)]1+β

∫
B

|b(y)−mB(b)|dµ(y)

& [µ(B)]1+β− 1
p

[λ(x, d(x, cB))]1−γ
oscβ(b,B)(1− |c0|).

Thus, the proof of the Lemma 3.3 is completed. 2
Lemma 3.4 Let ς ≫ ς ′ ≫ 1 be sufficiently large and ι ∈ (0, 1). Assume that c0 as in (3.1)

satisfies |c0| < ι. Then(∫
ς′rB≤d(y,cB)≤ςrB

|[b, Iγ ]f(y)|tdµ(y)
) 1

t & [µ(B)]1+β− 1
p+

1
t

[λ(cB , ςrB)]1−γ
oscβ(b,B)(1− ι), (3.4)

where implicit constant is independent of B, b, ς and ς ′.

Proof By Minkowski inequality, write(∫
ς′rB≤d(y,cB)≤ςrB

|[b, Iγ ]f(y)|tdµ(y)
) 1

t

=
(∫

ς′rB≤d(y,cB)≤ςrB

|Iγ(b−mB(b))f(y)− (b(y)−mB(b))Iγ(f)(y)|tdµ(y)
) 1

t

≥
(∫

ς′rB≤d(y,cB)≤ςrB

|Iγ(b−mB(b))f(y)|tdµ(y)
) 1

t −

(∫
ς′rB≤d(y,cB)≤ςrB

|(b(y)−mB(b))Iγ(f)(y)|sdµ(y)
) 1

t

:= D1 +D2.

By applying the Lemma 3.3, we have

D1 &[µ(B)]1+β− 1
p

(∫
ς′rB≤d(y,cB)≤ςrB

dµ(y)

[λ(y, d(y, cB))](1−γ)s

) 1
s

oscβ(b,B)(1− |c0|)

&[µ(B)]1+β− 1
p

(∫
ς′rB≤d(y,cB)≤ςrB

dµ(y)

[λ(y, d(y, cB))](1−γ)s

) 1
s

oscβ(b,B)(1− |c0|)

&[µ(B)]1+β− 1
p

(∫
ς′rB≤d(y,cB)≤ςrB

dµ(y)

[λ(cB , d(y, cB))](1−γ)s

) 1
s

oscβ(b,B)(1− |c0|)

& [µ(B)]β+γ− 1
p+

1
s

[λ(cB, ςrB)]1−γ
oscβ(b,B)(1− ι).

Now we turn to the D2. By applying Lemma 3.2, we have

D2 .
(∫

ς′rB≤d(y,cB)≤ςrB

|b(y)−mB(b)|s[µ(B)]s(1−
1
p )

[λ(y, d(y, cB))]s(1−γ)
dµ(y)

) 1
s
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. [µ(B)]1−
1
p

[λ(cB, ς ′rB)]1−γ

(∫
ς′rB≤d(y,cB)≤ςrB

|b(y)−mB(b)|s[
rB

d(cB , y)
]ϵsdµ(y)

) 1
s

. 1

(ς ′)ϵ
[µ(B)]1−

1
p

[λ(cB , ς ′rB)]1−γ

(∫
ς′rB≤d(y,cB)≤ςrB

|b(y)−mB(b)|sdµ(y)
) 1

s

. 1

(ς ′)ϵ
[µ(B)]γ+β+ 1

s−
1
p

[λ(cB , ς ′rB)]1−γ
oscβ(b,B),

Combining the estimate for D1 and choosing ς ≫ ς ′ ≫ 1, we can deduce(∫
ς′rB≤d(y,cB)≤ςrB

|[b, Iγ ]f(y)|sdµ(y)
) 1

s

& [µ(B)]1+β− 1
p+

1
s

[λ(cB , ςrB)]1−γ
oscβ(b,B)(1− ι)− 1

(ς ′)ϵ
[µ(B)]1+β+ 1

s−
1
p

[λ(cB , ς ′rB)]1−γ
oscβ(b,B)

& [µ(B)]β+γ− 1
p+

1
s

[λ(cB , ςrB)]1−γ
oscβ(b,B)(1− ι).

Hence, we complete the proof of the Lemma 3.4. 2
The proof of the necessity for Theorem 1.9 is stated as follows.

Proof of Theorem 1.9 Assume that (2.2) fails. Let there be a sequence of balls such that

limj→∞ µ(Bj) = ∞ and

oscβ(b,Bj) ≥ ε > 0, (3.5)

here ε ∈ (0, 1) is not dependent on j with j ∈ N. Set

cj = mBj (sgn(b−mBj (b))), (3.6)

fj = [µ(Bj)]
− 1

p (sgn(b−mBj (b))− cj)χj . (3.7)

According to the condition (3.5), it is not difficult to find that

sup
j∈N

log |cj | < 0.

By choosing a subsequence, we may assume that rBj+1 ≥ δrBj for all j ∈ N, where δ > 0 is

determined at the end of the proof.

Suppose that j, k ∈ N with j > k. Then we have

∥[b, Iγ ]fj − [b, Iγ ]fk∥Ms
t (µ)

= sup
B(cBj

,ςrBj
)

[µ(B(cBj , ςrBj ))]
1
s−

1
t

(∫
B(cBj

,ςrBj
)

∣∣[b, Iγ ]fj(x)− [b, Iγ ]fk(x)
∣∣tdµ(x)) 1

t

≥ [µ(B(cBj , ςrBj ))]
1
s−

1
t

(∫
B(cBj

,ςrBj
)

∣∣[b, Iγ ]fj(x)− [b, Iγ ]fk(x)
∣∣tdµ(x)) 1

t

≥ [µ(B(cB , ςrBj ))]
1
s−

1
t

(∫
B(cBj

,ςrBj
)

|[b, Iγ ]fj(x)|tdµ(x)
) 1

t −

[µ(B(cBj , ςrBj ))]
1
s−

1
t

(∫
B(cBj

,ςrBj
)

|[b, Iγ ]fk(x)|tdµ(x)
) 1

t



Compactness for commutator of fractional integral on non-homogeneous Morrey spaces 83

:= E1 + E2.

By applying the Lemma 3.4, we can get

E1 ≥[µ(B(cBj , ςrBj ))]
1
t−

1
s

(∫
ς′rBj

<d(cBj
,x)<ςrBj

|[b, Iγ ]fj(x)|sdµ(x)
) 1

s

& [µ(Bj)]
β+γ− 1

p+
1
s

[λ(cBj , ςrBj )]
1−γ

oscβ(b,Bj)(1− sup
j∈N

|cj |)

& oscβ(b,Bj)

[λ(cBj , ςrBj )]
1−γ

(1− sup
j∈N

|cj |),

where we use 1
s = 1

q − (β + γ).

For E2, from Hölder inequality, it follows that

E2 ≤[µ(B(cBj , ςrBj ))]
1
s−

1
t

{(∫
B(cBj

,ςrBj
)

|[b, Iγ ]fk(x)|t×
s
t dµ(x)

) t
s
(∫

B(cBj
,ςrBj

)

dµ(x)
)1− t

s
} 1

t

=
(∫

B(cBj
,ςrBj

)

|[b, Iγ ]fk(x)|sdµ(x)
) 1

s

.

Combining the E1 and E2, we obtain

∥[b, Iγ ]fj − [b, Iγ ]fk∥Ms
t (µ)

≥ [µ(B(cB , ςrBj ))]
1
s−

1
t

(∫
B(cBj

,ςrBj
)\B(cBj

,ς′rBj
)

|[b, Iγ ]fj(x)|tdµ(x)
) 1

t −

[µ(B(cBj , ςrBj ))]
1
s−

1
t

(∫
B(cBj

,ςrBj
)\B(cBj

,ς′rBj
)

|[b, Iγ ]fk(x)|sdµ(x)
) 1

s

≥ [µ(B(cB , ςrBj ))]
1
s−

1
t

(∫
B(cBj

,ςrBj
)\B(cBj

,ς′rBj
)

|[b, Iγ ]fj(x)|tdµ(x)
) 1

t −

(∫
X\B(cBj

,ς′rBj
)

|[b, Iγ ]fk(x)|sdµ(x)
) 1

s

& oscβ(b,Bj)

[λ(cBj , ςrBj )]
1−γ

− ω

[λ(cBj , ςrBj )]
1−γ

−
(∫

X\B(cBj
,ς′rBj

)

|[b, Iγ ]fk(x)|sdµ(x)
) 1

s

, (3.8)

for some constant ω. By (1.3) and |fk(x)| ≤ 2[µ(Bk)]
− 1

pχBk
(x), we have

|[b, Iγ ]fk(x)| ≤
∫
X

|b(x)− b(y)|
[λ(x, d(x, y))]1−γ

|fk(y)|dµ(y)

≤C[µ(Bk)]
− 1

p ∥b∥Lipβ(µ)

∫
Bk

dµ(y)

[λ(x, d(x, y))]1−γ−β

≤C[µ(Bk)]
− 1

p ∥b∥Lipβ(µ)Iβ+γ(χBk
)(x).

Here, if x ∈ 6Bk, then

Iβ+γ(χBk
)(x) ≤

∫
B(x,7rBk

)

dµ(z)

[λ(x, d(x, z))]1−(β+γ)

≤
∞∑
k=1

∫
B(x,2−k+1×(7rBk

))\B(x,2−k×(7rBk
))

dµ(z)

[λ(x, d(x, z))]1−(β+γ)
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≤C

∞∑
k=1

µ(B(x, 2−k+1 × (7rBk
)))

[λ(x, 2−k × (7rBk
))]1−(β+γ)

≤C[λ(x, rBk
)]β+γ

( ∞∑
k=1

1

[C(2k)]β+γ

)
≤C[λ(x, rBk

)]β+γ . (3.9)

On the other hand, if x ∈ X \ 6Bk and z ∈ Bk, then λ(x, d(x, z)) ∼ λ(x, d(x, cBk
)). Thus, we

can deduce that

Iγ+β(χBk
)(x) =

∫
Bk

dµ(z)

[λ(x, d(x, z))]1−γ−β
≤ C

µ(Bk)

[λ(x, d(x, cBk
))]1−γ−β

.

Combining (3.9) and x ∈ X , we have

|[b, Iγ ]fk(x)| ≤C[µ(Bk)]
− 1

p ∥b∥Lipβ(µ)Iβ+γ(χBk
)(x)

≤C[µ(Bk)]
− 1

p [λ(x, rBk
)]β+γ∥b∥Lipβ(µ)

{
1 +

µ(Bk)[λ(x, d(x, cBk
))]γ+β

λ(x, d(x, cBk
))[λ(x, rBk

)]β+γ

}
≤C[λ(x, rBk

)]β+γ− 1
p ∥b∥Lipβ(µ)

(
1 +

λ(x, rBk
)

λ(x, d(x, cBk
))

)1−(γ+β)
. (3.10)

Further, we obtain that(∫
X\B(cBj

,ς′rBj
)

|[b, Iγ ]fk(x)|sdµ(x)
) 1

s

. ∥b∥Lipβ(µ)

{∫
X\B(cBj

,ς′rBj
)

[λ(x, rBk
)](β+γ− 1

p )s
(
1 +

λ(x, rBk
)

λ(x, d(x, cBk
))

)[1−(γ+β)]s
dµ(x)

} 1
s

. ∥b∥Lipβ(µ)

{ ∞∑
ℓ=1

∫
6ℓB(cBj

,ς′rBj
)\6ℓ−1B(cBj

,ς′rBj
)

[λ(x, rBk
)](β+γ− 1

p )s×

(
1 +

λ(x, rBk
)

λ(x, d(x, cBj ))

)[1−(γ+β)]s
dµ(x)

} 1
s

. ∥b∥Lipβ(µ)

{ ∞∑
ℓ=1

1

[C(6ℓ−1)]1−(γ+β)

[λ(cBj , rBk
)]1−

1
p

[λ(cBj , ς
′rBj )]

1− 1
s−(γ+β)

}
. ∥b∥Lipβ(µ)

{ [λ(cBj
, ς ′rBj

)]1−
1
p+β+γ

[λ(cBj , ς
′rBj )]

1− 1
s

}
. ∥b∥Lipβ(µ)

[ λ(cBj , ς
′rBk

)

λ(cBj , δς
′rBk

)

]1− 1
s . (3.11)

Thus, we have

∥[b, Iγ ]fj − [b, Iγ ]fk∥Ms
t (µ)

& G =:
oscβ(b,Bj)

[λ(cBj , ςrBj )]
1−γ

− ω

[λ(cBj , ςrBj )]
1−γ

−
(∫

X\B(cBj
,ς′rBj

)

|[b, Iγ ]fk(x)|sdµ(x)
) 1

s

& oscβ(b, Bj)

[λ(cBj , ςrBj )]
1−γ

− ω

[λ(cBj , ςrBj )]
1−γ

− ∥b∥Lipβ(µ)

[ λ(cBj
, ς ′rBk

)

λ(cBj , δς
′rBk

)

]1− 1
s , (3.12)

for some ω independent of ς ′, ς and δ. If we choose ς ≫ ς ′ ≫ 1, then δ ≫ 1 such that G > 0, we
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see that the sequence {[b, Iγ ]fk} does not converge in Ms
t (µ).

Now we assume (2.3) fails. Then there is a sequence of balls {Bj}∞j=1 such that limj→∞ µ(Bj) =

0 and (3.5) holds. With an argument similar to that used in the first part of this proof, by passing

to a subsequence, we may assume that rBj+1 ≤ δrBj with j ∈ N, where δ > 0.

Notice that (∫
B(cBj

,ςrBj
)

|[b, Iγ ]fk(x)|sdµ(x)
) 1

s

≤ C∥b∥Lipβ(µ)

(∫
B(cBj

,ςrBj
)

[λ(x, rBk
)](β+γ− 1

p )sdµ(x)
) 1

s

≤ C∥b∥Lipβ(µ)[λ(cBj , rBk
)]β+γ− 1

p [B(cBj , ςrBj )]
1
s

≤ C∥b∥Lipβ(µ)

[λ(cBj , ςδrBk
)

λ(cBj , rBk
)

] 1
p−γ−β

.

Thus, we have (3.12), and we see that the sequence {[b, Iγ ]fj} never converges in Ms
t (µ). Thus,

combining the above estimates and Lemma 2.3, we can show that b ∈ Lipβ(µ). 2
4. Sufficiency of Theorem 1.9

In this section, we will mainly state the proof of the sufficiency for Theorem 1.9.

Proof Without loss of generality, we may assume that a function a ∈ C∞
c (µ). Using the

endpoint estimate of the commutator [b, T ](f) generated by the operator T (f) as in (2.6) and

b ∈ Lipβ(µ), we see that

∥[b, Iγ ](f)∥Mp
q (µ)→Ms

t (µ)
≤ C∥b∥Lipβ(µ)

. (4.1)

If a ∈ Lipβ(µ), then there exists a sequence {bj}∞j=1 ⊂ C∞
c (µ)-functions such that

∥a− bj∥Lipβ(µ) ≤
1

j

with j ∈ N. Via (4.1), we can obtain

∥[bj , Iγ ](f)− [a, Iγ ](f)∥Mp
q (µ)→Ms

t (µ)
≤ C∥bj − a∥Lipβ(µ)

≤ C

j
.

Thus, once we prove that [bj , Iα] is a compact, it will follow that [a, Iα] is compact, too. Thus,

we can set a ∈ C∞
c (µ).

Let

[a, Iγ ]εf(x) =

∫
ε<d(x,y)

a(x)− a(y)

[λ(x, d(x, y))]1−γ
f(y)dµ(y), x ∈ X .

Then, for any x ∈ X , we have

|[a, Iγ ]εf(x)− [a, Iγ ]f(x)|

≤
∫
d(x,y)≤ε

|a(x)− a(y)|
[λ(x, d(x, y))]1−γ

|f(y)|dµ(y)

≤ Cε∥a′∥L∞(µ)Iγ(|f |)(x),
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where a′ represents the derivative of the function a. Thus, under the condition for the norm

topology of B(Mp
q (µ),M

s
t (µ)), the following equation

lim
ε↓0

[a, Iγ ]ε = [a, Iγ ]

holds.

Next, let us assume

[a, Iγ ]
R
ε f(x) =

∫
ε<d(x,y)<R

a(x)− a(y)

[λ(x, d(x, y))]1−γ
f(y)dµ(y), x ∈ X .

Suppose that the support of function a is a given ball B0, cB0 and rB0 are the center and

radius of the ball B0, respectively. Then, by applying the Hölder inequality, Definition 1.6 and

(1.1), we have∫
d(x,y)≥R

|f(y)|
[λ(x, d(x, y))]1−γ

dµ(y)

≤
∞∑
k=1

∫
6k−1R≤d(x,y)≤6kR

|f(y)|
[λ(x, d(x, y))]1−γ

dµ(y)

≤ C
∞∑
k=1

1

[λ(x, 6k−1R)]1−γ

(∫
d(x,y)≤6kR

|f(y)|qdµ(y)
) 1

q

[µ(B(x, 6kR))]1−
1
q

≤ C∥f∥Mp
q (µ)[λ(x,R)]−

1
p+γ

∞∑
k=1

1

[C(6k−1)]
1
q−γ

≤ C∥f∥Mp
q (µ)[λ(x,R)]γ−

1
p ,

further, we can obtain

|[a, Iγ ]εf(x)− [a, Iγ ]
R
ε f(x)|

≤
∫
d(x,y)≥R

|a(x)− a(y)|
[λ(x, d(x, y))]1−γ

|f(y)|dµ(y)

≤ C∥f∥Mp
q (µ)∥a∥L∞(µ)

χB0(x)

[λ(x,R)]
1
p−γ

+ ∥a∥L∞(µ)

∫
d(x,y)≥R

χB0(y)

[λ(x, d(x, y))]1−γ
|f(y)|dµ(y).

Notice that [ ∫
X

(∫
d(x,y)≥R

χB0
(y)

[λ(x, d(x, y))]1−γ
|f(y)|dµ(y)

)s

dµ(x)
] 1

s

≤
∫
B0

|f(y)|
( ∞∑

k=1

∫
6k−1R≤d(x,y)≤6kR

1

[λ(x, d(x, y))](1−γ)s
dµ(x)

) 1
s

dµ(y)

≤ C

∫
B0

|f(y)|
( ∞∑

k=1

µ(B(cB0 , 6
kR))

[λ(cB0 , 6
k−1R)](1−γ)s

) 1
s

dµ(y)

≤ C

∞∑
k=1

[µ(B(cB0 , 6
kR))]

1
s

[λ(cB0 , 6
k−1R)]1−γ

(∫
B0

|f(y)|qdµ(y)
) 1

q

[µ(B0)]
1− 1

q

≤ C∥f∥Mp
q (µ)

( ∞∑
k=1

[µ(B(cB0 , 6
kR))]

1
s

[λ(cB0 , 6
k−1R)]1−γ

)
[µ(B0)]

1− 1
p
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≤ C∥f∥Mp
q (µ)

( ∞∑
k=1

[λ(cB0 , 6
kR)]

1
p

[λ(cB0 , 6
k−1R)]1+β

)
[λ(cB0 , rB0)]

1− 1
p

≤ C

[λ(cB0 , R)]
1
p′ +β

∥f∥Mp
q (µ),

which yields

∥[a, Iγ ]ε − [a, Iγ ]
R
ε ∥Mp

q (µ)→Ms
t (µ)

= o(R−τ )

for some τ > 0. Therefore, we only need to show that [a, Iγ ]
R
ε is compact. The integral kernel of

KR
ε is defined by

KR
ε (x, y) =

a(x)− a(y)

[λ(x, d(x, y))]1−γ
χ{ε<d(x,y)<R}(x, y), for all x, y ∈ X ,

and KR
ε is in L∞

c (µ). Thus, via the Lemma 2.4, we see that [a, Iγ ]
R
ε is compact. 2
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[9] J. J. BENTANCOR, J. C. FARIÑA. A note on compactness of commutators for fractional integrals associated

with non-doubling measures. J. Anal. Appl., 2007, 26(3): 331–339.

[10] Y. SAWANO, S. SHIRAI. Compact commutators on Morrey spaces with non-doubling measures. Georgian

Math. J., 2008, 15(2): 353–376.
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