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Abstract Let H be a complex Hilbert space and B(H) the algebra of all bounded linear

operators on H. An operator A is called the truncation of B in B(H) if A = PABPA∗ , where PA

and PA∗ denote projections onto the closures of R(A) and R(A∗), respectively. In this paper,

we determine the structures of all additive surjective maps on B(H) preserving the truncation

of operators in both directions.
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1. Introduction

The study of linear preserver problem is a hot topic that has been studied by a number of au-

thors [1,2]. It goes back well over a century to the so-called first linear preserver problem, due to

Frobenius [Berl. Ber. (1897), 994-1015], that determines linear maps preserving the determinant

of matrices. Recently, a survey on preservers of spectra and local spectra is given in [3]. At the

same time, additive preserver problems are considered by many authors. It is remarkable that

those results on linear preserver problems cannot be generalized to additive preserver problems

directly. Therefore, a lot of studies have been done on the subject of additive preserver problems

with respect to properties, functions, sets and relations, for example, invertible elements, nilpo-

tent elements, zero products and so on [4–6]. One of those preserver problems is the problem of

preserving some relation.

Partial order relation has always been one of the hot subjects considered by numerous authors.

Star partial order, minus partial order and diamond partial order as well as their preservers have

been considered [7–9]. The diamond partial order
⋄
≤ on Mn(C), the algebra of all n×n-complex

matrices, was defined in [7] by Baksalary and Hauke. Let A,B ∈ Mn(C). We say A
⋄
≤ B if

AA∗A = AB∗A, R(A) ⊆ R(B) and R(A∗) ⊆ R(B∗), where R(A) denotes the range of A and

A∗ denotes the adjoint of A. Of course this partial order may be extended to B(H) if we replace

R(A) by R(A), the closure of R(A). The following Lemma 2.1 shows that AA∗A = AB∗A in

the definition of diamond partial order is actually equivalent to A = PABPA∗ , where PA denotes

the projection on R(A). This means that A is a “part” of B, that is, A is truncated from B by

PA and PA∗ via the decomposition H = R(A∗)⊕ ker(A) = R(A)⊕ ker(A∗). We say that A is a
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truncation of B if A = PABPA∗ . This defines a relation on B(H). In this paper, we characterize

additive surjective maps preserving the truncation of operators in both directions.

2. The main result

Let H,K be complex Hilbert spaces and B(H,K) the Banach space of all bounded linear

operators from H to K. We denote by F(H,K) the space of all finite rank operators from H
to K. If H = K with dimH ≥ 2, we denote by B(H) and F(H) the algebra of all bounded

linear operators and the ideal of all finite rank operators on H, respectively. For an operator

T ∈ B(H), write ker(T ) for its kernel. For every nonzero x, y ∈ H, the symbol x ⊗ y stands for

the rank-one bounded linear operators defined by (x⊗ y)z = ⟨z, y⟩x for all z ∈ H, where ⟨z, y⟩ is
the inner product of z and y. Note that every operator of rank one can be written in this form.

The operator x⊗ y is an idempotent if and only if ⟨x, y⟩ = 1 and x⊗ y is a nilpotent if and only

if ⟨x, y⟩ = 0. Without any confusion, I denotes the identity operator on any Hilbert space.

Lemma 2.1 Let A,B ∈ B(H). Then AA∗A = AB∗A if and only if A = PABPA∗ .

Proof The sufficiency is elementary. We need only to show the necessity. Let H = R(A∗) ⊕
ker(A) = R(A)⊕ ker(A∗) and A =

(
A0 0
0 0

)
, where A0 ∈ B(R(A∗), R(A)) is an injective operator

with dense range. Let B =
(
B11 B12

B21 B22

)
. Since AA∗A = AB∗A, we can obtain A0 = B11 by

matrix calculation. Thus B =
(

A0 B12

B21 B22

)
. Note that PA =

(
I 0
0 0

)
on H = R(A) ⊕ ker(A∗) and

PA∗ =
(
I 0
0 0

)
on H = R(A∗)⊕ ker(A). Then PABPA∗ = A. 2

Let φ be an additive map on B(H). We say that φ preserves the truncation of operators if

φ(A) is the truncation of φ(B) whenever A is that of B for any A,B ∈ B(H). If φ preserves the

truncation of operators such that A is the truncation of B when φ(A) is the truncation of φ(B)

for any A,B ∈ B(H), then we say that φ preserves the truncation of operators in both directions.

Since A = PABPA∗ if and only if AA∗A = AB∗A by Lemma 2.1, φ preserves the truncation of

operators in both directions if and only if φ preserves the operator equation AA∗A = AB∗A in

both directions, that is,

φ(A)φ(A)∗φ(A) = φ(A)φ(B)∗φ(A) ⇔ AA∗A = AB∗A

for all A,B ∈ B(H).

We first give a characterization of rank one operators for the proof of our main theorem. Let

A ∈ B(H) and A ̸= 0. We define

A# = {C ∈ B(H) : AC∗A = 0}.

We say that A# is maximal if A# ⊆ B# for some nonzero B ∈ B(H) implies that A# = B#.

Lemma 2.2 Let A ∈ B(H) be a nonzero operator. Then A is of rank one if and only if A# is

maximal.

Proof =⇒. Note that A# is a closed subspace of B(H) such that (λA)# = A# for any nonzero

λ ∈ C. Let A be of rank 1. Then we may assume that A = x⊗ y for some unit vectors x, y ∈ H.
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In this case, we have AC∗A = ⟨x,Cy⟩A. Thus C ∈ A# if and only if ⟨x,Cy⟩ = 0. For any

C ∈ B(H), we have C − ⟨x,Cy⟩A ∈ A#. It follows that C = ⟨x,Cy⟩A + (C − ⟨x,Cy⟩A). This

means that A# is one co-dimensional. Therefore, A# is maximal.

⇐=. Assume by way of contradiction that A has rank greater than one. Let H1 =

R(A∗),H2 = ker(A),K1 = R(A),K2 = ker(A∗). Then H = H1 ⊕H2 = K1 ⊕K2 and

A =

(
A0 0

0 0

)
,

where A0 ∈ B(H1,K1) is an injective operator with dense range. Let A0 = U |A0| be the polar

decomposition of A0, where |A0| ∈ B(H1) is an injective positive operator, and U ∈ B(H1,K1)

is a unitary operator.

Case 1. |A0| = aI for some a > 0.

Note that dim(K1) = dim(H1) ≥ 2. Put H1 = M1 ⊕M2, where dim(Mi) ≥ 1, i = 1, 2. Let

N1 = U(M1), N2 = U(M2), U1 = U |M1 and U2 = U |M2 . Then U : M1 ⊕M2 → N1 ⊕N2 can be

expressed as U =
(
U1 0
0 U2

)
. Thus

A0 =

(
aU1 0

0 aU2

)
.

Consider

A1 =

(
aU1 0

0 0

)
.

Observe that A# $ A#
1 . This contradicts with the fact that A# is maximal.

Case 2. |A0| ̸= aI for all a > 0. We may assume that ∥A0∥ = 1.

Let |A0| =
∫
[0,1]

λdEλ be the spectral decomposition of |A0|. There exists a c ∈ (0, 1) such

that both M1 = E[0, c)H1 and M2 = E[c, 1]H1 are nonzero subspaces. Thus

|A0| =

(
|A0|

∣∣
M1

0

0 |A0|
∣∣
M2

)
.

Put N1 = U(M1), N2 = U(M2), then we have N1⊕N2 = K1. Let U1 = U |M1 , U2 = U |M2 . Then

U :M1 ⊕M2 → N1 ⊕N2 can be written in the following matrix form U =
(
U1 0
0 U2

)
. This means

that

A =

(
U1|A0|

∣∣
M1

0

0 U2|A0|
∣∣
M2

)
.

Put

A1 =

(
U1|A0|

∣∣
M1

0

0 0

)
.

Obviously, A# $ A#
1 , a contradiction. Hence, A is a rank one operator. 2

Before giving the main result, we recall some notions. Let τ be a ring automorphism of C.
A map A on H is said to be τ -quasilinear if A(ax + by) = τ(a)Ax + τ(b)Ay for any a, b ∈ C
and x, y ∈ H. If τ(a) = ā for any a ∈ C, then we say that A is conjugate linear. A conjugate



92 Jie YAO and Guoxing JI

linear map U on H is said to be anti-unitary if U is bijective such that ⟨Ux,Uy⟩ = ⟨y, x⟩ for any
x, y ∈ H.

Theorem 2.3 Let φ : B(H) → B(H) be an additive surjective map. Then the following

statements are equivalent:

(1) φ preserves the truncation of operators in both directions;

(2) φ preserves operator equation AA∗A = AB∗A for all A,B ∈ B(H) in both directions;

(3) There exist a nonzero scalar α ∈ C and operators U and V on H which are both unitary

or both anti-unitary such that φ(T ) = αUTV , ∀T ∈ B(H) or φ(T ) = αUT ∗V , ∀T ∈ B(H).

Proof We note that (1) and (2) are equivalent by Lemma 2.1. The implication from (3) to (1)

is elementary. We now assume that φ is an additive surjective map satisfying (2).

We firstly claim that φ is injective. Assume that φ(A) = 0. By the surjectivity of φ,

there exists a nonzero operator X ∈ B(H) such that φ(X) = I. Note that every additive map

is Q-linear, hence φ(X + rA) = φ(X) for every r ∈ Q. Observe that II∗I = II∗I. Thus

φ(X+ rA)φ(X+ rA)∗φ(X+ rA) = φ(X)φ(X)∗φ(X). This shows that (X+ rA)(X+ rA)∗(X+

rA) = XX∗X. By an elementary calculation, we can get

r3AA∗A+ r2(AA∗X +AX∗A+XA∗A) + r(AX∗X +XA∗X +XX∗A) = 0

for all r ∈ Q. It follows that AA∗A = 0 and thus A = 0.

Thus φ is bijective and φ−1 satisfies the same properties as φ. That is, both φ and φ−1

preserve the operator equation AA∗A = AB∗A for all A,B ∈ B(H). It is now easy to know that

φ(A#) = (φ(A))# for any A ∈ B(H). It follows that φ preserves rank one operators in both

directions by Lemma 2.2.

According to [5, Theorem 3.3], there exist a ring automorphism τ on C and τ -quasilinear

bijections A and C on H such that

φ(x⊗ y) = Ax⊗ Cy, ∀x, y ∈ H (2.1)

or

φ(x⊗ y) = Ay ⊗ Cx, ∀x, y ∈ H. (2.2)

We assume that φ satisfies (2.1). We will complete the proof by two claims.

Claim 1. Both A and C on H are multiples of unitary or anti-unitary operators.

Take any unit vectors x, y ∈ H such that x ⊥ y. It is easy to check that x⊗y, y⊗x ∈ (x⊗x)#,
hence φ(x⊗ y), φ(y ⊗ x) ∈ (φ(x⊗ x))#. Thus

(Ax⊗ Cx)(Ax⊗ Cy)∗(Ax⊗ Cx) = 0 and (Ax⊗ Cx)(Ay ⊗ Cx)∗(Ax⊗ Cx) = 0.

We have ⟨Ax,Ay⟩ = 0 and ⟨Cx,Cy⟩ = 0 by elementary calculation. These imply that both A

and C preserve orthogonality of vectors.

On the other hand, it is trivial that I − x ⊗ x ∈ (x ⊗ x)# for any unit vector x ∈ H. This

implies that φ(I)− φ(x⊗ x) ∈ (φ(x⊗ x))#. Thus

∥Ax∥2∥Cx∥2 = ⟨Ax,φ(I)Cx⟩ (2.3)
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for any unit vector x ∈ H. Again for any pair x, y of unit vectors such that x⊥y one has

I− (x⊗x+y⊗y) ∈ (x⊗x+y⊗y)#. Then φ(I)− (φ(x⊗x)+φ(y⊗y)) ∈ (φ(x⊗x)+φ(y⊗y))#.
Thus

(φ(x⊗ x) + φ(y ⊗ y))(φ(x⊗ x) + φ(y ⊗ y))∗(φ(x⊗ x) + φ(y ⊗ y))

= (φ(x⊗ x) + φ(y ⊗ y))(φ(I))∗(φ(x⊗ x) + φ(y ⊗ y)).

This means that

|Ax∥2∥Cx∥2Ax⊗ Cx+ ∥Ay∥2∥Cy∥2Ay ⊗ Cy

= (⟨Ax,φ(I)Cx⟩Ax+ ⟨Ax,φ(I)Cy⟩Ay)⊗ Cx+

(⟨Ay, φ(I)Cx⟩Ax+ ⟨Ay, φ(I)Cy⟩Ay)⊗ Cy.

Note that Ax⊥Ay, hence

⟨Ax,φ(I)Cy⟩ = ⟨Ay, φ(I)Cx⟩ = 0 (2.4)

by (2.3). It follows that Ay ∈ {φ(I)Cx}⊥ for any orthogonal unit vectors x, y ∈ H. Since A is

τ -quasilinear and Ax⊥Ay, we have A{x}⊥ ⊆ {Ax}⊥. On the other hand, note that φ−1 has the

same properties as φ. We then have A−1({Ax}⊥) ⊆ {x}⊥. Thus A({x}⊥) = {Ax}⊥.
We therefore see that A({x}⊥) ⊆ {φ(I)Cx}⊥. Note that A is bijective. Hence we have

A({x}⊥) = {φ(I)Cx}⊥. Then Ax ∈ {λφ(I)Cx : λ ∈ C} for any unit vector x ∈ H. This

implies that there exists a scalar λx ∈ C such that Ax = λxφ(I)Cx. Note that A and C

are τ -quasi linear bijections and φ(I) ∈ B(H) is not of rank one. Thus there exists a scalar

λ ∈ C such that A = λφ(I)C by [10, Theorem 2.3]. We note that although [10, Theorem 2.3]

dealt with linear operators, we still have the same results for τ -quasilinear operators. In fact,

we may prove this elementary fact here. Fixed a nonzero x ∈ H. It is trivial that A(ax) =

τ(a)Ax = τ(a)λxφ(I)Cx = λxφ(I)C(ax) for any a ∈ C. Now take any y ∈ H such that x

and y are linearly independent. Then Ax = λxφ(I)Cx and Ay = λyφ(I)Cy are also linearly

independent. Note that A(x+y) = λx+yφ(I)C(x+y) = λx+yφ(I)Cx+λx+yφ(I)Cy = Ax+Ay =

λxφ(I)Cx+ λyφ(I)Cy. It follows that λx = λy = λx+y. Put λ = λx. Then A = λφ(I)C.

We now have λ∥φ(I)Cx∥2 = |λ|2∥φ(I)Cx∥2∥Cx∥2 for any unit vector x ∈ H by (2.3) again.

In this case, λ > 0 and

∥Cx∥2 = λ−1 (2.5)

for all unit vector x. In particular, ∀α ∈ C with |α| = 1, we have ∥Cαx∥ = |τ(α)|∥Cx∥ = λ−
1
2 .

This means that |τ(α)| = 1. We therefore see τ is continuous and thus τ(α) = α for all α ∈ C
or τ(α) = α for all α ∈ C by [11, Proposition 1.1]. We now have that C = cV ∗ for a nonzero

constant c ∈ C and a unitary or an anti-unitary operator V by (2.5). Thus A = λφ(I)C is also

a bounded linear or conjugate linear operator. It follows that A = aU for a nonzero constant

a ∈ C and a unitary or an anti-unitary operator U by (2.4) again. Of course both A and C are

simultaneously multiples of unitary or anti-unitary operators.

Claim 2. φ(T ) = αUTV , ∀T ∈ B(H).
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By Claim 1, there exists a nonzero constant α ∈ C such that

φ(F ) = AFC∗ = αUFV, ∀F ∈ F(H) (2.6)

by (2.1). For any T ∈ B(H), let

ψ(T ) = α−1U−1φ(T )V −1. (2.7)

Clearly, ψ shares the same properties as φ. Furthermore, ψ(F ) = F for all F ∈ F(H). Let

T ∈ B(H) be an infinite rank operator and let x ∈ H be a unit vector.

If T ∗x ̸= 0, then (x⊗ T ∗x)(x⊗ T ∗x)∗(x⊗ T ∗x) = (x⊗ T ∗x)T ∗(x⊗ T ∗x). It follows that

(x⊗ T ∗x)(x⊗ T ∗x)∗(x⊗ T ∗x) = (x⊗ T ∗x)ψ(T )∗(x⊗ T ∗x).

Then ⟨T ∗x, T ∗x⟩ = ⟨ψ(T )∗x, T ∗x⟩ ̸= 0. In particular, ∥T ∗x∥ ≤ ∥ψ(T )∗x∥.
If T ∗x = 0, then we have ψ(T )∗x = 0. In fact, note that ψ−1 has the same properties as ψ.

If ψ(T )∗x ̸= 0, then we may have T ∗x = (ψ−1(ψ(T )))∗x ̸= 0. This is a contradiction. It follows

that kerT ∗ = kerψ(T )∗. Moreover, we also have ∥ψ(T )∗x∥ ≤ ∥(ψ−1(ψ(T )))∗x∥ = ∥T ∗x∥. Thus

∥T ∗x∥ = ∥ψ(T )∗x∥ as well as ⟨T ∗x, T ∗x⟩ = ⟨T ∗x, ψ(T )∗x⟩ for all x ∈ H. Since H is uniformly

convex, it follows that ψ(T )∗x = T ∗x, ∀x ∈ H, that is, ψ(T )∗ = T ∗. Consequently, by (2.7), we

have

φ(T ) = αUψ(T )V = αUTV, ∀T ∈ B(H).

This means that the first form of (3) holds.

If φ satisfies (2.2), we may show that the second form of (3) holds. 2
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