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Abstract In this paper, we propose a new class of non-self mappings called p-proximal α-η-

β-quasi contraction, and introduce the concepts of α-proximal admissible mapping with respect

to η and (α, d) regular mapping with respect to η. Based on these new notions, we study the

existence and uniqueness of best proximity point for this kind of new contractions in metric

spaces with w0-distance and obtain a new theorem, which generalize and complement the results

in [Ayari, M. I. et al. Fixed Point Theory Appl., 2017, 2017: 16] and [Ayari, M. I. et al. Fixed

Point Theory Appl., 2019, 2019: 7]. We give an example to show the validity of our main result.

Moreover, we obtain several consequences concerning about best proximity point and common

fixed point results for two mappings, and we present an application of a corollary to discuss the

solutions to a class of systems of Volterra type integral equations.
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1. Introduction

It was Banach who proposed the first fixed point result for a self mapping in the framework

of a metric space in 1922 which was called Banach’s contraction principle. From then on, many

efforts have been devoted to studying fixed points in the setting of different spaces and for

various classes of mappings [1–5]. The concept of a best proximity point for non-self mappings

in a metric space has been put forward by Basha [6], and several best proximity point theorems

have been derived by proposing sufficient conditions to guarantee the existence and uniqueness

of best proximity points in recent years [6–12].

In 2012, the notions of α-ψ-contractive and α-admissible mappings have been introduced to

assure the existence and uniqueness of fixed points in complete metric spaces [13]. α-admissible

mappings and β-admissible mappings in Menger PM-spaces have been defined to obtain some

fixed point results [14]. Wu et al. have introduced the new notions of α-admissible mappings

with respect to η in single-valued and set-valued cases in Menger PM-spaces [15], in order to
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study the existence of fixed points under certain contractive conditions. Fixed point theorems

for generalized α-ψ-contractive type mappings have also been formulated [16].

On the other hand, best proximity point problems for generalized α-ψ-contraction have been

extensively investigated by many authors [17, 18]. A new kind of contraction called generalized

α-β-proximal quasi contraction has been introduced and some new best proximity point results

have been proved [19]. Recently, a new theorem on the existence and uniqueness of best proximity

points for proximal β-quasi contractions for non-self mappings S : M → N and T : N → M

has been presented [20], which generalize the results in [21]. As a consequence, an analogous

result on proximal quasi contractions has been obtained which was first introduced by Jleli and

Samet [22].

Recently, Kostić et al. [23] have put forward a new concept called w0-distance, which is a

special type of w-distance (for more details on w-distance [24–26]), and extend some theorems

of Tchier et al. in [27] involving best proximity points and simulation functions.

In this paper, inspired by [19] and [20], we introduce the new concepts of p-proximal α-η-β-

quasi contraction, α-proximal admissible mappings with respect to η and (α, d) regular mappings

with respect to η, which are more general than the ones presented in [12,19,20]. We then establish

some new best proximity point theorems in metric spaces with a w0-distance, which extend and

complement the results of [19] and [20] in metric spaces, and also generalize the main results

in [22]. Some best proximity point and common fixed point results are also obtained as easy

consequences. We provide an example and an application to illustrate the validity of the obtained

results.

2. Preliminaries

Throughout this paper, let (M,N) be a pair of nonempty subsets of a metric space (X, d).

We adopt the following notations:

d(M,N) := inf{d(m,n) : m ∈M,n ∈ N};

M0 := {m ∈M : there exists n ∈ N such that d(m,n) = d(M,N)};

N0 := {n ∈ N : there exists m ∈M such that d(m,n) = d(M,N)}.

Definition 2.1 ([6]) Let S : M → N be a non-self mapping. An element a∗ ∈ M is said to be

a best proximity point of S if d(a∗, Sa∗) = d(M,N).

Note that if M = N , a best proximity point of a non-self mapping reduces to a fixed point

of a self mapping.

Definition 2.2 ([21]) Let S : M → N and T : N → M be two non-self mappings. (S, T ) is

said to be a proximal cyclic contraction, if there exists a non-negative number c < 1 such that

d(u, Sa) = d(M,N) and d(v, T b) = d(M,N) imply d(u, v) ≤ cd(a, b) + (1 − c)d(M,N) for all

u, a ∈M and v, b ∈ N .

Definition 2.3 ( [17]) Let T : M → N be a non-self mapping and α : M × M → [0,∞)
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be a functional. We say that T is α-proximal admissible, if α(x1, x2) ≥ 1 and d(u1, Tx1) =

d(u2, Tx2) = d(M,N) imply α(u1, u2) ≥ 1 for all x1, x2, u1, u2 ∈M .

Definition 2.4 ([28]) Let β ∈ (0,∞). A β-comparison function is a map φ : [0,∞) → [0,∞)

fulfilling the following properties:

(1) φ is nondecreasing;

(2) limn→∞ φn
β(t) = 0 for all t > 0, where φn

β denotes the nth iteration of φβ and φβ(t) =

φ(βt);

(3) There exists s ∈ (0,∞) such that
∑∞

n=1 φ
n
β(s) <∞.

We denote by Φβ the set of all β-comparison functions φ satisfying (1)–(3) in Definition 2.4.

It is easy to see that such class of functions have the following property.

Remark 2.5 ([19]) Let α, β ∈ (0,∞). If α < β, then Φβ ⊂ Φα.

The next lemma is very useful in the proof of the main result of this paper.

Lemma 2.6 ([28]) Let β ∈ (0,∞) and φ ∈ Φβ . Then

(1) φβ is nondecreasing;

(2) φβ(t) < t for all t > 0;

(3)
∑∞

n=1 φ
n
β(t) <∞ for all t > 0.

Definition 2.7 ([20]) Let β ∈ (0,∞). A non-self mapping T :M → N is said to be a proximal

β-quasi contraction if and only if there exist φ ∈ Φβ and αi > 0 (i = 0, 1, 2, 3, 4) such that

d(u, v) ≤ φ(max{α0d(a, b), α1d(a, u), α2d(b, v), α3d(a, v), α4d(b, u)})

for all a, b, u, v ∈M satisfying d(u, Ta) = d(M,N) and d(v, T b) = d(M,N).

Definition 2.8 ([17]) Let T : M → N be a non-self mapping and α : M ×M → [0,∞) be a

functional. T is said to be (α, d) regular, if for all (x, y) such that 0 ≤ α(x, y) < 1, there exists

u0 ∈M0 such that

α(x, u0) ≥ 1 and α(y, u0) ≥ 1.

Definition 2.9 ([23]) LetX be a metric space with metric d. Then a function p : X×X → [0,∞)

is called a w0-distance on X if the following are satisfied:

(P1) p(x, z) ≤ p(x, y) + p(y, z), for any x, y, z ∈ X;

(P2) For any x ∈ X, functions p(x, ·), p(·, x) : X → [0,∞) are lower semi-continuous;

(P3) For any ϵ > 0, there exists δ > 0 such that p(z, x) ≤ δ and p(z, y) ≤ δ imply d(x, y) ≤ ϵ.

Remark 2.10 ([23]) Note that the concept of w0-distance proposed in Definition 2.9 is more

general than the standard concept of a metric, but less general than the one of a w-distance.

Recall that a real-valued function f defined on a metric space X is said to be lower semi-

continuous at a point x0 ∈ X if either lim infxn→x0 f(xn) = ∞ or f(x0) ≤ lim infxn→x0 f(xn),

whenever xn ∈ X and xn → x0.

Remark 2.11 ([23]) Let (X, d) be a metric space, p : X ×X → [0,∞) a w0-distance on X, and
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letM and N be two non-empty subsets of X (which need not be equal). Also, for every x, y ∈ X

let µ(x, y) := max{p(x, y), p(y, x)}. It is easy to know that the function µ : X ×X → [0,∞) has

the following properties (for all x, y, z ∈ X)

(1) µ(x, y) = 0 ⇒ x = y;

(2) µ(x, y) = µ(y, x), i.e., µ is symmetric;

(3) µ(x, y) ≤ µ(x, z) + µ(z, y), i.e., µ satisfies the triangle inequality.

The following lemma will also play an important role in proving our main result, which has

been given in [26].

Lemma 2.12 ([26]) Let X be a metric space d and let p be a w-distance on X, let {xn} and {yn}
be sequences in X, let {αn} and {βn} be sequences in [0,∞) converging to 0, and let x, y, z ∈ X.

Then the following hold:

(i) If p(xn, y} ≤ αn and p(xn, z) ≤ βn for any n ∈ N, then y = z. In particular, if p(x, y) = 0

and p(x, z) = 0, then y = z;

(ii) If p(xn, yn) ≤ αn and p(xn, z) ≤ βn for any n ∈ N, then yn converges to z;

(iii) If p(xn, xm) ≤ αn for any n,m ∈ N with m > n, then {xn} is a Cauchy sequence;

(iv) If p(y, xn) ≤ αn for any n ∈ N, then {xn} is a Cauchy sequence.

3. Main results

In this section, we shall present and prove the main results of this paper. Now, we start this

section by introducing some new concepts. We first propose the following notion.

Definition 3.1 Let M and N be two non-empty closed subsets of a complete metric space

(X, d), T : M → N be a non-self mapping and α, η : M ×M → [0,∞) be two functionals. We

say that T is α-proximal admissible with respect to η, if α(x1, x2) ≥ η(x1, x2) and d(u1, Tx1) =

d(u2, Tx2) = d(M,N) imply α(u1, u2) ≥ η(u1, u2) for all x1, x2, u1, u2 ∈M .

Note that Definition 3.1 reduces to Definition 2.3 in Section 2 when η(x, y) = 1 for all

x, y ∈M . So the concept of α-proximal admissible mapping with respect to η (Definition 3.1) is

more general than the one of α-proximal admissible mapping (Definition 2.3).

Motivated by Definitions 2.7 and 2.8, we give the following two definitions, which will be

used in the proof of the main results.

Definition 3.2 Let M and N be two non-empty subsets of a complete metric space (X, d) with

a w0-distance p, and β ∈ (0,∞). A non-self mapping T : M → N is said to be a p-proximal α-

η-β-quasi contraction, if there exist α, η :M ×M → [0,∞), φ ∈ Φβ and αi > 0 (i = 0, 1, 2, 3, 4),

such that

α(a, b)µ(u, v) ≤ η(a, b)φ(max{α0µ(a, b), α1µ(a, u), α2µ(b, v), α3µ(a, v), α4µ(b, u)})

for all a, b, u, v ∈M satisfying d(u, Ta) = d(M,N) and d(v, T b) = d(M,N).

Definition 3.3 Let M and N be two non-empty subsets of a complete metric space (X, d),
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T :M → N be a non-self mapping, and α, η :M ×M → [0,∞) be two functionals. T is said to

be (α, d) regular with respect to η, if for all (x, y) such that 0 ≤ α(x, y) < η(x, y), there exists

u0 ∈M0 such that

α(x, u0) ≥ η(x, u0) and α(y, u0) ≥ η(y, u0).

Note that Definition 3.3 reduces to [17, Definition 16] when η(x, y) = 1 for all x, y ∈M . We

are now ready to give the main result of this paper.

Theorem 3.4 Let (M,N) be a pair of non-empty closed subsets of a complete metric space

(X, d) with a w0-distance p, such that M0 and N0 are non-empty. Let α, η : M ×M → [0,∞)

and α′, η′ : N×N → [0,∞) be four functionals. Let S :M → N and T : N →M be two non-self

mappings satisfying the following conditions:

(C1) S(M0) ⊂ N0 and T (N0) ⊂M0;

(C2) S is α-proximal admissible with respect to η, and T is α′-proximal admissible with

respect to η′;

(C3) S is (α, d) regular with respect to η, and T is (α′, d) regular with respect to η′;

(C4) There exist elements a0, a1 ∈ M such that d(a1, Sa0) = d(M,N) and α(a0, a1) ≥
η(a0, a1), there exist elements b0, b1 ∈ N such that d(b1, T b0) = d(M,N) and α′(b0, b1) ≥
η′(b0, b1);

(C5) There exist β1, β2 ≥ max{α0, 2α1, 2α2, 2α3, 2α4} such that S is a p-proximal α-η-β1-

quasi contraction (say, ψ ∈ Φβ1) and T is a p-proximal α′-η′-β2-quasi contraction (say, ϕ ∈ Φβ2);

(C6) (S, T ) is a proximal cyclic contraction;

(C7) If {an} is a sequence in M such that α(an, an+1) ≥ η(an, an+1) and limn→∞ an = a∗ ∈
M , then there exists a subsequence {ank

} of {an} such that α(ank
, a∗) ≥ η(ank

, a∗) for all k; if

{bn} is a sequence in N such that α′(bn, bn+1) ≥ η′(bn, bn+1) and limn→∞ bn = b∗ ∈ N , then

there exists a subsequence {bmk
} of {bn} such that α′(bmk

, b∗) ≥ η′(bmk
, b∗) for all k.

(C8) One of the following two assertions holds:

(i) ψ and ϕ are continuous;

(ii) β1, β2 > max{α0, 2α1, 2α2, α3, α4}.
Then S has a unique best proximity point a∗ ∈ M and T has a unique best proximity point

b∗ ∈ N . Moreover, the best proximity points satisfy d(a∗, b∗) = d(M,N).

Proof By condition (C4), there exist a0, a1 ∈M such that

d(a1, Sa0) = d(M,N) and α(a0, a1) ≥ η(a0, a1).

Since S(M0) ⊂ N0, there exists a2 ∈M0 such that d(a2, Sa1) = d(M,N). Since S is α-proximal

admissible with respect to η, noting that α(a0, a1) ≥ η(a0, a1) and d(a1, Sa0) = d(a2, Sa1) =

d(M,N), we get

d(a2, Sa1) = d(M,N) and α(a1, a2) ≥ η(a1, a2).

Continuing this process, for an ∈M0, we can find an+1 ∈M0 such that

d(an+1, San) = d(M,N) and α(an, an+1) ≥ η(an, an+1) for all n ∈ N ∪ {0}. (3.1)
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If an = an+1, we get d(an, San) = d(M,N), i.e., an is a best proximity point of S, which

completes the proof. 2
Hence, we can assume that µ(an−1, an) > 0 for all n ∈ N. Since S is p-proximal α-η-β1-quasi

contraction for ψ ∈ Φβ1 , and d(an+1, San) = d(an, San−1) = d(M,N), then by Definition 3.2 we

have

α(an, an−1)µ(an+1, an)

≤ η(an, an−1)ψ(max{α0µ(an, an−1), α1µ(an, an+1), α2µ(an, an−1),

α3µ(an, an), α4µ(an+1, an−1)}). (3.2)

Note that from (3.1) and (3.2), we have

µ(an+1, an)

≤ ψ(max{α0µ(an, an−1), α1µ(an, an+1), α2µ(an, an−1), α3µ(an, an), α4µ(an+1, an−1)})

≤ ψ(max{α0µ(an, an−1), α1µ(an, an+1), α2µ(an, an−1), 2α3µ(an+1, an),

α4µ(an+1, an) + α4µ(an−1, an)})

≤ ψ(max{α0µ(an, an−1), α1µ(an, an+1), α2µ(an, an−1), 2α3µ(an+1, an),

2α4 max{µ(an+1, an), µ(an−1, an)}})

≤ ψ(β1 max{µ(an+1, an), µ(an−1, an)})

= ψβ1
(max{µ(an+1, an), µ(an−1, an)}). (3.3)

Now, if max{µ(an+1, an), µ(an−1, an)} = µ(an+1, an), then by Lemma 2.6, it follows from (3.3)

that

µ(an+1, an) ≤ ψβ1
(µ(an+1, an)) < µ(an+1, an),

which is a contradiction. Thus, max{µ(an+1, an), µ(an−1, an)} = µ(an−1, an), and we have

µ(an+1, an) ≤ ψβ1(µ(an−1, an)).

By applying induction on n and from Lemma 2.6, we obtain that

µ(an+1, an) ≤ ψn
β1
(µ(a1, a0)) <∞, ∀n ≥ 1. (3.4)

Using the triangle inequality and (3.4), for integers n < m, we get

µ(an, am) ≤
m−1∑
k=n

µ(ak, ak+1) ≤
m−1∑
k=n

ψk
β1
(µ(a1, a0)),

which implies that µ(an, am) → 0 as n,m→ ∞. From Remark 2.11, we get limn,m→∞ p(an, am) =

0 and limn,m→∞ p(am, an) = 0. i.e., for any ϵ > 0, there exists N1 ∈ N, such that for all

m,n > N1, we have p(an, an+1) ≤ ϵ and p(am, an+1) ≤ ϵ. By (P3) of Definition 2.9, we obtain

d(an, am) ≤ ϵ when m,n > N1.

Thus, the sequence {an} is a Cauchy sequence in M . Noting that M is a closed subset of a

complete metric space (X, d), the sequence {an} converges to some element a∗ ∈M .
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Since T (N0) ⊂M0, by using a similar argument as above, there exists a sequence {bn} ⊂ N0

such that d(bn+1, T bn) = d(M,N) and α′(bn, bn+1) ≥ η′(bn, bn+1) for each n ∈ N∪{0}. Since T is

a p-proximal α′-η′-β2-quasi contraction for ϕ ∈ Φβ2 and d(bn+1, T bn) = d(bn, T bn−1) = d(M,N),

we deduce from Definition 3.2 that

α′(bn, bn−1)µ(bn+1, bn)

≤ η′(bn, bn−1)ϕ(max{α0µ(bn, bn−1), α1µ(bn, bn+1), α2µ(bn, bn−1), α3µ(bn, bn), α4µ(bn+1, bn−1)}).

Noting that α′(bn, bn+1) ≥ η′(bn, bn+1), we get

µ(bn+1, bn)

≤ ϕ(max{α0µ(bn, bn−1), α1µ(bn, bn+1), α2µ(bn, bn−1), α3µ(bn, bn), α4µ(bn+1, bn−1)})

≤ ϕ(max{α0µ(bn, bn−1), α1µ(bn, bn+1), α2µ(bn, bn−1), 2α3µ(bn+1, bn),

α4µ(bn+1, bn) + α4µ(bn−1, bn)})

≤ ϕ(max{α0µ(bn, bn−1), α1µ(bn, bn+1), α2µ(bn, bn−1), 2α3µ(bn+1, bn),

2α4 max{µ(bn+1, bn), µ(bn−1, bn)}})

≤ ϕ(β2 max{µ(bn+1, bn), µ(bn−1, bn)})

= ϕβ2(max{µ(bn+1, bn), µ(bn−1, bn)}).

Similarly, we deduce that {bn} converges to some b∗ ∈ N .

Now we prove that a∗ and b∗ are best proximal points of S and T , respectively. By condition

(C6), the pair (S, T ) is a proximal cyclic contraction, so we have

d(an+1, bn+1) ≤ cd(an, bn) + (1− c)d(M,N), 0 ≤ c < 1. (3.5)

Taking the limit as n → ∞, it immediately follows from (3.5) that d(a∗, b∗) ≤ cd(a∗, b∗) + (1 −
c)d(M,N), which yields that

d(a∗, b∗) ≤ d(M,N). (3.6)

Combining the fact that d(M,N) ≤ d(a∗, b∗) and (3.6), we get d(a∗, b∗) = d(M,N). Thus, we

conclude that a∗ ∈M0 and b∗ ∈ N0.

Since S(M0) ⊂ N0 and T (N0) ⊂M0, there exist u ∈M and v ∈ N such that

d(u, Sa∗) = d(v, T b∗) = d(M,N). (3.7)

On the other hand, since S is p-proximal α-η-β1-quasi contraction and ψ ∈ Φβ1 , by Definition

3.2 and (3.7), we deduce that

α(ank
, a∗)µ(ank+1, u)

≤ η(ank
, a∗)ψ(max{α0µ(ank

, a∗), α1µ(ank
, ank+1), α2µ(a∗, u), α3µ(ank

, u), α4µ(a∗, ank+1)}).

From (C7), we get α(ank
, a∗) ≥ η(ank

, a∗). Hence

µ(ank+1, u)

≤ ψ(max{α0µ(ank
, a∗), α1µ(ank

, ank+1), α2µ(a∗, u), α3µ(ank
, u), α4µ(a∗, ank+1)}). (3.8)
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Now, denote

ρ = µ(a∗, u)

and

Ank
= max{α0µ(ank

, a∗), α1µ(ank
, ank+1), α2µ(a∗, u), α3µ(ank

, u), α4µ(a∗, ank+1)}.

From the above argument, we know that limn,m→∞ p(an, am) = 0 and limn,m→∞ p(am, an) = 0.

This means that for any ϵ > 0, there exists Nϵ ∈ N, such that p(an, am) < ϵ for all m >

n ≥ Nϵ. For a fixed n ∈ N, the function p(an, ·) is lower semi-continuous. So p(an, a∗) ≤
lim infm→∞ p(an, am) < ϵ, and thus

lim
n→∞

p(an, a∗) = 0. (3.9)

Similarly, we can derive that limn→∞ p(a∗, an) = 0, which combined with (3.9) yields

lim
n→∞

µ(a∗, an) = 0.

Noting that

µ(an, u) ≤ µ(an, a∗) + µ(a∗, u)

and

µ(a∗, u) ≤ µ(an, u) + µ(an, a∗),

we get lim
n→∞

µ(an, u) = µ(a∗, u). Thus,

lim
k→∞

Ank
= max{α2, α3}ρ. (3.10)

Now, we show that ρ = 0. Suppose that ρ > 0. From Definition 3.2 and (C5), we get β1 >

max{α2, α3}. Then there exist ϵ > 0 and K ∈ N, such that for all k > K, we have

Ank
< (max{α2, α3}+ ϵ)ρ, and β1 > max{α2, α3}+ ϵ.

Therefore, it follows from (3.8) that

µ(ank+1, u) ≤ ψ(Ank
) ≤ ψ((max{α2, α3}+ ϵ)ρ) = ψβ1

(
max{α2, α3}+ ϵ

β1
ρ

)
.

Since ψ ∈ Φβ1 , by Lemma 2.6 we get

µ(ank+1, u) <
max{α2, α3}+ ϵ

β1
ρ < ρ,

which is also a contradiction. Therefore, we have µ(a∗, u) = ρ = 0. From Remark 2.11 we obtain

that a∗ = u, and so from (3.7) we get d(a∗, Sa∗) = d(M,N), i.e., a∗ is a best proximity point of

S. A similar argument shows that v = b∗ and hence by (3.7), we know that d(b∗, T b∗) = d(M,N),

i.e., b∗ is a best proximity point of the non-self mapping T .

Next, we prove the uniqueness of the best proximity point. Suppose that a∗ and x are two

distinct best proximity points of T . Then s = µ(a∗, x) > 0. Consider the following two cases:

Case 1. α(a∗, x) ≥ η(a∗, x). Since S is p-proximal α-η-β1-quasi contraction, by Definition

3.2 we get

α(a∗, x)µ(a∗, x) ≤ η(a∗, x)ψ(max{α0µ(a∗, x), α1µ(x, x), α2µ(a∗, a∗), α3µ(a∗, x), α4µ(a∗, x)}).
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Using the condition that α(a∗, x) ≥ η(a∗, x), we have

µ(a∗, x) ≤ ψ(max{α0µ(a∗, x), α1µ(x, x), α2µ(a∗, a∗), α3µ(a∗, x), α4µ(a∗, x)})

≤ ψ(β1µ(a∗, x)) = ψβ1(µ(a∗, x)) < µ(a∗, x),

which is a contradiction. So s = 0 and thus a∗ = x.

Case 2. α(a∗, x) < η(a∗, x). Since S is (α, d) regular with respect to η, there exists u0 ∈M0

such that α(a∗, u0) ≥ η(a∗, u0) and α(x, u0) ≥ η(x, u0). On the one hand, S(M0) ⊂ N0, so

there exists u1 ∈M0 such that d(u1, Su0) = d(M,N). On the other hand, since S is α-proximal

admissible with respect to η, by using α(a∗, u0) ≥ η(a∗, u0) and d(a∗, Sa∗) = d(u1, Su0) =

d(M,N), we get α(a∗, u1) ≥ η(a∗, u1). In a similar fashion, we can find un ∈M0 such that

d(un+1, Sun) = d(M,N) and α(a∗, un) ≥ η(a∗, un), for all n ∈ N ∪ {0},

and we can also prove that {un} is a Cauchy sequence in M . Assume that {un} converges

to u∗ ∈ M . Using the fact that d(a∗, Sa∗) = d(un+1, Sun) = d(M,N) and S is p-proximal

α-η-β1-quasi contraction, by Definition 3.2 we get

α(a∗, un)µ(a∗, un+1)

≤ η(a∗, un)ψ(max{α0µ(a∗, un), α1µ(a∗, a∗), α2µ(un, un+1), α3µ(a∗, un+1), α4µ(un, a∗)}).

By induction, we know that α(a∗, un) ≥ η(a∗, un). Therefore, we have

µ(a∗, un+1)

≤ ψ(max{α0µ(a∗, un), α1µ(a∗, a∗), α2µ(un, un+1), α3µ(a∗, un+1), α4µ(un, a∗)}). (3.11)

Next, denote ϱ = µ(a∗, u∗) > 0 and

Un = max{α0µ(a∗, un), α1µ(a∗, a∗), α2µ(un, un+1), α3µ(a∗, un+1), α4µ(un, a∗)}.

In a similar fashion we get limn→∞ µ(an, u) = µ(a∗, u), and limn→∞ µ(a∗, un) = µ(a∗, u∗).

Therefore, using triangle inequality we get

lim
n→∞

Un ≤ max{α0, 2α1, 2α2, α3, α4}ϱ. (3.12)

First, consider the case where the assertion (i) of (C8) is satisfied, that is, ψ is continuous. Then

taking the limit as n→ ∞ in (3.11) and using (3.12) and Lemma 2.6, we obtain

ϱ ≤ ψ(β1ϱ) = ψβ1(ϱ) < ϱ,

which is a contradiction. Now, assume that assertion (ii) of (C8) holds. Then there exist ϵ > 0

and N2 ∈ N, such that for all n > N2, we have

Un < (max{α0, 2α1, 2α2, α3, α4}+ ϵ)ϱ and β1 > max{α0, 2α1, 2α2, α3, α4}+ ϵ.

Therefore, it follows from (3.11) that

µ(a∗, un+1) ≤ψ(Un) ≤ ψ((max{α0, 2α1, 2α2, α3, α4}+ ϵ)ϱ)

=ψβ1

(
max{α0, 2α1, 2α2, α3, α4}+ ϵ

β1
ϱ

)
.
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Since ψ ∈ Φβ1 , by Lemma 2.6 we get

µ(un+1, a∗) <
max{α0, 2α1, 2α2, α3, α4}+ ϵ

β1
ϱ < ϱ.

Letting n→ ∞ in the above inequality yields

ϱ ≤ max{α0, 2α1, 2α2, α3, α4}+ ϵ

β1
< ϱ,

which is a contradiction as well. Thus, we get ϱ = µ(a∗, u∗) = 0. Analogously, we can prove that

x = u∗. So, we get a∗ = x. Therefore, the best proximity point a∗ of S is unique. Similarly, the

best proximity point of T is also unique. This completes the proof. 2
Example 3.5 Consider the space X = R2 endowed with the metric

d(x, y) = |x1 − x2|+ |y1 − y2|, for all x = (x1, y1), y = (x2, y2) ∈ X.

Then (X, d) is a complete metric space. Define p by

p(x, y) = |x1 − x2|+ y1 + y2, for all x = (x1, y1), y = (x2, y2) ∈ X.

Then p is a w0-distance and we define µ(x, y) = max{p(x, y), p(y, x)} for x = (x1, y1), y =

(x2, y2) ∈ X.

Let us define

M := {(0, θ) ∈ X, 0 ≤ θ ≤ 1} and N := {(1, ξ) ∈ X, 0 ≤ ξ ≤ 1}.

Clearly, (M,N) is a pair of closed subsets of (X, d) with M0 = M , N0 = N and we have

d(M,N) = 1.

Define non-self mappings S :M → N and T : N →M by

S(0, θ) = (1, f(θ)) and T (1, ξ) = (0, g(ξ)),

where

f(θ) =
θ

4
for all θ ∈ [0, 1], and g(ξ) =

ξ

5
for all ξ ∈ [0, 1].

Then it is easy to see that S(M0) ⊂ S(M) ⊂ N = N0 and T (N0) ⊂ T (N) ⊂M =M0. Therefore,

(C1) holds. Let

α(x, y) = 3, η(x, y) = 2 for all x = (x1, y1), y = (x2, y2) ∈M,

and

α′(x, y) = 3, η′(x, y) = 2 for all x = (x1, y1), y = (x2, y2) ∈ N.

Then it is obvious that (C2), (C3) and (C4) and (C7) hold.

Let ψ(t) = t
8 , ϕ(t) =

t
10 , β1 = β2 = 6, α0 = 4, αi = 1 (i = 1, 2, 3, 4). It is obvious that ψ and ϕ

are both continuous, so (C8) holds. Noting that ψβ1(t) = ψ(β1t) =
3
4 t and ϕβ2(t) = ϕ(β2t) =

3
5 t,

it can be shown that ψ(t) = 1
8 t ∈ Φ6 and ϕ(t) = 1

10 t ∈ Φ6.

Now we shall prove that S is a p-proximal α-η-β1-quasi contraction. In fact, let

u = (0, θ), v = (0, ξ), a = (0, γ), b = (0, δ) ∈M
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such that

d(u, Sa) = d(v, Sb) = d(M,N) = 1.

It is easy to show that

d(u, Sa) = 1 ⇐⇒ θ = f(γ)

and

d(v, T b) = 1 ⇐⇒ ξ = f(δ).

Thus

α(a, b)µ(u, v) = 3(θ + ξ) =
3

4
(γ + δ) =

3

4
µ(a, b) ≤ η(a, b)ψ(α0µ(a, b))

≤ η(a, b)ψ(max{α0µ(a, b), α1µ(a, u), α2µ(b, v), α3µ(a, v), α4µ(b, v)}).

So S is a p-proximal α-η-β1-quasi contraction.

Similarly, for a, b, u, v ∈ N , u = (1, θ), v = (1, ξ), a = (1, γ), b = (1, δ) ∈ N and d(u, Ta) =

d(M,N) = 1 = d(v, T b) implies θ = g(γ), ξ = g(δ).

α′(a, b)µ(u, v) = 3(θ + ξ) =
3

5
(γ + δ) =

3

5
µ(a, b) ≤ η′(a, b)ϕ(α0µ(a, b))

≤ η′(a, b)ϕ(max{α0µ(a, b), α1µ(a, u), α2µ(b, v), α3µ(a, v), α4µ(b, v)}).

So T is a p-proximal α′-η′-β2-quasi contraction. Therefore, (C5) holds.

Since d(u, Sa) = d(M,N) and d(v, T b) = d(M,N) implies that u = (0, θ), a = (0, γ) ∈ M

and v = (1, ξ), b = (1, δ) ∈ N , respectively, we have θ = f(γ) = γ
4 and ξ = g(δ) = δ

5 , and thus

d(u, v) = 1 + |θ − ξ| = 1 + |γ
4
− δ

5
|

≤ 1

4
[1 + |γ − δ|] + 1− 1

4
=

1

4
d(a, b) + (1− 1

4
)d(M,N).

So (S, T ) is a proximal cyclic contraction, which means that (C6) holds.

By Theorem 3.4, S has a unique best proximity point a∗ in M and T has a unique best

proximity point b∗ in N , and d(a∗, b∗) = d(M,N). In our example, a∗ = (0, 0) ∈ M and

b∗ = (1, 0) ∈ N are the unique best proximity points of S and T , respectively, and d(a∗, b∗) =

d((0, 0), (1, 0)) = 1 = d(M,N). Note that our result Theorem 3.4 can solve the problem in this

example, but the results in other literatures before (e.g., Theorem 4.1 in [22], Theorem 3.2 in [12]

and Theorem 3.1 in [19]) cannot solve it.

4. Consequent results

In this section, we derive some results as consequences of Theorem 3.4. First, setting α(x, y) =

η(x, y) = 1 for all x, y ∈M in Definition 3.2, we get the following definition.

Definition 4.1 Let M and N be two non-empty subsets of a complete metric space (X, d) with

a w0-distance p and β ∈ (0,∞). A non-self mapping T : M → N is said to be a p-proximal

β-quasi contraction, if there exist φ ∈ Φβ and αi > 0 (i = 0, 1, 2, 3, 4) such that

µ(u, v) ≤ φ(max{α0µ(a, b), α1µ(a, u), α2µ(b, v), α3µ(a, v), α4µ(b, u)})
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for all a, b, u, v ∈M satisfying d(u, Ta) = d(M,N) and d(v, T b) = d(M,N).

Based on this definition, we can get the following corollary which follows immediately from

Theorem 3.4 by taking α(x, y) = η(x, y) = 1 for all x, y ∈ M and α′(s, t) = η′(s, t) = 1 for all

s, t ∈ N .

Corollary 4.2 Let (M,N) be a pair of non-empty closed subsets of a complete metric space

(X, d) with a w0-distance p, such that M0 and N0 are non-empty. Let S : M → N and

T : N →M be two non-self mappings satisfying the following conditions:

(D1) S(M0) ⊂ N0 and T (N0) ⊂M0;

(D2) There exist β1, β2 ≥ max{α0, 2α1, 2α2, 2α3, 2α4} such that S is a p-proximal β1-quasi

contraction (say, ψ ∈ Φβ1) and T is a p-proximal β2-quasi contraction (say, ϕ ∈ Φβ2);

(D3) (S, T ) is a proximal cyclic contraction;

(D4) One of the following two assertions holds:

(i) ψ and ϕ are continuous;

(ii) β1, β2 > max{α0, 2α1, 2α2, α3, α4}.
Then S has a unique best proximity point a∗ ∈ M and T has a unique best proximity point

b∗ ∈ N . Moreover, the best proximity points satisfy d(a∗, b∗) = d(M,N).

A special case of Definition 4.1 is the following one.

Definition 4.3 Let M and N be two non-empty subsets of a complete metric space (X, d) with

a w0-distance p. A non-self mapping T : M → N is said to be p-proximal quasi contraction, if

there exists q ∈ [0, 1) and αi > 0 (i = 0, 1, 2, 3, 4) such that

µ(u, v) ≤ qmax{µ(a, b), µ(a, u), µ(b, v), µ(a, v), µ(b, u)}

for all a, b, u, v ∈M satisfying d(u, Ta) = d(M,N) and d(v, T b) = d(M,N).

By taking α0 = 1, α1 = α2 = α3 = α4 = 1
2 and ψ(t) = ϕ(t) = qt for q ∈ [0, 1), we obtain

the following result, which is a generalization in [21, Corollary 3.3] to a metric space with a

w0-distance.

Corollary 4.4 Let (M,N) be a pair of non-empty closed subsets of a complete metric space

(X, d) with a w0-distance p, such that M0 and N0 are non-empty. Let S : M → N and

T : N →M be two non-self mappings satisfying the following conditions:

(E1) S(M0) ⊂ N0 and T (N0) ⊂M0;

(E2) S and T are p-proximal quasi contractions;

(E3) (S, T ) is a proximal cyclic contraction.

Then S has a unique best proximity point a∗ ∈ M and T has a unique best proximity point

b∗ ∈ N . Moreover, the best proximity points satisfy d(a∗, b∗) = d(M,N).

In particular, setting M = N = X in Definitions 4.1 and 4.3, respectively, we have the

following two definitions.

Definition 4.5 Let (X, d) be a complete metric space with a w0-distance p and β ∈ (0,∞).

A self mapping T : X → X is said to be a p-β-quasi contraction, if there exist φ ∈ Φβ and
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αi > 0 (i = 0, 1, 2, 3, 4) such that

µ(Ta, Tb) ≤ φ(max{α0µ(a, b), α1µ(a, Ta), α2µ(b, T b), α3µ(a, Tb), α4µ(b, Ta)})

for all a, b ∈ X.

Definition 4.6 Let (X, d) be a complete metric space with a w0-distance p. A self mapping

T : X → X is said to be a p-quasi contraction, if there exists q ∈ [0, 1) such that

µ(Ta, Tb) ≤ qmax{µ(a, b), µ(a, Ta), µ(b, T b), µ(a, Tb), µ(b, Ta)}

for all a, b ∈ X.

By taking M = N = X in Corollary 4.2, we obtain the following result, which is a common

fixed point result for two self mappings.

Corollary 4.7 Let (X, d) be a complete metric space with a w0-distance p. Let S, T : X → X

be two self mappings satisfying the following conditions:

(F1) There exist β1, β2 ≥ max{α0, 2α1, 2α2, 2α3, 2α4} such that S is p-β1-quasi contraction

(say, ψ ∈ Φβ1) and T is p-β2-quasi contraction (say, ϕ ∈ Φβ2);

(F2) For all a, b ∈ X, d(Sa, Tb) ≤ cd(a, b) for some c ∈ (0, 1);

(F3) One of the following two assertions holds:

(i) ψ and ϕ are continuous;

(ii) β1, β2 > max{α0, 2α1, 2α2, α3, α4}.
Then S and T have a unique common fixed point in X.

By taking M = N = X in Corollary 4.4, we obtain the following common fixed point result.

Corollary 4.8 Let (X, d) be a complete metric space with a w0-distance p. Let S, T : X → X

be two self mappings satisfying the following conditions:

(G1) S and T are p-quasi contractions;

(G2) For all a, b ∈ X, d(Sa, Tb) ≤ cd(a, b) for some c ∈ (0, 1).

Then S and T have a unique common fixed point in X.

5. An application

In this section, we apply Corollary 4.8 to discuss the solutions to a class of system of Volterra

type integral equations.

Let X = C([0,K]),R) be the Banach space of all continuous functions defined on [0,K]

endowed with the norm (called Bielecki norm, see [29])

∥x∥B = max
t∈[0,K]

|x(t)|e−Lt, x ∈ X, L > 0.

The induced metric is

dB(x, y) = max
t∈[0,K]

|x(t)− y(t)|e−Lt, x, y ∈ X, L > 0.
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It is easy to see that (X, dB) is a complete metric space. Furthermore, let

p(x, y) = max
t∈[0,K]

|x(t) + y(t)|e−Lt, x, y ∈ X, L > 0.

Then p is a w0-distance and µ(x, y) = p(x, y).

Now consider the following system of Volterra type integral equations:{
x1(t) =

∫ t

0
Ω1(t, s, x1(s))ds,

x2(t) =
∫ t

0
Ω2(t, s, x2(s))ds.

(5.1)

for all t ∈ [0,K], where K > 0, x ∈ X and Ω ∈ C([0,K]× [0,K]×X,R). We discuss the existence

and uniqueness of solutions to (5.1).

Theorem 5.1 Let (X, dB) be the complete metric space defined above, and Ωi ∈ C([0,K] ×
[0,K]×X,R) (i = 1, 2) be the functions satisfying the following conditions:

(i) ∥Ωi∥∞ = supt,s∈[0,K],x∈C([0,K],R) |Ω(t, s, x(s))| <∞;

(ii) There exists L > 0, such that for all a, b ∈ X and all t, s ∈ [0,K] with 0 ≤ e−LK ≤ 1,

we have

|Ωi(t, s, a(s))|+ |Ωi(t, s, b(s))| ≤ L|a(s) + b(s)|, i = 1, 2;

(iii) There exists L > 0, such that for all a, b ∈ X and all t, s ∈ [0,K], we have

|Ω1(t, s, a(s))− Ω2(t, s, b(s))| ≤ L|a(s)− b(s)|,

then (5.1) has a unique solution in X.

Proof Define S, T : X → X by Sx1(t) =
∫ t

0
Ω1(t, s, x1(s))ds and Tx2(t) =

∫ t

0
Ω2(t, s, x2(s))ds,

respectively. Then (5.1) has a unique solution in X is equivalent to the fact that S and T have

a unique fixed point in X.

Now, by (ii), for all a, b ∈ X, we have

µ(Sa, Sb) = max
t∈[0.K]

∣∣∣ ∫ t

0

Ω1(t, s, a(s))ds+

∫ t

0

Ω1(t, s, b(s))ds
∣∣∣e−Lt

≤ max
t∈[0.K]

∫ t

0

|Ω1(t, s, a(s)) + Ω1(t, s, b(s))|eL(s−t)e−Lsds

≤ Lµ(a, b) max
t∈[0.K]

∫ t

0

eL(s−t)ds ≤ (1− e−LK)µ(a, b).

Similarly, we have µ(Ta, Tb) ≤ (1− e−LK)µ(a, b).

Noting that 0 ≤ e−LK ≤ 1, we conclude that there exists q = 1− e−LK ∈ [0, 1), such that

µ(Sa, Sb) ≤ qµ(a, b) ≤ qmax{µ(a, b), µ(a, Sa), µ(b, Sb), µ(a, Sb), µ(b, Sa)},

and

µ(Ta, Tb) ≤ qµ(a, b) ≤ qmax{µ(a, b), µ(a, Ta), µ(b, T b), µ(a, T b), µ(b, Ta)},

which implies that S and T are p-quasi contractions, i.e., (G1) holds.

On the other hand, by (iii), for all a, b ∈ X, we have

dB(Sa, Tb) = max
t∈[0.K]

∣∣∣ ∫ t

0

Ω1(t, s, a(s))ds−
∫ t

0

Ω2(t, s, b(s))ds
∣∣∣e−Lt
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≤ max
t∈[0.K]

∫ t

0

|Ω1(t, s, a(s))− Ω2(t, s, b(s))|eL(s−t)e−Lsds

≤ Ld(a, b) max
t∈[0.K]

∫ t

0

eL(s−t)ds ≤ (1− e−LK)d(a, b).

So there exists c = 1 − e−LK ∈ (0, 1), such that d(Sa, Tb) ≤ cd(a, b) for all a, b ∈ X, which

implies that (G2) holds. It follows from Corollary 4.8 that S and T have a unique common fixed

point in X. Therefore, (5.1) has a unique solution in X. This completes the proof. 2
6. Conclusions

We have studied best proximity point problems for a new class of contractions which is more

general than previous ones in the framework of a metric space with w0-distance. By proposing

the notions of p-proximal α-η-β-quasi contraction, α-proximal admissible mappings with respect

to η and (α, d) regular mappings with respect to η, we have proved the existence and uniqueness

of best proximity points of the mappings and have obtained many consequent results, which shed

some new light on the study of best proximity point as well as fixed point problems in a metric

space with w0-distance. It would also be interesting to investigate best proximity point problems

in the framework of other spaces for other kinds of mappings. These problems deserve studying

in the future.
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